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Abstract: In recent years, machine learning (ML) has become a buzzword in the petroleum industry
with numerous applications that guide engineers toward better decision making. The most powerful
tool that most production development decisions rely on is reservoir simulation with applications in
numerous modeling procedures, such as individual simulation runs, history matching and production
forecast and optimization. However, all these applications lead to considerable computational
time- and resource-associated costs, and rendering reservoir simulators is not fast or robust, thus
introducing the need for more time-efficient and smart tools like ML models which can adapt and
provide fast and competent results that mimic simulators’ performance within an acceptable error
margin. The first part of the present study (Part I) offers a detailed review of ML techniques in the
petroleum industry, specifically in subsurface reservoir simulation, for cases of individual simulation
runs and history matching, whereas ML-based production forecast and optimization applications are
presented in Part II. This review can assist engineers as a complete source for applied ML techniques
since, with the generation of large-scale data in everyday activities, ML is becoming a necessity for
future and more efficient applications.

Keywords: review; machine learning; reservoir simulations; history matching; production optimization;
production forecast

1. Introduction
1.1. Reservoir Simulation in the Oil and Gas Industry

The discovery of oil and gas reserves and their exploitation to provide access to
affordable energy, meet the world’s energy demand and maximize profit are the main
objectives of the petroleum industry and its applications. Subsurface reservoir simulation
is currently the most essential tool available to reservoir engineers for achieving those goals.
It is crucial for the deep understanding and detailed analysis of a reservoir’s behavior as a
whole, as well as for designing and optimizing recovery processes. Simulation is utilized
in all essential planning stages, for reservoir development and management purposes, to
make the exploitation of underground hydrocarbon reservoirs as efficient as possible.

Reservoir simulation is developed by combining principles from physics, mathemat-
ics, reservoir engineering, geoscience and computer programming to model hydrocarbon
reservoir performance under various operating strategies, according to each reservoir’s
respective characteristics and production conditions. A reservoir simulator’s output, typi-
cally comprised of spatial and temporal distributions of pressure and phase saturation, is
introduced to simulation models of physical components in the hydrocarbon production
chain, including those used to produce fluids at the surface (wellbore) and process the
reservoir fluids (surface facilities), thus allowing for a complete modeling system down
to the sales point [1,2]. Reservoir simulations are mathematical tools built to accurately
predict all the physical fluid flow phenomena inside a reservoir within a reasonable error
margin, thus acting as a “digital twin” of the physical system.
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Simulators estimate a reservoir’s performance by solving the differential and algebraic
equations derived from the integration of mass, momentum and energy conservation
together with thermodynamic equilibrium, which describe the multiphase fluid flow in
porous media. By using numerical methods, typically finite volumes, these equations
can be solved throughout the entire reservoir model for variables with space- and time-
dependent characteristics, such as pressure, temperature, fluid saturation, etc., which are
representative of the performance of a reservoir [2].

For this task, a static and a dynamic reservoir model must first be set up. A static
reservoir model is a three-dimensional representation of a reservoir’s geological properties,
such as porosity, permeability and rock type. It is created using geological, well and seismic
data together with a thorough interpretation, providing an approximate ‘’snapshot” of a
real reservoir at a specific time [3–5]. On the other hand, a dynamic reservoir model is a
time-dependent simulation of fluid flow in a reservoir. It builds upon the static model by
incorporating production history, fluid properties and reservoir management strategies. A
dynamic model is employed to predict reservoir behavior, optimize production and assess
various development scenarios, such as enhanced oil recovery techniques and the impact
of drilling new wells.

When both static and dynamic reservoir models have been created, they are integrated
to estimate the reservoir’s performance. The simulator then divides the reservoir into
many cells (grid blocks) or otherwise into a large number of space and time sections, where
each cell is modeled individually (Figure 1). The simulation method assumes that each
reservoir cell behaves like a tank with uniform pressure, temperature and composition of
the individual phases for each specific time. During the fluid flow, each cell communicates
with all neighboring cells to exchange mass and energy. Subsurface reservoir models
can be highly complex, exhibiting high inhomogeneity, a vast variance of petrophysical
properties, such as porosity and permeability, and peculiar shapes capturing the structure
and stratigraphy of the real reservoir.
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Typically, the simulation of the thermodynamic behavior of fluids in reservoirs is
handled by means of black oil or compositional fluid models. Black oil models are widely
used to express simple phase behavior phenomena, especially for low- to medium-volatility
oils [6], providing a simple and sufficiently precise approach. These models utilize the
black oil assumption for which the fluid, at any point along the flow inside the reservoir
to the surface facilities, is considered as a binary composition fluid consisting of the stock
tank oil and the surface gas. Consequently, at any given pressure, the stock tank oil is
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saturated with a quantity of tank gas that induces its swelling and if a further quantity of
gas is present, it coexists with the oil as a free gas phase. The change in the volume of water
with pressure can also be considered whereas any phase-related changes are ignored since
water is assumed not to interact with hydrocarbons in such a way. These phase behavior
phenomena are quantified using PVT properties that are only functions of pressure and
temperature, hence ignoring the influence of the exact fluid composition [7].

When complex phase behavior phenomena take place, such as in the case of CO2
injection into a reservoir for enhanced oil recovery (EOR) purposes, the black oil assumption
is no longer valid. Thus, fully compositional simulations need to be utilized to monitor
in detail the fluid composition’s changes at each block and at each time step [8]. In
compositional reservoir simulation, phase behavior calculations needed for each grid block
of the reservoir are conducted by running stability and flash calculations based on an
equation of state (EoS) model. Stability provides the number of fluid phases present in
the cell (typically oil, gas or both) whereas flash calculations provide the amount and
composition of all phases in equilibrium. These computations normally account for a
significant part of the total CPU time and, as a result, compositional simulations need high-
performance systems with significant computing power to be executed successfully [9,10].
Depending on the number of components used to describe the fluids, there is a very high
demand for computational power due to the complexity and the iterative nature of the
phase behavior problem solution process. Phase stability and phase split computations
often consume more than 50% of the simulation’s total CPU time, as both problems need to
be solved repeatedly for each discretization block at each iteration of the non-linear solver
and for each time step [10]. The reservoir model configuration is completed by adding
the reservoir–rock interaction, typically in the form of relative permeability and capillary
pressure curves, as well as information on the producing/injecting wells, their perforations
and their operating schedule.

Once the reservoir model has been set up, the most fundamental and, at the same
time, computationally expensive applications of compositional simulation are reservoir
adaptation, known as history matching (HM), and production forecast and optimization
(PFO) of future reservoir performance. HM is the most important step preceding the
calculations for the optimization of reservoir performance. It is the process of calibrating
the uncertain properties and parameters of a reservoir model (such as petrophysics), based
on a trial-and-error procedure, until the production and pressure values predicted by the
field’s dynamic model match the historically recorded ones. Therefore, HM is an optimiza-
tion problem since the Objective Function (OF) that must be minimized accounts for the
difference between the data derived from the simulator and the measurements obtained
from the field. Once completed, the reservoir model can be considered reliable enough to
be used to perform all desired engineering and economic calculations, predictions, and
production optimization [11].

Prediction of reservoir performance under various production scenarios and its op-
timization is the next most crucial application of reservoir simulation since production
management and techno/economic planning are highly dependent on it. The primary
use of reservoir performance prediction is focused on estimating the oil recovery under
various production schemes, designing the wells’ configuration based on those strategies
and conducting economic analysis for the future development of fields so that strategic
decisions and economic evaluations are properly justified [12].

Although the above two applications are considered the core of reservoir engineering,
they suffer from extremely large computational expenses due to the iterative nature of the
calculations needed for their proper execution. They can be very cumbersome for very
extensive and detailed reservoir models since the increasing number of grid blocks, the
variant distribution of the reservoir parameters and the complexity of the wells’ opera-
tion schedule increase the time required for the calculations of a conventional non-linear
solver [11]. Therefore, speeding up these applications is of great importance and each one
must be considered as a separate subject for optimization.
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Reservoir simulators have been modernized to meet the current needs of large data
management by incorporating recent developments in High-Performance Computing
(HPC), including the use of multi-threading, multi-core, multi-computer grids and cloud
computing [13]. However, the continuous growth of the models’ size, resolution and
physics complexity renders simulators not as fast or robust enough, thus introducing the
need for more time-efficient and smart computational tools like proxy models which can
adapt and provide fast and competent results that mimic real reservoir performance within
an acceptable error margin.

Proxy reservoir models, also known as Surrogate Reservoir Models (SRMs), behave
as the “digital twin” of a conventional reservoir simulator, in the sense that they aim
to mimic its results by identifying and modeling the underlying complex relationships
between various input variables and the desired outcome (i.e., pressure and saturation), in
a very small fraction of the time that would otherwise be required. Proxy modeling can
be broadly classified into four categories, based on their development approach, namely
statistics-based models, Reduced Physics Models (RFMs), Reduced Order Models (ROMs),
and Artificial Intelligence (AI)-based models, like machine learning (ML). Statistics-based
models (e.g., response surfaces) provide a function that approximates the response of a
full numeric simulator by capturing the input–output relationship of a sample of input
parameters [14]. RFMs aim at simplifying the physics of a process, in this case, the fluid
flow process inside the reservoir, by applying several hypotheses, while ROMs are used to
decrease a primary system’s dimensionality by ignoring insignificant parameters while,
at the same time, keeping the dominant features and physics over a defined space [14,15].
In the present review, ML-based models are considered in detail thanks to their ability
to identify trends and patterns between input variables and the desired outcome and of
handling multi-dimensional and multi-variety data.

1.2. Machine Learning in Reservoir Simulation

Learning from data has been a rich topic of research in many engineering disciplines
since the volume of data has increased greatly and human cognition is no longer able to
decipher the information and find patterns within associated data [16]. In recent years,
data-driven ML techniques have gained major support and have been applied successfully
to assist in field development plans. They allow the development of models that represent
physical problems without the demand to mathematically express first-principle laws.
Typically, they consist of a function or a differential equation that estimates the output of
conventional full-scale reservoir simulation models [17–19], producing approximate and
partially imprecise results to give fast, robust and low-cost solutions by sacrificing some
accuracy for gains in agility and acceleration [19].

ML provides an automated approach to the development of numerical models that
learn to recognize patterns from observed data and facilitate the decision-making process
with minimal human interference. The most common types of ML are supervised learning
(SL), unsupervised learning (UL) and reinforcement learning (RL), as presented in Figure 2.
SL models focus on identifying the underlying relationship between observed data (inputs)
and the corresponding observed outcome (output) and build a mathematical model to
express their relationship. This way, when new input data arrive, the model can provide
predictions of the output as efficiently as possible. They are used to solve classification and
regression problems depending on whether the required output is a discrete variable (i.e., a
class number) or a continuous one. UL is used when the observed data are unlabeled (i.e.,
there is no corresponding output) and its main purpose is to identify hidden patterns only
between the given input data. Such models are mostly used for data clustering, which is
a method for data partitioning into groups based on similarities with each other. RL is a
method, lying in the system control context, that is based on generating models, known
as agents, that predict appropriate actions, based on the observed data, to reward desired
outcomes and/or punish undesired ones. As in UL, the observed data are unlabeled and,
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thus, the RL algorithm must instead try to first explore its environment and then determine
the output which maximizes a reward through a trial-and-error process [20].

SL models can be used for classification and regression problems. In cases where
the output is a continuous numerical value, the problem can be solved using regression
algorithms, whereas if the output is a qualitative/discrete label, the problem is handled
with classification models. Classification assigns a given observation to several discrete
categories, called labels or classes, and is mostly used for pattern recognition and class
predictions [20]. In their elementary form, binary classification problems assign classes
to the input data, such as yes/no, 0/1, etc., although multiclass problems can be handled
as well. During their training, classifiers learn each class’s decision boundary using ML
algorithms that try to minimize the misclassification error [21]. Typical examples of regres-
sion modeling are models predicting fluid properties given field measurements. Similarly,
classifiers can be used to identify whether a fluid is in its vapor, liquid or supercritical state
based on its composition and prevailing conditions.

An ML model’s development is completed in three main steps. The first step is data
gathering to form a sufficiently large dataset, which is of utmost importance since the
quantity of data directly affects the accuracy of the model. This dataset, called the training
dataset, is later used for the model’s training process. The second step is data preparation,
or else data pre-processing, such as dimensionality reduction, outliers and missing data
detection, etc. This step is crucial since the model’s prediction precision depends also on
the data quality, along with quantity. Finally, the last step is the model’s training, using the
training dataset, which consists of the input variables as well as the desired output (for SL).
The latter is represented by a class number for the classification and by a numeric value for
the regression model. It must be noted that both regression and classification models should
be assessed based on their ability to predict and classify, respectively, a blind dataset (i.e.,
previously “unseen” data) that has not been incorporated in the original training dataset.
That way, a model’s generalization capability can be evaluated and optimized to avoid
creating overtrained models, which, although they provide very good results for a specific
training dataset, provide poor accuracy for a new “unseen” one (overfitting) [22,23].
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In the subsurface reservoir simulation context, as shown in Figure 3, conventional
simulators are utilized to generate large ensembles of data offline, for various operating
conditions, which are then used to train an ML model. It is crucial to note that, unlike
most ML applications, the derived data are usually obtained by a computational process
(i.e., the offline simulation runs) rather than some experimental procedure; hence, it is
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noiseless. After the model has been trained using the noiseless calculated data, it acts as the
reservoir’s ‘’digital twin” which can now provide fast and accurate predictions about the
reservoir’s past, ongoing and future performance that a classic industry simulator would
need a large amount of time to perform. That way, the model can be applied to address
various problems and effectively support the decision-making process more expediently.

The era of ML as a fitting technique emerged back in the early 1990s by researchers who
fully introduced the concept of ML, more specifically Artificial Neural Networks (ANNs),
like Freeman and Skapura [24], Fauset [25] and Veelenturf [26]. However, since then, there
have been numerous endeavors to apply ML in the oil and gas industry. These efforts aim to
develop intelligent AI systems as an alternative to traditional reservoir simulation calcula-
tions. The number of offered ML-based solutions to engineering problems has significantly
increased, as evidenced by the successful implementation of several methods for a variety
of petroleum engineering problems, such as exploration [27,28], drilling operations [29,30],
PVT behavior [31], reservoir management and field development planning [32], facilities
monitoring and inspections [33] and, recently, chatbots [34], which guide engineers through
the process of archive digging, suggest solutions to problems, etc.
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While ML has shown promise in reservoir simulation applications, it also has some
limitations that must be considered. The first limitation concerns data availability and
quality since ML models heavily rely on large volumes of high-quality data for their
effective training and performance. Nevertheless, in most of the reservoir simulation ML
applications, the data used in the training process of a ML model are obtained by running
conventional simulations offline; hence, the obtained data can be arbitrarily large and
noise-free.

Many ML algorithms are often considered as “black box” models, meaning it can be
difficult to interpret and understand the reasoning behind their predictions. This lack of
interpretability can be a limitation in reservoir simulation, where engineers may require
insights into the underlying physics and mechanisms driving the system behavior. In
addition, ML models are usually trained on historical and/or observed data and, while
they can provide accurate predictions for scenarios similar to those they have been trained
against, they may struggle to generalize well to unseen or significantly differing conditions.
Reservoir systems are complex and can exhibit unique characteristics, making it challenging
for ML models to handle novel or rare situations.

A major aspect is the fact that ML models may not readily incorporate prior knowledge
or physical laws specific to reservoir engineering. Integrating domain knowledge into ML
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models is crucial for maintaining physical consistency and ensuring realistic simulation
results. It is of utmost importance to be aware of these limitations when applying ML
in reservoir simulation. Careful consideration, appropriate data handling and model
validation can help mitigate these limitations and make the best use of ML in reservoir
simulation applications.

This review discusses the approaches of ML-based reservoir simulations to provide a
wide perspective on the state-of-the-art methods currently in use for individual simulation
runs and HM. It must be noted that the ML methods for PFO applications are reviewed in
the second part (Part II) of the present review series due to the excessively large number of
approaches that have been proposed on this subject.

The main goal of the first category which is based on individual simulation runs is to
build ML models that reduce the overall simulation runtime by rapidly determining cell-
specific parameters. Typical examples of proxy models include predicting the prevailing
pressure and saturation, effectively replacing the need for a non-linear solver, and predicting
the prevailing k-values, enhancing the efficiency of complex and iterative phase behavior
calculations. Subsequently, the rapidly responding proxies can be introduced to any desired
HM or PFO calculation, thus accelerating those tasks by orders of magnitude. The second
category of HM, as a computationally expensive process, can benefit largely from the
generation of proxy models that aim to optimally calibrate the uncertain parameters to
achieve a good match between calculated and observed production data.

The great physical size and lack of homogeneity of hydrocarbon reservoir models
require numerical models comprising a large number of cells, thus in turn imposing the
need for ML-based accelerating techniques in all calculations involved such as individual
runs, history matching and production optimization. However, hydrocarbons are not the
only fossil fuel requiring advanced modeling techniques. For example, multiple-seam coal
mining also poses a huge load due to the complexity of the 3D finite element (rather than
finite volumes) method commonly used to simulate their performance.

The current process of mineral exploration can generate an enormous amount of
data in the form of soil samples, geochemistry, drill results, test results, etc. Therefore,
ML is employed to aid in numerous complex mining operations, such as identifying
potentially promising mining areas, accelerating exploration, productivity improvement,
environmental monitoring, predictive maintenance and much more.

Although the oil and gas industry, the coal mine industry and other energy sectors
exhibit major differences in terms of production and operations, drawing parallels be-
tween the use of ML methods in those industries is important for several reasons. Firstly,
by comparing how ML techniques have been successfully applied in different energy
sectors, knowledge and best practices can be shared and transferred. What works well
in one industry may inspire solutions or improvements in another, leading to more ef-
ficient applications. Furthermore, although the specific domain expertise and datasets
may differ between industries, there are likely shared ML applications. For instance,
problems related to predictive maintenance, improvement of technological schemes and
mining-geomechanical models [35], operations and emission numerical simulations [36],
productivity and safety [37] and finite element computer modeling [38] have similar under-
lying principles within the oil and gas industry. Thus, lessons learned in one industry can
be applied to another. Finally, regardless of the specific sector, the energy industry faces
similar societal and environmental challenges. Leveraging ML across different industries
can collectively address energy efficiency, emissions reduction and sustainable resource
management.

The major objective of the present review paper on ML applications in reservoir
simulation is to provide a comprehensive overview of the recent, older and state-of-the-
art ML techniques and methodologies applied in reservoir simulation. This involves
discussing various ML algorithms, data preprocessing techniques, model training and
evaluation approaches and their specific applications in reservoir simulation. Furthermore,
this review also evaluates their performance and effectiveness in reservoir simulation
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and discusses the strengths, limitations and applicability of various ML algorithms in
addressing different reservoir engineering problems. By pursuing these objectives, the
current review on ML applications in reservoir simulation seeks to offer a comprehensive
and informative reference for researchers, practitioners and decision makers operating on
such tasks within the oil and gas industry.

In this paper, the ML methods for subsurface reservoir simulation reviewed are cate-
gorized based on the context of the problem under investigation and the ultimate purpose
of each reviewed method. Section 2 describes generic proxy methods, like predicting the
k-values, which can be utilized to speed up any desired reservoir simulation application
whereas Section 3 reviews methods that directly serve the HM. Section 4 concludes the
present review.

2. Machine Learning Strategies for Individual Simulation Runs

Reservoir simulation software packages are continuously being modernized based on
the current needs for large data management and despite the availability of ever-growing
computer power. However, simulations are still not fast or robust enough, in the context
that they entail high computational costs, introducing the need for more time-efficient
smart tools that can adapt and provide fast and competent predictions which mimic real
reservoir performance within an acceptable error margin. In this section, ML is employed
as a suitable means to accelerate individual simulation runs that can assist any desired HM
or production-related calculations by using two approaches.

Firstly, fast proxy models (or else SRMs) of reservoir simulators have been proposed
and can be implemented to answer a wide range of engineering questions in a fraction of
the time that it would otherwise be required. Secondly, ML has been utilized to acceler-
ate specific CPU time-intense sub-problems while maintaining the rigorous differential
equation-solving method. The most pronounced application in this category is the handling
of the phase equilibrium problem in its black oil or compositional form which needs to be
solved numerous times during reservoir simulation runs.

SRMs using ML and pattern recognition methods to fully replace the non-linear solver
were first proposed by Mohaghegh and his associates who developed SRMs that could
fully reproduce the traditional black oil or compositional reservoir simulation results
(i.e., high-fidelity models) on a cell basis without sacrificing the physics or the order of
the system under investigation, as is the case of RFM and ROM methods, respectively.
Instead, they built grid-based and well-based proxy models. Grid-based models usually
provide pressure and saturation predictions for the fluid phases at the grid level based on
information from the surrounding grid blocks rather than the whole reservoir. This way,
the very weak dependency of the state of a cell on the ones far away from it is ignored
while allowing at the same time the disengagement of the cell state. Well-based models
are developed similarly to predict well-related parameters, such as gas, oil and/or water
production rates, Bottom Hole Pressures (BHPs), etc.

The second category is based on rapidly and accurately predicting fluid properties,
both for compositional and black oil models. As already mentioned in Section 1, composi-
tional models are developed to monitor the fluid composition’s changes at each grid block
and at each time step. Therefore, the phase behavior calculations needed for each grid block
are conducted by running stability and flash calculations, processes that normally take a
significant part of the total CPU time. The most burdensome fluid parameter involved in
these calculations is the equilibrium coefficients, known as k-values. Their estimation is
based on complicated numerical calculations, utilizing EoS-based fluid thermodynamic
models, which require a large number of iterations to converge; simultaneously, they need
to be performed for all grid blocks at each time step and each iteration of the non-linear
solver. Thus, it is made clear that a regression-based ML model that is capable of directly
predicting the necessary k-values and replacing the conventional iterative approach can
significantly accelerate any simulation process [22].
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Apart from predicting the k-values, another efficient way to reduce the overall compu-
tational cost is to recast the phase stability problem to a classification one, using classifi-
cation ML methods, with two labels corresponding to stable/unstable fluid mixtures or
single/two-phase flow. It is important to note that the execution of a phase split calculation
is dependent on the stability problem. When stability tests are conducted and instability is
detected, it triggers the initiation of a phase split calculation. In this kind of classification
problem, the input consists of fluid composition, pressure and temperature values for the
classifier to reach a solution (stable or unstable mixture) based on the phase boundaries
of the p–T phase diagrams. That way, the trained classifier can replace the traditional
iterative stability algorithm and substantially accelerate flow simulations with its direct
non-iterative predictions [39].

For the case of black oil simulations, the grid blocks are assumed to contain three
primary fluid phases (oil, gas, water). The PVT properties needed to account for the
compressibility of each phase (oil, gas and water formation volume factors: Bo, Bg and
Bw, respectively), the ratio of gas to reservoir oil (Gas-to-Oil Ratio—GOR) and saturation
conditions (bubble and dew point pressure) which are usually readily available from exper-
imental procedures are introduced into the simulator to perform the desired calculations.
If experimental values are not available, empirical correlations are used to predict the
fluids’ PVT properties utilizing field data (API, gas specific gravity and GOR). However,
these correlations are not always accurate since they only perform well for the range of
compositions and conditions against which they were generated, thus exhibiting poor
behavior outside these bounds. As a result, to speed up and improve the accuracy of
the simulation process, ML-based models have been developed, predicting these crucial
parameters [40].

2.1. Machine Learning Methods for Surrogate Models

The first attempt to develop a fast proxy of a subsurface reservoir simulator was
accomplished by Mohaghegh and his associates, who ran numerous studies and set up
SRM methodologies by utilizing intelligent system techniques to approximate the simula-
tion process of huge complex oil fields which would otherwise require an extremely large
amount of CPU time. SRMs can mimic the behavior of a full reservoir model with precision,
can be used in many applications (i.e., PFO and HM) and, in some cases, they can fully
replace numerical simulators or work with them in a coupled way. This group developed
many workflows, usually using ANNs, in which they propose the detailed development
of such models, such as fracture propagation inverse problems, to identify potential hy-
draulic fracture designs [41], uncertainty analysis [42–46], prediction of dynamic reservoir
properties [1], waterflooding operations [47], CO2 EOR and storage projects [48,49], etc.
Results show that the SRMs are capable of efficiently mimicking the simulator’s predictions
with fewer runs, compared to the conventional reservoir simulator that needs an excessive
number of simulations, especially for complex fields.

Dahaghi et al. [50] proposed a similar methodology to obtain cumulative production
predictions, this time for a complex fractured shale gas reservoir. They used ML and
data mining methods to create a single-well shale SRM model to deal with direct (e.g.,
production prediction) as well as inverse problems (e.g., HM). According to the authors,
the model was characterized as being of great efficiency and it successfully mimicked
the conventional simulator with great accuracy and speed. The proposed model can
be utilized for HM, uncertainty quantification and real-time production optimization.
Memon et al. [51] tried a similar method by building a well-based Radial Basis Function
Neural Network (RBFNN) SRM based on black oil simulation results for an initially under-
saturated reservoir to predict the flowing BHP. The model’s input parameters consisted of
a spatiotemporal dataset (e.g., porosity, permeability, initial oil and water saturation and oil
rate). The proposed model was very efficient in comparison with conventional simulators
and it can be used for many production optimization purposes by generating hundreds
of accurate runs in a fraction of time that would otherwise be needed. Amini et al. [14,52]
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generated an SRM using ANNs to approximate the CO2 and pressure distributions for a
CO2 sequestration process in a depleted reservoir. The authors ran several scenarios using
a conventional simulator to create a database of static (porosity, permeability, grid block
coordinates, etc.) and dynamic (phase saturation, CO2 mole fraction in the different phases,
injection rate, BHPs, etc.) data for training. The model exhibited great grid block accuracy
in predicting reservoir pressures and CO2 allocation within seconds.

2.2. Machine Learning Methods for Handling the Stability and Phase Split Problems

For the case of compositional simulations, several ML methods have been developed,
aiming at reducing the excessively long time required for solving stability and flash calcu-
lations. In the first case, the phase stability problem is expressed as a classification problem
to determine the number of phases for any given composition, pressure and temperature
values. For flash calculations, ML applications are oriented toward predicting the k-values
needed for those calculations in a more robust, efficient and rapid way.

The phase stability-targeted methodology was first proposed by Gaganis et al. [53]
who used Support Vector Machines (SVMs) to generate a discriminating function d that
emulates/replicates the phase boundary. This discriminating function is set to zero at
the boundary, positively signed (+1) inside the phase envelope and negatively signed
(−1) outside that, as can be seen in Figure 4. The authors obtained the dataset used to
train the classifier by running regular stability tests for various uniformly drawn random
combinations of composition (selected to run over the whole compositional space), pressure
and temperature values. The training data needed were obtained in an automated offline
way based on sample runs. The classifier was trained using labels of stable/unstable
mixtures obtained by running regular stability tests, using composition and pressure and
temperature values. That way, they obtained fast stability predictions which are the same
as those obtained by the conventional minimum Tangent Plane Distance (TPD) ones since
the classifier provides correct answers for both classes based on the sign of the predicted
discriminating function.

Later, Gaganis et al. [10,54] expanded their research and answered both phase stability
and phase split problems by combining SVMs for classification and ANNs for regression in
a single prediction system. A single-layer ANN to predict the k-values is used only if the
classifier predicts an unstable mixture. To further accelerate calculations, reduced variables
were used to shrink the output. This way, the number of outputs to be predicted was at
least equal to three and less than that of mixture components. The ANN-predicted reduced
variables are then back-transformed to regular k-values. The results demonstrated that the
proposed methodology is very efficient, with respect to the accuracy and the computational
cost reduction and its applicability can be expanded from reservoir simulation to any kind
of fluid flow simulation that demands numerous phase behavior calculations. After that,
Gaganis [55] proposed an even more efficient treatment of the stability problem utilizing
two custom discriminating functions, dA and dB, each single-sided correct. If dA is positive,
the sample is definitely stable whereas it is definitely unstable if dB is positive. No concrete
answer can be obtained if either of the two is negative. However, as dA and dB are built
so that the ambiguous space, called “the grey area” (where no discriminating function is
positive) is as narrow as possible, the need to run a conventional stability test is hugely
reduced. The procedure is illustrated in Figure 4 for the case of a classifier in the 2-D
input space, i.e., x = {x1, x2}. For the case of constant composition stability testing, the
dashed line corresponds to the phase boundary and the two coordinates to pressure and
temperature. Furthermore, kernel functions are utilized to allow for simple curved, non-
linear discriminating functions which can be evaluated rapidly. The method is greedy
in that dA and dB can replace the lion’s share of the required stability calculations in a
simulation run. Conventional, iterative calculations are only needed for points lying within
the grey area.
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Kashinath et al. [56] moved in the same direction as Gaganis et al. [10,54], treated the
stability problem as a binary classification one and tailored it to CO2 flooding simulations.
They developed two SVMs, one to determine whether the fluid under study is in the
supercritical phase and a second one to predict the number of unstable phases when in
the subcritical region. If the second classifier predicts an unstable phase, an ANN model
was used to predict the prevailing k-values. Therefore, the authors divided the problem
into three categories, namely (1) supercritical phase determination, since this entails a
large calculation burden by using EoS, (2) subcritical phase stability and (3) the phase split
problem. By applying this method, the authors utilized a negative flash algorithm to create
a phase diagram that differentiates the subcritical and supercritical areas to determine
the fluid properties of the latter. The anticipated composition phase diagrams are then
used to generate a training dataset for the ML models. SVMs are employed to build two
classifiers by utilizing composition and pressure inputs, where the first classifier determines
if conditions are met for the supercritical region, and the second identifies the number
of stable phases in the subcritical region. Finally, the phase split problem is handled
by predicting k-values for sets of pressure and composition data using an ANN. The
results showed that the models can effectively cut down the overall CPU time required for
compositional reservoir simulations, causing a very limited decline in accuracy. Schmitz
et al. [57] developed a classification method using ANN models to extend the previous
approach and solve the multiphase phase stability problem. The authors examined two
classification models: a feed-forward ANN and a probabilistic ANN. The training set for
the models’ training was collected for pressure and temperature ranges corresponding to
liquid–liquid, vapor–liquid–liquid, vapor–liquid and homogenous liquid and vapor so that
the trained models can distinguish these five regions. The results showed that the proposed
models could predict the equilibrium state with high precision. Gaganis et al. developed a
similar technique to rapidly solve the multiphase stability problem using SVMs [58]. Wang
et al. [59] developed two ANN models to treat the stability (ANN-STAB) and phase split
(ANN-SPLIT) problems, in a process similar to that of Kashinath et al. For the ANN-STAB
model to learn whether a given mixture under given conditions is stable or unstable, the
authors generated two auxiliary models, one for predicting the upper saturation curve and
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one for the lower. That way, they could compare the prevailing pressure with the mixture’s
saturation pressure to determine if the mixture lies inside or outside the two combined
saturation pressure curves. If the ANN-STAB model indicates instability, the ANN-SPLIT
model is called to predict the mole fractions and k-values, which are utilized as initial
values in conventional phase split calculations. The results showed that the proposed
models provide initial estimates of high accuracy, while they also achieve significantly
shorter computational time.

Apart from the simple ANN models that have been reviewed so far, there are several
proposed approaches based on deep learning (DL) methods. DL is a subset of the ML
family widely used in cases of extremely large reservoir fields. Roughly speaking, ANNs
are considered DL networks if they consist of more than three layers, including input,
hidden and output layers. Unlike regular ANNs, DL ANNs can digest unstructured data
in their raw form, like text and images, and they can automatically determine the set of
variables that can distinguish the desired output for regression, classification and clustering
tasks. By observing patterns in the data, a DL model can cluster inputs appropriately, by
discovering hidden patterns without the need for the user’s intervention. Most DL ANNs
are feed-forward, meaning that the information is transferred from the input to the output.
Back-propagation is employed to compute and assign the error linked to each neuron,
facilitating appropriate adjustment and fitting of the algorithm.

Li et al. [60] developed a DL ANN to accelerate binary-component (methane/ethane)
flash calculations and compared the model against three classic methods (Successive
Substitution—SS, Newton’s and sparse grids methods). The input consisted of critical
pressure, critical temperature and acentric factor for both mixture components as well
as temperature and pressure values and the output consisted of the mole fraction of the
first component in the liquid and vapor phase. The proposed DL model was found to be
significantly more efficient and faster than the SS, Newton’s and sparse grids methods.

In another study, Li et al. [61] developed a single DL ANN to approximate multicompo-
nent stability tests and phase split calculations using results obtained from a conventional
iterative NVT flash calculator (specified moles, volume and temperature) as a training
dataset. To this end, the authors used a training dataset that incorporated compositional
properties (critical pressure and temperature, acentric factor, etc.), overall mole fractions,
overall molar concentration and temperature as input and the number of phases and mole
fraction of vapor and liquid components as output. Therefore, by using a single trained DL
ANN, they were able to simultaneously solve the phase stability and phase split problems
in a way that the phase state could be identified without an additional stability test. The
proposed model can successfully estimate the different phase states in the subcritical region
of a given mixture and can make significantly faster predictions compared to those of the
conventional NVT flash calculator.

For the case of very low-permeability, unconventional reservoirs, flash calculations are
coupled with substantial capillary pressure effects (very narrow pore throat, resulting in
large capillary pressure on the vapor–liquid phase interface) and they tend to be extremely
computationally burdensome, as well as unstable. In that case, conventional compositional
simulations can become a difficult task. Wang et al. [62] worked in the DL field and
developed two multi-layered stochastically trained ANN models to predict the phase
behavior of hydrocarbon mixtures in such unconventional reservoirs. The first ANN is
used to classify the phase state of the system (stable/unstable) and the second, if the first
leads to an unstable mixture, is used to predict the k-values and the capillary pressure. The
training dataset for the ANN models was generated from a standalone flash calculator and
consisted of composition, pressure and temperature values, as well as pore radius data, all
normalized to a [0, 1] scale before entering the networks. The efficiency of the models was
demonstrated, leading to their utilization as initial estimates for k-values in a conventional
reservoir simulator. As a result, the speed of the reservoir simulator was noticeably
enhanced. In addition, Zhang et al. [63] developed a DL ANN, similar to the one of Li
et al. [61], to predict phase states and phase compositions for multicomponent hydrocarbon



Energies 2023, 16, 6079 13 of 43

mixtures in complex reservoirs with significant capillary effects. The authors generated
the training dataset using the results of an NVT flash calculator which is developed based
on the diffuse interface theory with a thermodynamically stable evolution algorithm for a
wide range of reservoir conditions. They also used the same input parameters as in their
previous study (Li et al. [61]); however, they modified the output in a way that almost half
of the parameters were replaced by a coefficient φ (mole fraction of vapor phase), aiming at
securing the material balance. The only parameters remaining are the mole fractions of the
vapor components. This is considered by the authors to significantly improve the model’s
training, particularly for highly complex fluids with many components. In addition, the
model’s hyperparameters are adjusted to optimize its architecture and, hence, its efficiency.
Results show that the model can provide precise predictions with the authors claiming
that the proposed workflow can be utilized for various mixtures, substantially accelerating
flash calculations.

Zhang et al. [64] were the first to develop a self-adaptive DL ANN to predict the num-
ber of phases present in multicomponent mixtures and their equilibrium thermodynamic
properties (component mole fractions in each phase) under various reservoir conditions.
As in their previous studies (Li et al. [61], Zhang et al. [63]) the authors used the results
of an NVT flash calculator to generate the model’s training dataset which consisted of
the fluid’s composition, overall molar concentration and temperature values as input and
the total number of phases at equilibrium and component mole fractions in each phase
as output. The authors also used the critical properties of each component of the fluid
under investigation as additional input to generalize the model’s capability. The authors
developed a two-network structure to accelerate flash calculations for any number of com-
ponents a user might select each time a new run is performed. The first network transforms
the input of various numbers of components of the mixture under investigation into a
unified space before the second network is put in motion. “Ghost components” of zero
concentration are introduced to complete the input vector in the case of components that
do not naturally appear in the mixture under study to honor the fixed input vector size.
The above-proposed network structure makes the model self-adaptive when a different
number of components (i.e., different model dimensionality) is considered. The findings
demonstrated that the proposed model could generate precise predictions while alleviating
the computational burden typically associated with conventional methods.

Reservoir systems such as gas condensates or systems where reinjection operations
take place are characterized by extremely time-consuming reservoir simulations due to the
complex phase behavior phenomena taking place, especially in dry gas reinjection plans
where gas recycling takes place inside the reservoir and, thus, the reservoir composition
is constantly updated. Samnioti et al. [22] employed an ML approach using ANNs to
accelerate these complex calculations by supplying the k-values at each time step and
at each pair of prevailing pressure–temperature conditions to solve the flash problem at
a fraction of the time needed by conventional iterative methods. The workflow of the
proposed method is illustrated in Figure 5. The ANN was trained using an ensemble
of pressure, temperature and composition data as input and k-values as the output, all
obtained by running offline conventional reservoir simulations on a simplistic reservoir
model (sugarbox). Although this process sounds straightforward, the reservoir composition
displays large variability in the case of gas reinjection, thus imposing the need for a more
extended compositional space compared to the typically used fixed composition one. To
handle this, the authors proposed training the ANN with an extensive dataset obtained
from the simulation of various gas recycling schemes, covering any possible composition
changes that might occur inside the reservoir. As a result, the computational expenses of
the flash calculations were reduced by more than one order of magnitude, compared to the
conventional iterative ones.
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Recently, Anastasiadou et al. [39] moved similarly by trying to solve the phase stability
problem, this time for an acid gas reinjection system where the required phase behavior
calculations are more complex and time-consuming since they need to be repeated for an
even broader compositional space to cover for the acid components (H2S and CO2) and
the hydrocarbon contaminants that are being reinjected into the reservoir. The authors
proposed three classification ML approaches, ANNs, decision trees (DTs) and SVMs, to
solve the phase stability problem, which is crucial in acid gas reinjection designs, at a
fraction of the time needed by conventional iterative methods. The workflow of the
proposed method is illustrated in Figure 6. A large ensemble of training data was obtained
by running the stability problem offline using a conventional method and the dataset was
then introduced to the classifiers. As a result, the recommended methodology was shown
to be able to adapt to all types of acid gas flow simulations.
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In cases where complicated systems are under investigation (i.e., CO2-EOR), the
iterative algorithm in conventional reservoir simulators may fail to converge since there
are cases where the flash and the non-linear solver cannot agree on which phase (gas or
liquid) is present when a stability test labels the fluid as stable. For that reason, Sheth



Energies 2023, 16, 6079 15 of 43

et al. [65] used stability test results and developed two ANN models, one classifier and
one regressor, to accelerate EOR simulations, such as dry gas and CO2 reinjection, by
predicting the fluid’s critical temperature. Hence, the authors’ main goal was to devise
an efficient way to accurately predict the crucial value to determine the fluid phase state,
hence ascertaining the correct viscosity and relative permeability values to utilize, thus
preventing any problems that may arise when simulating the phase behavior of complex
fluids. They ran several simulation scenarios and generated a relatively small compositional
training dataset using a linear mixing rule between the injected and the in situ fluid
compositions, consisting of the final compositions, pressures and temperatures as input
and the corresponding critical temperatures as output. The first model (classifier) is used
to identify if a sequence of iterations will diverge and the second model (regressor) is
used to predict the critical temperature for those iterations. The findings indicated that the
proposed model yields critical temperature values that are comparable to those obtained
from conventional simulators. Furthermore, it effectively reduces the computational burden
associated with the calculations.

2.3. Machine Learning Methods for Predicting Black Oil PVT Properties

Correct reservoir fluid PVT properties, such as saturation pressures, volumetric factors
and solubility, are crucial for all kinds of black oil reservoir calculations (material balance,
oil production forecast, etc.), where a relatively small error can lead to a considerable
error regarding the development of the reservoir model, future operations, etc., which can
subsequently lead to inferior prediction performance. Although there are readily available
empirical correlations for the determination of those properties [66], they are usually not
accurate enough, imposing the need for ML model development instead.

The most important volumetric parameter of dry gases and condensates is the gas
compressibility factor (Z-factor), a property needed for Bg estimations, since it is responsible
for flow and volumetric calculations between reservoir and surface conditions. Most of the
time, the Z-factor can be easily determined using empirical correlations fitted on the classic
Standing–Katz (S–K) chart. These correlations are not always accurate enough or even
valid as they have been generated based on specific pressure and temperature conditions
and can sometimes produce poor results when used outside of the predetermined range.
Additionally, low-accuracy estimates can be obtained when ‘’unusual” compositions are
considered as is the case with acid or polar components.

Various recent studies have appeared making use of ML methods to predict the Z-
factor from the S–K chart. Moghadassi et al. [67] developed ANN models to predict the
Z-factor for pure gases using reduced temperature and pressure as input, thus replacing the
hand-fitted models by Beggs and Brill [68] and Dranchuk and Abou-Kassem (DAK) [69].
The authors used various training back-propagation algorithms for comparison reasons,
namely Scaled Conjugate Gradient (SCG), Levenberg–Marquardt (LM) and Resilient Back
Propagation (RBP) algorithms, with the LM algorithm providing the best results. Similarly,
Kamyab et al. [70] built an ANN for the estimation of the Z-factor of natural gas by utilizing
a training dataset directly digitized from the S–K chart. The results showed that the
trained ANN required less computational effort, was more precise than the iterative DAK
algorithm and could be used for the whole pressure and temperature range of the S–K chart.
Moving in a slightly different direction, Sanjari and Lay [71] built an ANN to calculate
the Z-factor which, however, was trained against experimental Z-factor values rather than
ones extracted from the S–K chart. The efficiency and the accuracy of the proposed ANN
were compared to the most well-known empirical correlations and the Peng–Robinson
EoS. The results showed that the model is more accurate compared to the other methods.
Furthermore, Irene et al. [72] and Al-Anazi et al. [73] developed an ANN model to estimate
the Z-factor using PVT data points extracted from the available literature. The authors
performed quantitative and qualitative evaluations to examine the models’ efficiency and
overall accuracy and the results showed that the developed models were compatible with
experimental data upon which they were not trained, thereby verifying generalization
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capability and that the models are more accurate compared to the results of numerous EoS
and correlations.

Mohamadi et al. [74] developed a similar approach using experimental PVT datasets
of gas condensates, but this time the authors developed three ML models, namely an
ANN, a Fuzzy Interface System (FIS) and an Adaptive Neuro-Fuzzy Inference System
(ANFIS). The trained models were shown to perform considerably better than the available
empirical correlations, with the ANN outperforming the other models. Two more research
groups, Fayazi et al. [75] and Kamari [76], built SVMs to predict the Z-factor of rich gases by
training their models with experimental data corresponding to a plurality of compositions,
including sour gases. The former approach utilized Least Square Support Vector Machines
(LSSVMs) together with the Coupled Simulated Annealing (CSA) optimization algorithm
and the Z-factor was predicted as a function of gas composition, molecular weight (MW) of
the heavy components and pressure and temperature values. The LSSVM method [77] is an
advancement of the SVM one, in the sense that the solution can be more easily found using
a set of linear equations instead of convex quadratic programming problems associated
with classic SVMs. The results of both groups showed that the ML models were more
efficient and precise than the empirical correlations. Chamkalani et al. [78] used Particle
Swarm Optimization (PSO) [79] and Genetic Algorithms (GA) to perform an optimization
process for the weights and biases of an ANN by minimizing the network’s error function
against data derived from the S–K chart, in a sense of avoiding getting trapped in some
local minimum. The developed model presented high efficiency and precision compared to
those of empirical correlations but when optimization methods were used, the performance
was enhanced significantly, with the PSO-ANN outperforming all of the other models,
regarding both accuracy and computational time.

Although the above methods are considered quite an improvement for Z-factor cal-
culation, almost all of them are suitable only for limited pressure ranges. Some of them
exhibit an oscillating behavior that is attributed to the fact that the models are driven by
the available data, thus leading to unrealistic derivatives of the Z-factor which in turn
cannot be mapped to normal fluid compressibility values. Gaganis et al. [80] developed a
hybrid ML model using the Kernel Ridge Regression (KRR) method, more specifically, the
truncated regularized KRR algorithm [81], together with a linear-quadratic interpolation
method to predict the Z-factor, vanquishing the disadvantages of the above techniques.
The proposed methodology is presented in Figure 7 below.
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The model is generated using a dataset digitized from the S–K chart. The results
presented smooth, in a sense of Z-factor derivative continuity, and physically solid predic-
tions of the Z-factor, while also achieving great accuracy, as can be seen in Figure 8. The
novelty of this approach is that it can be straightforwardly used to determine the Z-factor
for hydrocarbon mixtures of any composition, even when impurities are present, and at
any possible reservoir pressure and temperature conditions. The model can be considered
as an excellent tool for estimating gas density in many reservoir simulation applications to
reduce the computational time required, such as the estimation of reserves, fluid flow inside
reservoirs and wellbores, surface pipeline systems and processing equipment, etc. The
proposed methodology is, however, only applicable for compositions similar to those the
S–K chart was created for, and it might present significant errors when used for mixtures
with significant amounts of non-hydrocarbon and/or polar compounds.
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Apart from natural gases, many hydrocarbon reservoirs around the world contain a
considerable amount of acid components, usually a mixture of light hydrocarbons, H2S
and CO2, known as sour gases. Engineers should be able to obtain accurate thermody-
namic information on these gases to successfully conduct techno-economical evaluations
and make predictions about future production. Furthermore, due to the economically
unattractive sulfur market price and the increasingly strict air emission standards and
regulatory authorities, many oil and gas operators are in search of environment-friendly
and cost-effective methods for dealing with this kind of gas, such as acid gas reinjection
for EOR or sequestration purposes, where extensive thermodynamic knowledge of the
associated fluids and their interactions is needed [82]. Considering the above, Kamari
et al. [76] introduced an LSSVM model combined with the CSA optimization method
to forecast the Z-factor for natural and sour gases as well as pure acid substances. Due
to the shortage of experimental studies on sour gases, the authors used pseudoreduced
pressure and temperature values from the literature as input to the model and performed a
comparative study with several empirical correlations and EoS models to validate the per-
formance of their proposed approach. The results demonstrated that the proposed model
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offers a significantly higher level of reliability and efficiency when compared to existing
correlations and equations of state (EoS) commonly used for estimating the compressibility
factor of sour and natural gases.

Saturation pressure (bubble/dew point pressure) is another important parameter for
accurate black oil reservoir simulations. Saturation pressure is an extremely important
fluid property in reservoir simulation since it marks the distinction between single and
multiphase states, thus providing a phase stability indication. Two kinds of methods for
estimating the saturation point pressure can be identified. The first is through experimental
procedures using laboratory samples (e.g., Constant Volume Depletion—CVD), which are
highly expensive and time-consuming. The second method concerns the use of empirical
correlations or an iterative procedure based on an EoS. Although an EoS is effective for
classic hydrocarbon systems without many impurities, fitting it to efficiently predict the
phase behavior of complicated systems (e.g., gas condensates, oils with many impurities,
etc.) is not a trivial task. Furthermore, most of the correlations existing in the literature and
appearing in commercial software, although very accurate for the range of parameters they
were tuned against, exhibit poor performance outside these bounds.

Researchers have tried to devise fast and efficient ways to predict those values using
ML-based methods. Seifi et al. [83], developed a feed-forward multi-layer ANN model,
trained with fluid properties (e.g., composition), to predict reliable initial values for the
saturation pressure of given mixtures that would decrease the total time required by the
iterative calculations. Gharbi et al. [84] built ANN models to directly predict saturation
pressure and Bo using real-field crude oil data (i.e., GOR, gas and oil specific gravity and
temperature). Similar models were developed by Al-Marhoun et al. [85] and Moghadam
et al. [86], although each research group utilized different real-field input parameters. Their
findings indicated that the proposed approach exhibits considerably greater accuracy in
comparison to the previous correlations developed by Al-Marhoun [87,88], which were also
intended for the same crude oil data. As a general conclusion, all the above ANN models
provide quality predictions, significantly improving the accuracy of the most commonly
used, hand-developed correlations (e.g., Standing, Al-Marhoun, etc.) [89].

Rather than ANNs, Farasat et al. [90] developed an SVM model to predict the sat-
uration pressure using reservoir temperature, hydrocarbon and impurity compositions
and MW and specific gravity of the heavy fraction. El-Sebakhy et al. [91] developed
SVMs to predict saturation pressures and Bo using PVT data obtained from the literature,
such as reservoir temperature, oil and gas gravity and solution GOR. The results of both
studies demonstrated that the proposed models are significantly more precise than most
well-known correlations.

For gas condensate reservoirs, the accurate prediction and constant monitoring of
dew point pressure are very important for many engineering calculations, especially
for the prediction of future production and for the design of operations where liquid
condensation should be avoided. Numerous ML methods have been proposed to predict
the dew point pressure such as those by Akbari et al. [92] and Nowroozi et al. [93] who
developed ANN and ANFIS models, respectively, to predict the dew point pressure of
gas condensate systems using compositional and thermodynamic parameters. Similarly,
Kaydani et al. [94] generated a conventional back-propagation ANN to estimate the dew
point of lean retrograde gas condensates using experimentally obtained PVT data (e.g.,
reservoir temperature, moles fractions of volatile and intermediate gases, etc.). Gonzales
et al. [95] used an ANN model to estimate the dew point in retrograde gas reservoirs
using experimental CVD data (gas composition, MW, specific gravity of the heavy fraction,
reservoir temperature). Their results showed that the proposed model was more efficient
than straight-run or mildly tuned Peng–Robinson EoS models, as well as other empirical
correlations. Similarly, Majidi et al. [96] developed an ANN model to estimate the dew
point pressure in gas condensate reservoirs using a set of experimental data, including
compositional analysis up to C7+ and concentration of impurities, reservoir temperature
and C7+ specific gravity and MW. The results showed that the proposed approach is
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more efficient than all existing methods thanks to the enhanced, more informative input.
Furthermore, the proposed model can predict the physical trend of the dew point pressure–
temperature curve along the cricondenbar and cricondentherm of the phase envelope.

The continuous improvement and the emergence of new, high-end ML technologies
have led researchers to utilize them in the fluid properties domain as well. Rabiei et al. [97]
developed a Multi-Layer Perceptron (MLP)–GA model to estimate the dew point pressure
using reservoir temperature, mole percentage of gas components and heavy fractions
properties, whereas Ahmadi et al. [98] developed a coupled ANN–PSO model to estimate
the dew point for gas condensate reservoirs using compositional and thermodynamic
parameters. Ahmadi et al. [99] devised an LSSVM approach, as developed by Suykens
et al. [77], coupled with a GA to determine the dew point pressure in condensate gas
reservoirs. For comparison reasons, a classic feed-forward ANN has also been developed
and, according to the results, the proposed LSSVM model exhibited superior performance.
Arabloo et al. [100] developed LSSVMs to estimate the dew point pressure for gas retrograde
reservoirs, coupled with the CSA optimization algorithm for the model’s hyperparameters.
The authors used the same experimental data as Majidi et al. [96] to form the model’s
input, thus arriving at a new approach that is more efficient than all existing methods.
Furthermore, the LSSVM–CSA model can predict the physical trend of the dew point
pressure against temperature for a constant composition fluid to form a part of the phase
envelope.

Along a similar line, Ikpeka et al. [101] built ML models, namely MLPs, SVMs and
DTs (Gradient Boost Method—GBM and XGB), to predict the dew point pressure for gas
condensates using fluid composition, specific gravity, MW of the heavier component and
compressibility factor as input. A classic multiple linear regression model was developed
to compare the efficiency of the proposed models. The SVM model outperformed the other
models; however, for large sets of complicated data, more support vectors are utilized for
the same accuracy level, thus resulting in extended computational time. Zhong et al. [102]
developed an SVM model, utilizing a mixture of kernel functions coupled with a PSO
algorithm to predict dew point pressure. The authors used real compositional and thermo-
dynamic data as input that were the same as those used by Majidi et al. [96] and Arabloo
et al. [100] and they arrived at a more efficient model than all of the well-known empirical
correlations, with enhanced generalization ability.

3. Machine Learning Strategies for History Matching

Quantifying and addressing the uncertainties of oil fields is always in the spotlight
as reliable predictions must be made to support any management or financial decision.
Typically, the uncertainty of a field is addressed by the HM process where uncertain
reservoir parameters are calibrated according to the mismatch of the reservoir model
calculated versus observed field data.

In the process of HM, the reservoir model is set up to reproduce the past production
history of the field by assigning the well schedule to the modeled wells. Subsequently,
static and/or dynamic reservoir parameters are adjusted (e.g., permeability and poros-
ity distributions, etc.) until the cumulative production, or the production of individual
wells, along with the field pressure (or BHP) predicted by the dynamic model match the
corresponding values which were recorded in the field. The adjustment process involves se-
lecting combinations of uncertain parameters and perturbing them to achieve a satisfactory
match. Alternatively, in cases where the uncertain parameters are not known in advance,
a Sensitivity Analysis (SA) is conducted. This analysis involves individually perturbing
each potential parameter to identify those that have the most significant impact on the
HM process. The approach is presented in Figure 9. Thus, as a trial-and-error procedure,
which requires a separate simulation run per trial, it is computationally expensive since it
is usually conducted manually and its evaluation is based on the experience of the engineer
and, thus, it is prone to human bias and error. The already extremely large number of
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simulation runs tends to increase as the reservoir model’s size and complexity expand,
usually introducing continuously incoming data that contain new information.
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Many methods are focused on the optimization of the HM process and, most im-
portantly, the mitigation of its ill-posedness and reduction in the total time required to
achieve the desired match, i.e., the minimization of the mismatch error. The most common
optimization methods used are, among others, gradient-based, stochastic and probabilistic
algorithms. Gradient-based algorithms use the direction of derivatives, or else gradients,
to find the optimum value (i.e., minimum) of the error function. These algorithms are
widely used since they are quite effective in converging to a local minimum in a reasonable
number of iterations. Nonetheless, they can manifest several complications when complex
problems with an extensive number of parameters are concerned, as is the case of HM. On
the other hand, in stochastic optimization, gradient tree algorithms, like GA, can examine
the parameters’ space more efficiently; however, they need many more function evaluations
and, thus, more computational time compared to gradient-based ones. Probabilistic algo-
rithms, like the Bayesian inference statistical technique, are algorithms whose behavior is
partially controlled by random events and their probability distribution. These algorithms
usually need fewer function evaluations; however, they may not achieve convergence or, if
they do, an incorrect result may be obtained [103].

The above problems can be addressed to a great extent using ML methods or a
combination of them with the aforementioned algorithms to achieve a more efficient
HM [104,105]. There are two ways to configure the output of an ML model for HM
purposes, as depicted in Figure 10. The first approach, known as the indirect one, defines
the difference between the real and the predicted production data as the model’s output,
usually in the form of a sum of squared differences. In that case, the HM problem utilizes
ML-based models, usually ANNs, to learn the underlying relationship between the input
(static uncertain variables) and output variables. An optimization procedure must be
followed to minimize the error function, which is essentially the output of the model,
based on tunable input parameters. Thus, the HM process is significantly accelerated since
the error function is now obtained from the cheap-to-evaluate ANN rather than by the
simulator itself. The second approach of HM models, known as the direct one, utilizes the
same input variables as in the first category and some property that needs to be matched as
the output, usually production or pressure data. Once the model is trained, it can provide
predictions about the field’s production and/or pressure values by interpolating between a
limited number of simulation runs, thus producing a large number of realizations.
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3.1. Machine Learning Methods for Indirect History Matching

Following the indirect HM approach, Costa et al. [106] and Zangl et al. [107] developed
an ANN model to speed up the HM process. The input datasets were generated using the
Box Behnken (BB) and Latin Hypercube (LH) sampling techniques and an experimental
design process, respectively. After the ML models were successfully trained and validated
using a new blind dataset, i.e., new unseen data that were not included in the original
training set, the GA was implemented to run an optimization procedure by adjusting the
input parameters until the output of the model was minimized, i.e., the error between
the real and calculated production data. The results showed that the total CPU time
was remarkably reduced and proved that an integrated ANN and GA approach can
be successfully used to address field uncertainties and optimize operational strategies.
Rodriguez et al. [108] set up a similar method for multi-scale HM combined with a singular
value decomposition method to reduce the number of parameters used to train the ANN
model. That way, the authors achieved to mitigate the highly ill-posedness of the inverse
HM process and decreased the total number of simulation runs while also reducing the
total CPU time by over 75%. Esmaili and Mohaghegh [109] developed a simple but novel
framework for history matching the gas production of a shale reservoir model using
an ensemble of ANNs. The authors developed a model that is accustomed to any field
parameter (production history, geomechanical and geochemical properties, etc.) along
with any hydraulic fracture parameters. The findings indicated that this approach offers
faster computation compared to numerical simulators while maintaining an acceptable
level of accuracy. Furthermore, it has the advantage of utilizing all available data, unlike
conventional simulators that tend to be selective in the parameters they employ for HM.

Beyond the classic back-propagation ANN models, many other regression models
have been shown to achieve good results in the HM problem. Silva et al. [110–112] extended
the research area and examined several models, such as RBFNNs, Generalized Regression
Neural Networks (GRNNs), Fuzzy Systems with Subtractive Clustering (FSSC) and ANFIS,
to optimize automatic HM. Their main goal was to validate the results of various models
with the ones obtained from the simulator, regarding the changes in the OF. After the
models were trained, the GA was used to perform a global optimization procedure, i.e.,
adjust the input parameters until the desired outcome is reached. Finally, a further refining
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procedure was performed on the most optimal results of the GA using the Hooke and Jeeves
pattern search method [113]. The proposed methodology is illustrated in Figure 11. Results
showed that the models demonstrated high accuracy, with the most efficient networks
being the ANFIS and the GRNN, in terms of the total number of simulations required and
the total CPU time reduction.
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3.2. Machine Learning Methods for Direct History Matching

In this section, various ML methods used for HM purposes are reviewed in detail. Most
authors tend to use ANNs since, most of the time, they are easy to develop and provide fast
and reliable results. However, other methods have also been proposed, including Bayesian
ML models, classic ML models, such as DTs, SVMs, etc., DL models and models based on
the RL technique.

3.2.1. History Matching Based on ANN Models

Shahkarami et al. [114] and Sampaio et al. [115] followed the second (direct) approach
and built ANN models to deal with uncertainty reduction and the acceleration of the HM
process. The authors’ main purpose was to speed up HM while at the same time main-
taining the high accuracy of the conventional approach. More specifically, Sampaio et al.
trained their ANN using several uncertain reservoir parameters (porosity, permeability
and rock compressibility) as input and the water production rates and BHPs at each time
step as output. They parametrized the output in the [–1, 1] interval to generate a more
efficient model that could predict the water production curve over a specific time interval.
The results showed that the production rates were history-matched with good accuracy
and the number of simulations needed was greatly reduced, demonstrating that ANNs can
be competent tools for the HM procedure.

Cullick et al. [116] developed two assisted HM approaches. In their first approach, they
used a conventional reservoir simulator together with a stochastic optimization algorithm
to globally optimize the misfit function (simulated vs field measurements) by varying
several arbitrarily selected reservoir parameters. To reduce the large number of iterations
and, thus, the required simulation time due to the high dimensionality of the search space,
an experimental design procedure was used to identify the parameter sensitivities and build
combinations that maximize the information gained while also minimizing the number of
iterations. In their second more robust approach, they built an ANN model to reduce the
number of simulations required by the first model and to perform sensitivity evaluations
since the derivative for any output value with respect to any input parameter can be easily
calculated by differentiating the ML model’s functional form. The ANN was trained with a
small set of simulation data containing several static parameters (permeability and rock
pore volume modifiers, fault transmissibility factors, etc.) as the input and oil production
and water injection rates as the output to generate solutions of parameter sets that produce
a good match. Finally, Lechner et al. [117] developed an ANN to perform HM using a
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limited number of simulation run results. Firstly, the authors perturbated the reservoir
parameters exhibiting the highest impact on the matching process (permeability multiplier,
gas cap size, etc.) and went through several experimental design steps to obtain sets of
parameter combinations. Subsequently, these combinations were used to run a limited
number of conventional simulations, the results of which were used to train the ANN.
That way, the trained model could interpolate between the limited simulation scenarios,
producing a huge number of realizations for a smaller number of runs. As a final step,
the trained ANN was used in conjunction with a Monte Carlo simulation to generate
probability distributions of the input parameters, showing that the permeability multiplier
exhibits the greatest impact on the results. The results were of good quality, verifying that
ANNs are capable of producing accurate predictions.

HM is strongly related to decision making and affects both production and economic
evaluations. Therefore, oil and gas operators rely on risk analysis to determine the in-
nate setbacks of the HM process which may include data uncertainty, inability to map
spatiotemporal variabilities of a dataset and an erroneous judgment on the impact of cru-
cial parameters. To address this, Reis L. C. [118] developed multiple reservoir models,
rather than just one, by setting filters that represent various accuracy tolerance criteria of
the OF to select the models for risk analysis. Subsequently, the authors created filtered
ANNs, trained with a set of uncertain static parameters, such as rock compressibility,
net/gross ratio and fault transmissibilities, and their associated production predictions
(cumulative oil production), constrained with several dynamic parameters. The purpose
was to improve the quality of the results by incorporating trustworthy dynamic data that
can efficiently constrain the model and improve the reliability of the results. When the
trained proxies make predictions, they are evaluated based on the tolerance range set. The
main idea in the study was that a more flexible anticipation of the HM minimum can be
justified when the existence of field measurement errors is suspected. Most important,
the decision is made based on many solutions exhibiting sufficiently low matching error
rather than the supposed global minimum one, which may not necessarily be the right
one. The results showed that the ANN was expensive enough regarding the number of
simulations that were required; however, good-quality results were achieved, in terms
of uncertainty reduction, accuracy and speed. Mohmad et al. [119] focused on the risk
analysis area by developing a simple ANN to match a highly complex faulted reservoir
with dual-string wells, creating a more efficient model that minimizes the risk uncertainty
related to production and management plans. Their results showcased that this approach
is much more competent, as far as the calculation time is concerned, when compared to
conventional simulators.

The approaches discussed so far are based on the same core paradigm: the ML models
are trained using uncertain reservoir parameters as input to predict the pressures and/or
production rates, followed by an optimization step to match the historical data. Ramgulam
et al. [120] worked in an inverse direction by generating a back-propagation ANN to
directly predict the uncertain parameters which optimize the HM process, achieving high
quality in less computational time. The authors selected the differences between predicted
and actual production values as inputs and trained the ANN to predict representative
reservoir parameters. That way, they were able to train a network architecture that would
yield optimum outputs, which can be further used as an efficient starting point for the
simulator to improve the history matching procedure in significantly fewer runs.

3.2.2. History Matching Based on Bayesian ML Models

In a different context, Bayesian learning, in combination with ML methods, has also
been widely used. This method considers history matching from a probabilistic point of
view since a more potent solution can be endorsed, allowing the evaluation and uncertainty
reduction of reservoir properties in an explicit statistical way. Based on this method, the
parameters are described by their prior probabilities (i.e., initial knowledge). By sampling
several instances out of those probabilities and running corresponding simulation runs,
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the quality of the predictions can be evaluated using a likelihood function that is an
assessment of the extent to which the initial parameter values (as obtained from their prior
distributions) generate a reservoir model which fits the field data (i.e., to what extent the real
and simulated data vary). Subsequently, the instances that best fit the data are appointed
with higher probabilities. The initial knowledge of the field’s behavior is then updated
using Bayes’ rule to obtain the posterior probability based on new observations [121].

For complex inverse problems like HM, the posterior probability cannot be calculated
since an analytical expression does not exist due to the extremely high number of unknown
parameters [122]. To solve this problem, adaptive sampling techniques can be applied to
collect samples from the posterior distribution. Based on this, Maschio et al. [122] developed
ANN models to solve the HM problem by applying the Bayesian inference statistical
technique with a Markov Chain Monte Carlo (MCMC) sampling algorithm (Metropolis–
Hastings [123]), which would otherwise be restricted due to the high computational cost
of the algorithm since it requires a large number of samples to converge and, thus, a large
number of simulations. The authors proposed an iterative process in which each sampling
step is followed with the training of an ANN which, in the first training step, is fed with
points from the prior distribution as inputs. Then, the Metropolis–Hastings algorithm is
used to generate a chain comprising the likelihood, which is determined by the ANN’s
misfit output. Several uniformly distributed points are selected from the chain and are
imported into the simulator to calculate the new target data for the next ANN training.
These steps are repeated until a stopping criterion is achieved. The model’s outputs are
then used to create a cumulative probability curve of the resulting OF values, from which a
number of equally spaced percentiles among two selected extreme values (e.g., P10 and
P90) are selected. The models that correspond to those percentiles are again imported into
the reservoir simulator and its output is considered the final result. The sequential ANN
training process was shown to lead to accurate and fast results.

Chai et al. [124] moved in the same direction and developed a similar workflow for
quantifying the uncertainties and simplifying the HM of a fractured shale reservoir. Their
results present a significant reduction in computational time and, at the same time, the
model’s accuracy is successfully maintained. Furthermore, Eltahan et al. [125] developed a
similar approach using a Bayesian inference method for assisted HM, extended to appraise
the possibility of a huff-n-puff EOR process by using the final solution to execute proba-
bilistic forecasts. The difference here is that a proxy-based acceptance–rejection criterion is
implemented, instead of the MCMC algorithm, that incorporates an RBFNN which acts as
a sampler to quantify the uncertainty of several parameters by approximating the relation-
ship between them and the posterior distribution. If the estimated posterior of a specific
model is accepted, only then is the complex and time-consuming reservoir simulation run.
For a given model to be accepted, the estimated posterior should be equal to or greater than
the estimated posterior of the best model. Then, the new results are used to train the next
proxy to improve its quality. The authors noted that although the MCMC algorithm is more
precise for the posterior sampling than the method applied here, the results showed that the
RBFNN model is much more effective in discovering the correct solutions. Finally, Christie
et al. [121] developed a Bayesian technique by using a GA in combination with ANN
models that could generate models to quantify uncertainties and perform an HM process
faster. The ANN is used to decrease the time needed for the determination of regions in
the parameter input space where a good match can be achieved. The workflow consists of
firstly sampling a number of uncertain parameter sets with a uniform distribution. Those
data are used to train the ANN, which is used to guide the sampling process within the
context of a stochastic search algorithm like the GA by incorporating a bias to regions
with a satisfactory match. That way, the ANN is performing all the expensive calculations
faster and, therefore, a large number of models that perform good history matches can
be generated. When those models are used in conjunction with the Bayesian method, the
uncertainty of the unknown parameters can be addressed quicker, using two orders of
magnitude fewer simulations than would otherwise be required.
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Although ML and data mining methods have been shown to produce accurate results,
when compared with conventional reservoir simulators, those approaches have been
questioned as the affiliated computational cost can sometimes be great since these methods
usually demand large datasets for training and validation purposes [11]. To handle this
question, Shams et al. [126] tried several ML-based and data mining methods for HM
purposes, namely thin-plate splines, RBFNNs, kriging and ANNs, proving that the last two
are more efficient than the first two.

3.2.3. History Matching Based on ML Models Other Than ANNs

Apart from the widely used ANNs, many more ML techniques can help solve the
inverse HM problem. Brantson et al. [127] tried several ML techniques to match tight gas
reservoirs, namely Multi-variate Adaptive Regression Splines (MARS) [128], the Stochastic
Gradient Boosting (SGB) algorithm, which entails growing DTs using a training set that
is split to form new trees that boost the predictions [129], and single-pass GRNNs. The
results were compared with those of a random forest (RF) model. Although the GRNN
model presented the best match during the training process, it failed to achieve the same
for the testing sets. The authors attributed this behavior to, as quoted, “the ability of the
GRNN model to exhibit extreme wiggles of individual signals [130], which are defined at inflection
points where there should not be any inflection. Hence, these wiggles can be rampant and severe
that each sudden change in data values of the predictions happens such that these changes almost
appear to exhibit a step-like phenomenon”. Overall, the computation time was reduced and,
comparatively and in terms of each model’s predictive performance, the MARS and SGB
models presented a predominantly better efficiency over the GRNN model since they were
successfully tested against blind data, achieving very good predictions.

Moving away from the comfort zone of the most popular ML methods, Al Thuwaini
et al. [131] tried to improve the HM speed by introducing a new two-step approach. Firstly,
they clustered reservoir regions with similar petrophysical characteristics, thus reducing
the number of values of each parameter from one per grid block to one per grouped
region. The clustering was run using a Self-Organizing Map (SOM), which is a unique
type of self-learning (unsupervised) ANN that reduces data dimensions and generates a
low-dimensional, discretized depiction (map) of a dataset’s original input space [132]. The
training procedure of SOMs is illustrated in Figure 12. The blue blob is the distribution of
the training data, and the small white disc is the current training datum drawn from that
distribution. At first (left), the SOM nodes are arbitrarily positioned in the data space. The
node (yellow) which is nearest to the training datum is selected. It is moved towards the
training datum, as (to a lesser extent) are its neighbors on the grid. After many iterations,
the grid tends to approximate the data distribution (right). The authors identified the
parameters that mostly affect the matching process and defined reservoir regions, where a
single parameter multiplier per region could be applied to boost the match. Secondly, the
identified regions were exported to the simulator to perform three sensitivity runs for each
region by applying the parameter’s initial, uppermost and lowermost limit values. The
error (difference between calculated and real target values) obtained from the runs was
used to highlight the impact of each parameter adjustment. Then, the parameter value with
the highest error was discarded, while keeping the remaining two as the new uppermost
and lowermost limits, setting up a new run by incorporating a third mean parameter value
between the remaining two, in a way that resembles the bisection method [133]. This
process is continued until the desired error margin is reached, leading to a greatly reduced
search area. The advantage of this method is that it is automated and user-friendly since
the user must only define the number of grouped regions. The results showed that the
computational time of the proposed workflow and, hence, the total number of simulations
required to perform a successful history matching were significantly reduced.
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Gradient-based optimization methods often suffer from severe issues when estimating
the OF gradient due to the numerical noise, resulting from the allowed solver tolerance
criteria. To handle that problem, Guo et al. [135] developed a Support Vector Regression
(SVR) model in conjunction with a Distributed Gauss–Newton (DGN) optimization algo-
rithm to produce precise and discontinuity-free OF gradients that are not very susceptible
to a simulator’s numerical noise, thus enhancing the performance of the matching. The
authors trained the model using reservoir parameters as input with the help of the pluri-
Principal Component Analysis (pluri-PCA) method, which was utilized to produce the
partial derivatives of several parameters and create a sensitivity matrix used by the DGN
algorithm to generate new search points for a new simulation run. The results are fed back
to the proxy to improve its accuracy and the procedure is repeated until the optimization
process converges. As the numerical noise level increases, the SVR–DGN model’s perfor-
mance is very good while it also maintains fast convergence rates, reducing the calculation
time burden that would otherwise be imposed by the simulator when tighter convergence
criteria are set.

3.2.4. History Matching Based on Deep Learning Methods

As mentioned in Section 2, DL is a subset of the ML family widely used in cases of
extremely large reservoir fields with hundreds of uncertain parameters and can digest
unstructured data in its raw form and automatically determine the set of variables that can
distinguish the desired output for regression, classification and clustering tasks.

Another category of ML models, Recurrent Neural Networks (RNNs), although not
necessarily belonging strictly to the DL family, are considered of this form in the current
review since the RNN-based methods available in the literature for the solution of the HM
problem lie within the DL context. RNNs, as depicted in Figure 13, have a reputation of
effectively modeling sequential data and making predictions by utilizing a mechanism
known as sequential memory, which enables the recognition of patterns over time. Just
like other networks, RNNs have the same basic architecture and parameter structure but
the major difference is that they consist of a single recurrent layer that processes the input
sequence one element at a time. The output of each time step is fed back into the recurrent
layer as input for the next time step, along with the current input element. This allows
the network to update its internal state based on both the current input and the previous
state [136,137]. There are many variants of the basic RNN architecture, such as the Long
Short-Term Memory (LSTM) [138] and gated recurrent unit (GRU) [28] architectures, which
are designed to address the basic limitation of RNN architecture, known as the vanishing
gradient problem.

Several examples of the use of RNNs in the oil and gas industry include the predic-
tion of reservoir properties based on well logs, the supplementation of missing logging
information [139], the identification and prediction of complications in the construction
of oil and gas wells [140], the prediction of drilling issues such as the risk of stuck pipe
occurrence during drilling in real time [141] and many more. In those cases, RNNs can be
used to process the data sequentially by using the internal state of the network to capture
information about the previous measurements.
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For the case of subsurface reservoir simulations, Ma et al. [142] developed an RNN
model with a gated recurrent unit to match a large-scale reservoir by approximating the
relationship between a vector input containing geological information, to which a parame-
terization method was imposed to reduce the dimensionality, and an output corresponding
to the production data. The output is transformed using a log-based normalization method
to improve the memorization mechanism of the model. The model is then integrated into a
Multimodal Estimation Distribution Algorithm (MEDA) for HM. In a consecutive study,
Ma et al. [143] introduced well control variables, in addition to the geological parameters
of the previous study, as inputs to the model to impose further accuracy improvements.

Other types of DL ANNs include the Convolutional Neural Network (CNN) and the
Generative Adversarial Network (GAN), both used mostly for image analysis and pattern
recognition applications. The former is a supervised subtype of DL networks, consisting of
a large number of convolutional layers (known as convolutional filters) that can reduce the
high dimensionality of images, without losing too much important information. These types
of networks are usually used for image recognition purposes [144]. A simple illustration
of a CNN is presented in Figure 14. The basic architecture of a CNN consists of the input
layer, convolutional layers, pooling layers, fully connected layers (or else dense layers)
and the output layer. The input is where a CNN receives the raw image data. Images
are typically represented as three-dimensional arrays (height × width × channels), where
the height and width represent the image dimensions, and the channels represent the
color channels. Then, the input is passed on to the convolutional layers that consist of
filters (also called kernels), which are small windows that slide over the input image to
extract local features. The filters learn to detect different patterns, such as edges, corners
and textures, by performing element-wise multiplications and summations. The pooling
layers are then employed to reduce the spatial dimensions of the feature maps obtained
from the convolutional layers, helping to reduce the computational complexity and control
overfitting by summarizing the information in a region. Finally, after several convolutional
and pooling layers, the output is flattened and passed through one or more fully connected
layers. These layers resemble traditional neural network layers and are responsible for
making the final predictions that result in the output [145].
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GANs are also a subtype of DL networks; however, they belong to the UL family. In
GANs, two ANNs compete with each other to become more precise in their predictions
by identifying patterns in the input dataset. More specifically, GANs ‘’play” a zero-sum
game between a generator model (first ANN) that generates fake new examples and a
discriminator model (second ANN) that tries to distinguish between the real and fake
examples. These models are trained together until the discriminator is deceived a number
of times, indicating the generator is starting to create conceivable examples [147]. A simple
illustration of GANs is presented in Figure 15. Ma et al. [148] developed a CNN in conjunc-
tion with an Ensemble Smoother (ES) algorithm [149] to perform a HM process and make
predictions about production rates from reservoir parameters with high dimensionality.
The authors included a GAN in their study, which, when compared to the CNN, generated
predictions with higher resolution.
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3.2.5. History Matching ML Methods Using Dimensionality Reduction Techniques

Focusing on the dimensionality of uncertain parameters in complex reservoir models,
which need to be fixed during HM, several methods have been proposed, both in the DL
and the classic ML context. To this end, Honorio et al. [151] integrated the pluri-PCA
method with a novel unsupervised ML one, termed Piecewise Reconstruction from a
Dictionary (PRaD), to simulate HM for a highly channelized reservoir. This method has
been designed to learn prior geological data and is used to reconstruct the model after
the pluri-PCA method is utilized by incorporating lost information that helps to create a
more realistic final model. Although all parameter reduction methods, such as PCA, can
successfully help a proxy model’s training, the reconstructed model can, several times, be
crooked, something that can cause problems, especially in cases of HM in a highly complex
reservoir model for which critical features should remain intact. The authors used the PRaD
method to learn geological data and store all generated geological models in a ‘’dictionary”.
Then, the Pluri-PCA method is used to reduce the number of cell-based parameters of the
models and transform the facies of the model to Gaussian PCA coefficients as efficiently
as possible without losing too much information that would otherwise be useful. The
PCA coefficients are then adjusted through HM and a pluri-Gaussian rock-type rule is
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enforced for the reconstruction of the complex facies model from the adjusted coefficients.
Finally, the PRaD method is employed and, having previously stored all useful geological
information, it efficiently reduces the interval between the reconstructed and the trained
model.

Alguliyev et al. [152] developed a convolutional Variational AutoEncoder (VAE) net-
work (a special case of an unsupervised learning model trained to reproduce input images
in the output layer) [153] which is integrated into an ES algorithm to perform HM. This
network consists of an encoder, a bottleneck layer, a decoder and a reconstruction layer
(Figure 16). The encoder takes the input data and performs a series of convolutional and
pooling operations to extract relevant features and reduce the spatial dimensions of the in-
put. It typically consists of a stack of convolutional layers, followed by activation functions
and pooling layers. The bottleneck layer is the central part of the AutoEncoder network
and serves as the compressed representation of the input data. It is a fully connected layer
with a significantly lower number of neurons compared to the convolutional layers in the
encoder and forces the network to learn a compressed representation of the input data.
Then, the decoder takes the compressed representation from the bottleneck layer and aims
to reconstruct the original input data. It consists of a stack of transposed convolutional
layers (also known as deconvolutional or upsampling layers) used to gradually increase the
spatial dimensions back to the original size. Activation functions and upsampling layers are
used to perform the inverse of the operations performed by the encoder. The reconstruction
layer is the final layer of the decoder, which produces the output data. It usually involves
a convolutional or fully connected layer followed by an appropriate activation function,
such as a sigmoid or tanh, to ensure the output data are within the desired range [154]. The
results of Alguliyev et al. [152]’s proposed method showed that the model is very effective
within an acceptable error margin.
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Canchumuni et al. [156] introduced a parameterization technique based on DL for
HM facies models and they incorporated ensemble methods to enhance the accuracy of
the results by integrating multiple models. Sets of prior facies realizations are used to
train the DL network, which determines the most important characteristics of the facies
images to parameterize the models, updated to account for the dynamic history data
using an ES multiple data assimilation method. After the HM, the DL model is utilized to
reconstruct the facies models. Jo et al. [157] developed several CNNs in an ensemble mode
(Convolutional AutoEncoder—CAE, CNN and Convolutional Denoising AutoEncoder—
CDAE) that sample posterior reservoir models for fluvial channel reservoirs for HM.
Since the dimensionality of the reservoir data was very high, to determine a relationship
between prior models and their corresponding simulated production data, the authors
used the CAE to generate low-dimensional latent features from prior models. Next, the
relationship between those low-dimensional features (input) and their corresponding
production (output) is determined using CNNs. Finally, the output of the CNN is used
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by the CDAE to enhance the geological connectivity of the posterior models. The results
showed that this ensemble model surpasses the efficiency of other methods, while also
maintaining a low computational cost of sampling posterior models.

Another ML framework using CNN along with the PCA parameterization method
was developed by Liu et al. [158] for HM purposes. This novel low-dimensional CNN–PCA
model is trained as an explicit transformation function that can pre-treat PCA realizations
to quickly produce models coherent with the original reference model. The method uses
a series of metrics from a pre-trained CNN model to determine numerous correlations,
allowing the conservation of the complex geological features that exist in the original
reference model. The results showed that the CNN–PCA method achieved satisfactory
HM and uncertainty reduction for existing wells as well as reasonable predictions for new
wells. Finally, Jo et al. [159] developed GAN models to match a deepwater lobe system,
trained by applying rule-based models to explore the latent reservoir space, since that
way the multi-dimensional data that are used are converted into latent random vectors.
The models produced are integrated with a simulator to generate production values and
then an Ensemble Kalman Filter (EnKF) updates the latent vectors by minimizing the
error obtained when comparing the calculated production values with the real ones. The
EnKF is a probabilistic algorithm that utilizes ensembles of realizations, updated using a
variance-minimizing strategy, to describe any uncertainties in the model. It needs fewer
function evaluations but, as it is a probabilistic method, it may not converge [103]. The
results showed that GAN–EnKF outperforms the EnKF alone, as far as the accuracy of
prediction, the preservation of geological features and the computational efficiency for
updating the ensemble are concerned. The GAN–EnKF method can be easily utilized
for various reservoir types since no constraints are required depending on data types or
geological structures.

3.2.6. History Matching Based on Reinforcement Learning Methods

Apart from DL methods in the conventional supervised/unsupervised learning frame-
work, the application of RL has also been investigated [20,160]. A simple illustration of RL
is presented in Figure 17. The framework in RL is pretty similar to that of unsupervised
forward modeling, in the sense that there is an input corresponding to the current state
of the system to be controlled, which runs through the ANN model to produce an output
for which the target label is not known beforehand. The model, called the policy network,
transforms inputs (states) into outputs (actions) and is trained to learn a policy by directly
interacting with the environment of interest so that it maximizes a reward in the operating
environment [103].
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Li and Misra [162] developed such a strategy by expressing the HM problem as a
Markov Decision Process (MDP). They tried to reduce the manual effort and bias imposed
by the process and to automatically examine the parameter space by using a fast-marching
simulator as the environment for the RL method, where a DL ANN agent is set for it to
communicate with. A discrete Deep Q-Network (DQN) and continuous Deep Deterministic
Policy Gradients (DDPGs) are used as the learning agents, with the latter displaying a
greater accuracy than the former since the continuous processes allow the DDPG technique
to examine a higher number of states at each iteration of the learning phase. The results
showed that both approaches achieved good accuracy. It was also shown that the DDPG
approach surpasses the performance of the DQN, as far as the RMS error is concerned.
However, even if the authors presented a highly innovative method, their research is
relatively narrow since it is restricted to a simple model that contains a small number of
parameters.

As of the time of publication of this paper, Alolayan et al. [103] are the only authors
that have employed a stochastic methods with RL to identify multiple solutions to the
HM problem. They described the model as an MDP and implemented an integrated
system wherein an RL model (Proximal Policy Optimization, PPO, in which the agent uses
two DL ANNs) can connect with a simulator to discover numerous solutions for much
more complex reservoir models with numerous parameters. This is achieved by a parallel
learning capability in which multiple coexisting learning environments can be put in
motion, allowing the model to learn synchronously from all of them. A reservoir simulator
with synthetic data was used to generate production rates and considered historical rates
and the uncertain parameters that must be adjusted to achieve a good match. To generate
initial values for the algorithm, the previous model was discarded and the parameter values
for each cell were slightly modified by adding random noise. The reservoir simulator was
used as the learning environment where the agent is used to learn how to take actions that
will eventually lead to minimizing the OF, obtaining a new state of the environment at
each learning time step that encloses all the uncertain parameters that must be adjusted as
well as a reward that measures how good the action taken by the agent is. The reward is
directly determined by the OF, which gives positive values for good actions that reduce it
and negative values for actions that increase it. This process eventually designates higher
rewards for actions that correspond to higher reductions in the OF, thus forcing the agent to
take actions that accelerate the convergence. Finally, as the agent attempts to maximize the
rewards, it adjusts the uncertain parameters that reduce the OF and discovers a solution to
the HM problem.

4. Discussion

This paper presents an extensive review of all machine learning (ML) models devel-
oped for subsurface reservoir simulations and highlights the different applications and
challenges concerning individual reservoir simulation runs and history matching (HM).
Since reservoir simulations are typically run using conventional simulators which are ex-
tremely costly in terms of computational time, ML models are capable of simplifying these
complicated procedures and providing fast evaluations with an acceptable error margin.

As demonstrated by the research papers reviewed, selecting the most suitable ML
model can be a challenging task since the chosen model should exhibit efficient performance
tailored to the specific problem being studied. Therefore, it is considered wiser to first
understand deeply the problem under investigation from a reservoir engineer’s point of
view to efficiently decide the right course of action. In addition, since each problem can
vary significantly, its complexity, as well as its dataset, must be taken into account, since
for simpler, well-defined tasks, linear regression or decision trees might suffice; however,
for more complex and non-linear relationships, ensemble methods like random forests or
gradient boosting, or even deep learning models, may be more appropriate. These methods
are more suitable since they tend to reduce overfitting and they can handle large amounts
of high-dimensional data with multiple features.
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As far as the high-dimensional data are concerned, many treating methods exist that
can reduce their dimensionality, making it plausible for much simpler ML methods to be
used. ML models coupled with dimensionality reduction techniques have been shown to
lead to very accurate prediction results, while also maintaining a smaller computational
cost when compared to simpler ML models which take into account a full-dimensional
database. It must be noted that the biggest contribution of these techniques is towards
complex reservoir systems where the number of parameters can be extremely high, while
also presenting large distribution variations from one field location to the other. In those
cases, the dimensionality reduction can significantly reduce the time that would otherwise
be required since the prediction calculations are executed much faster. Furthermore,
dimensionality reduction can improve model performance by removing noise, redundant
or irrelevant features and focusing on the most informative aspects, leading to better
generalization and prediction accuracy. However, it must be noted that with dimensionality
reduction comes the cost of the potential loss of information. As commented by most of
the authors of the reviewed papers, reducing dimensions can discard some variability and
fine-grained details, leading to a less accurate representation of the original data.

For the ML strategies concerning individual simulation runs, two approaches have
dominated the research. The first entails proxy models (or else Surrogate Reservoir Models)
which can be implemented to answer a wide range of engineering questions in a fraction of
the time that would otherwise be required. The second ML approach aims at accelerating
specific CPU time-intensive sub-problems, such as handling the phase equilibrium problem
in black oil or compositional form. For the case of compositional simulations, several
ML methods have been developed, aiming at reducing the excessively long time required
for solving stability and flash calculations. The phase stability problem is expressed
as a classification one to determine the number of phases for any given composition
and pressure and temperature values whereas flash calculations are performed using
regression models to predict the k-values needed in a more robust and efficient way. For
the case of black oil simulations where the grid blocks are assumed to contain only oil,
gas and water fluid phases, ML methods have been proposed to predict the necessary
PVT properties that are needed to account for the compressibility of each phase and of the
solution of gas and reservoir oil (such as the Z-factor and saturation pressures). Although
those crucial properties are usually available from experimental procedures or empirical
correlations using field data, in cases where experimental values are not available or
empirical correlations cannot be utilized since they only perform well for the conditions
they were created for, ML methods are used to overcome these problems and speed up and
improve the accuracy of black oil simulations.

To summarize and further highlight the reviewed ML strategies for individual simula-
tion runs, Table 1 was created. The reviewed works have been distinguished according to
their application, the training scheme utilized (supervised/unsupervised/reinforcement
learning), the specific topic handled, the ML technology utilized (e.g., ANNs, SVMS, etc.)
and the related references.

For the case of the individual runs, ML applications for the prediction of black oil
properties are undoubtedly the most mature and safe. This stems from the fact that
the ML tools proposed are already operational, thus requiring no further development
from the reservoir operator depending on the simulation run under study. They may
be considered as complex correlations which can be directly implemented in any kind of
reservoir simulation software as a complementary option to the traditional, limited accuracy,
simple correlations. ML methods handling the phase stability and phase split problems
have been utilized for more than ten years, and the technology is very mature. It should
also be noted that many of the papers appearing in the literature have been developed
as part of research programs of software development companies’ R&D departments
either themselves or in collaboration with academics. The SRMs also exhibit high novelty;
however, their development has been predominantly pursued by one research group, and
various details needed to fully automate this procedure and turn it to a ready-to-implement
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tool, such as how to define the required simulation runs to collect training data, are still
unclear.

Table 1. Individual simulation runs: applications summary.

ML Application ML Training Scheme Main Objective ML Method Reviewed Studies
(Reference List Number)

Surrogate Reservoir
Models

Supervised

Hydraulic fracture
ANNs coupled with GA

[41]

Reservoir uncertainty
analysis [42–46]

Prediction of dynamic
reservoir properties

ANNs

[1]

Water flooding reservoir
simulation [47]

CO2 storage—prediction
of dynamic reservoir

properties
[14,48,49,52]

Shale gas reservoir
simulation [50]

BHP predictions RBFNN [51]

Stability and phase split
problems using k-values Supervised

Phase stability

SVMs and ANNs

[39,53,55,57,58]

Phase stability/split [10,54,56,59,65]

Phase split [22]

Phase split
Deep learning ANNs

[60,64]

Phase stability/split [61–63]

Black oil PVT properties Supervised

Z-factor prediction

ANNs [67,70–74]

SVMs and LSSVM with
optimization methods [75,76,78,83]

Kernel Ridge Regression [80]

Saturation pressure

ANNs [77,85,92,95,96]

SVMs [90,91]

ANFIS [93]

ANNs coupled with
optimization methods [97,98]

SVMs and LSSVM with
optimization methods [99,100,102]

SVMs and DTs [101]

For the ML strategies concerning HM, two approaches have dominated the research
area. The first entails indirect HM which defines the difference between the real and the
predicted production data as the model’s output. In that case, the reviewed HM applications
utilize ML models to learn the underlying relationship between the input (static uncertain
variables) and output variables. Then, an optimization procedure is followed to minimize
the error function (model’s output) based on tunable input parameters. The second strategy,
known as the direct one, utilizes the same input variables as in the first category and some
property that needs to be matched as the output (e.g., production or pressure data).

To summarize and further highlight the reviewed ML strategies for HM, Table 2 was
created. The reviewed works have been distinguished according to their application, the
training scheme utilized, the ML technology utilized and the related references. In general,
the reviewed ML techniques offer an automated approach, reducing human intervention
and computational expenses. Traditional ML models, such as ANNs, SVMs, etc., have been
employed to identify patterns and relationships from historical production data, enabling
faster and more accurate HM. While those models have merits in small-scale applications,
they exhibit limitations when applied to complex tasks that require models that can capture
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non-linear relationships within high-dimensional data. Simple models lack the complexity
and flexibility to adequately represent reservoir behavior, often resulting in underfitting
and limited predictive performance. Moreover, the recorded production data are inherently
noisy and can exhibit significant variations over time, making simple models sensitive
to noise and less capable of generalizing to unseen scenarios. Their inability to learn
hierarchical features and handle multi-scale patterns further hampers their effectiveness
in capturing the complex reservoir dynamics. Additionally, as reservoir data can be
voluminous, simple models may prove computationally inefficient and resource-intensive
for large datasets. To overcome these limitations, advanced ML techniques, such as deep
learning (DL) and ensemble methods, offer more robust and accurate solutions for reservoir
HM, enabling enhanced reservoir management decisions and improved understanding of
subsurface behavior.

DL methods have proven to be an extremely valuable tool for handling reservoir
HM problems and have emerged as the best approach for complex HM tasks due to their
unparalleled ability to learn complicated, non-linear relationships within high-dimensional
data. DL, particularly regarding Convolutional Neural Networks (CNNs) and Recurrent
Neural Networks (RNNs), excels in feature extraction and pattern recognition, enabling
effective modeling of the dynamic and time-varying nature of reservoir data. Additionally,
DL’s hierarchical learning allows it to capture multi-scale features and adapt to diverse
geological structures and fluid flow behavior. By leveraging vast amounts of historical data,
DL methods achieve very good accuracy in predicting reservoir properties and behavior,
leading to improved HM results and enhanced reservoir management decisions. However,
successful implementation requires careful consideration of data quality, model architecture
and domain expertise as well as addressing challenges like overfitting and computational
resources.

Table 2. History matching: applications summary.

ML Application ML Training Scheme ML and Optimization Methods
(If Any)

Reviewed Studies
(Reference List Number)

Indirect history matching Supervised

ANNs with stochastic
optimization [106,107]

ANNs with dimensionality
reduction methods [108]

Ensembles of ANNs [109]

RBFNNs, Generalized Regression
ANNs, FSSC and ANFIS
stochastic optimization

[110–112]

Direct history matching

Supervised

ANNs [114–120,126]

Bayesian ML models [121,122,124,125]

MARS, DTs, single-pass GRNNs [127]

Unsupervised Self-Organizing Map (SOM) [131]

Supervised

SVR with dimensionality
reduction and optimization [135]

RNN [142,143]

CNN [148,158]

Unsupervised

GAN [149,159]

Piecewise Reconstruction from a
Dictionary (PRaD) with

pluri-PCA
[151]

Convolutional AutoEncoders [152,157]

Reinforcement learning Reinforcement learning models [103,162]
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Currently, dozens of professional products used to set up ML models are available to
developers, might that be related to research or commercial products. This palette includes
client tools developed by major players in the market such as Google and Microsoft (Google
cloud AI platform, Azure machine learning) as well as free tools such as TensorFlow by
Google and the Anaconda distribution for Python. Nevertheless, commercial software
is mostly based on in-house development since setting up codes for standard machine
learning tools has been greatly simplified to such an extent as to be considered almost
trivial. For example, CMG’s CMOST embeds RBF networks to model the sensitivity of
a simulation’s output with respect to each uncertain parameter such that the operator
can visualize the effect of each parameter. Schlumberger offers ML solutions on a client-
tailored project basis in fluids, drilling and reservoir characterization. As far as hardware is
concerned, computing systems are now available at a very low cost compared to ten years
ago. A multiple-core, high-end workstation which can run calculations of all described
methods costs between 10 and 30 kUS$. Additionally, cloud computing techniques and
High-Performance Computing services are now available at a very low cost.

Another important aspect of ML is the concept of Technology Readiness Levels (TRL),
especially in the oil and gas industry, since it provides a valuable framework for assessing
the maturity and applicability of ML applications in subsurface reservoir simulation. ML in
this domain has come a long way, transitioning from basic research and conceptualization to
full commercial deployment. During the early stages of TRL, the focus was on exploring the
potential of ML algorithms for reservoir simulation, leading to the development of proofs of
concept and testing on known case studies. Subsequently, the advancement to field testing
demonstrated the feasibility of ML applications in real-world reservoirs. With constant
progression, ML-based reservoir simulation technologies proved their effectiveness in
operational environments, contributing to improved reservoir management and production
optimization and, today, they stand at the forefront of cutting-edge reservoir engineering
practices.

However, it should be mentioned that, unlike other applications, the oil and gas
simulation business is a slow-paced one and, although there has a tremendous amount of
research work on applications of ML in reservoir simulation, their application in commercial
products is still limited to the ones mentioned above. It is the authors’ opinion that
the industry’s reluctance to implement these methods is not related to their success in
accelerating reservoir simulation calculations or in achieving improved history matching
results compared to traditional approaches. It is mostly attributed to the fact that whenever
synthetic training data generation is involved, as is the case when running few simulations
to generate such populations, generalizing that step is not a trivial task. Engineers and
machine learning gurus’ expertise is needed to provide a representative population which
will guarantee full advantage of the ML potential. As a result, it is of utmost importance
that the research community focuses on the automatization of the process under enterprise
environmental conditions rather than solely targeting its efficiency under research “lab”
conditions.

5. Conclusions

Machine learning (ML) has emerged as a powerful tool in the field of subsurface reser-
voir simulations, providing a transformative approach to understanding and predicting
complex reservoir behaviors. ML algorithms have the ability to handle high-dimensional
and multi-variate data, making them ideal for reservoir simulations where numerous
parameters such as fluids’ saturation, temperature, pressure, porosity, permeability, etc.
need to be considered simultaneously. The capability of this multi-dimensional analysis
significantly enhances the accuracy of reservoir simulations and predictions.

The ML model applications reviewed in the present work, particularly deep learning
networks, can uncover complex patterns and relationships in data that may not be readily
apparent to traditional simulation methodologies. This ability to learn from large volumes
of data and identify underlying patterns has been very important in improving the pre-
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dictive accuracy of reservoir performance, fluid flow dynamics and recovery techniques.
Furthermore, the use of ML in reservoir simulations also offers the benefit of continuous
learning and improvement. As more data are gathered over time from reservoir operations
and as models are updated, the predictions and insights generated by ML models become
more accurate and reliable.

However, it is important to note that while ML offers significant advantages, it also
poses certain challenges. Ensuring data quality and handling missing or uncertain data
remain critical issues. In addition, the interpretability of ML models, especially complex
ones like neural networks, is another area that needs attention. Lack of full automation is
also a major issue which keeps the incorporation of this technology limited to commercial
software applications.

In summary, ML applications in subsurface reservoir simulations offer the potential
to drastically improve the efficiency, accuracy and speed of reservoir management and
decision-making processes. As technology continues to advance and more data become
available, ML models will likely become even more integrated into reservoir simulation,
leading to even greater optimization and efficiency in the oil and gas industry.
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ML Machine Learning
EOR Enhanced Oil Recovery
EoS Equation of State
HM History Matching
PFO Production Forecast and Optimization
OF Objective Function
HPC High-Performance Computing
SRM Surrogate Reservoir Model
RFM Reduced Physics Model
ROM Reduced Order Model
AI Artificial Intelligence
SL Supervised Learning
UL Unsupervised Learning
RL Reinforcement Learning
ANN Artificial Neural Network
BHP Bottom Hole Pressure
Bo oil formation volume factor
Bg gas formation volume factor
GOR Gas-to-Oil Ratio
RBFNN Radial Basis Function Neural Network
SVM Support Vector Machine
TPD Tangent Plane Distance
DL Deep Learning
SS Successive Substitution
DT Decision Tree
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Z-factor gas compressibility factor
S–K Standing–Katz
SCG Scaled Conjugate Gradient
LM Levenberg–Marquardt
RBP Resilient Back Propagation
FIS Fuzzy Interface System
ANFIS Adaptive Neuro-Fuzzy Inference System
LSSVM Least Square Support Vector Machines
CSA Coupled Simulated Annealing
MW Molecular Weight
PSO Particle Swarm Optimization
GA Genetic Algorithm
KRR Kernel Ridge Regression
CVD Constant Volume Depletion
MLP Multi-Layer Perceptron
GBM Gradient Boost Method
SA Sensitivity Analysis
BB Box Behnken
LH Latin Hypercube
GRNN Generalized Regression Neural Network
FSSC Fuzzy Systems with Subtractive Clustering
MCMC Markov Chain Monte Carlo
MARS Multi-variate Adaptive Regression Splines
SGB Stochastic Gradient Boosting
RF Random Forest
SOM Self-Organizing Map
SVR Support Vector Regression
DGN Distributed Gauss–Newton
PCA Principal Component Analysis
RNN Recurrent Neural Network
MEDA Multimodal Estimation Distribution Algorithm
CNN Convolutional Neural Network
GAN Generative Adversarial Network
ES Ensemble Smoother
PRaD Piecewise Reconstruction from a Dictionary
VAE Variational AutoEncoder
CAE Convolutional AutoEncoder
CDAE Convolutional Denoising AutoEncoder
EnKF Ensemble Kalman Filter
MDP Markov Decision Process
DQN Deep Q-Network
DDPG Deep Deterministic Policy Gradient
PPO Proximal Policy Optimization
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