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Abstract: Deep coalbed methane (CBM, commonly accepted as >1500 m) has enormous exploration
and development potential, whereas the commercial development of deep CBM exploration ar-
eas wordwide has been quite limited. The Linxing area, with coals buried approximately 2000 m
deep, shows great development potential. Based on a basic geological analysis of structural and
hydrodynamic conditions, combining field tests of reservoir temperature and pressure and indoor
measurements of maceral composition, proximate analysis, thermal maturity, porosity and permeabil-
ity, the factors controlling deep CBM accumulations were discussed. The results show that the present
burial depth of the No. 8 + 9 coal seam, mainly between 1698 and 2158 m, exhibits a high reservoir
temperature (45.0-64.0 °C) and pressure (15.6-18.8 MPa), except for the uplift area caused by the
Zijinshan magma event (with coal depth approximately 1000 m). The maximum vitrinite reflectance
(Ro,max) of the coal varies from 1.06% to 1.47%, while the magma-influenced areas reach 3.58% with a
relatively high ash content of 31.3% (air-dry basis). The gas content calculated by field desorption
tests shows a wide range from 7.18 to 21.64 m3/t. The key factors controlling methane accumulation
are concluded from regional geological condition variations. The north area is mainly controlled by
structural conditions and the high gas content area located in the syncline zones. The center area is
dominated by the Zijinshan magma, with relatively high thermal maturity and a high gas content
of as much as 14.5 m®/t. The south area is developed with gentle structural variations, and the gas
content is mainly influenced by the regional faults. Furthermore, the groundwater activity in the
eastern section is stronger than that in the west, and the hydrodynamic stagnant areas in the western
are more beneficial for gas accumulation. The coals vary from 3.35% to 6.50% in porosity and 0.08 to
5.70 mD in permeability; thus, hydrofracturing considering high temperature and pressure should be
applied carefully in future reservoir engineering, and the co-production of gas from adjacent tight
sandstones also should be evaluated.
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1. Introduction

More than 47.6 x 10'2 m3 of coalbed methane (CBM) resources exist worldwide in
deep coal seams [1,2]. The total amount of CBM resources (gas in place) in China was
estimated to be as much as 36.8 x 102 m? in coals buried at a shallower depth than 2000 m,
of which 32% (11.9 x 10'> m3) occurs at a depth of 1500-2000 m and 29% (10.6 x 10'> m3)
at a depth of 1000-1500 m [3]. Significant CBM resources are buried deeper than 1500 m or
1000 m, and CBM wells in most coal basins range in depth from 100 to 1400 m, such as the
Powder River Basin (55-975 m) [4], the Raton Basin (137-1068 m) [5], the San Juan Basin
(169-1220 m) [6], the Surat Basin (100-400 m) [7], and the Sydney Basin (650-850 m) [8].
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CBM is controlled by a variety of geological factors, for instance structural conditions,
hydrology, deposition and subsidence, paleoclimate, and cap rock performance, as well
as favorable reservoir pressure and temperatures [9-11]. The present report shows that in
shallow areas, the gas content and coal seams have a positive correlation, but beyond a
certain depth (critical conversion depth), the gas content of the coal seams tends to reduce
as depth increases because of the negative effect of formation temperature on methane
adsorption [12]. The activity of faults and the differences between anticline and synclinal
structure have different effects on the preservation of CBM [13,14]. The mudstone caprock
has good sealing properties; for example, the mudstone-saturated water breakthrough
pressure in the Dacheng area is 1625 MPa, and the gas content of the coal seam is high
in thicker muddy cap rock zones [15]. Regarding hydrogeological conditions, there is
a strong hydrodynamic condition in the runoff area, the CBM dissipates easily due to
hydraulic erosion, and the relatively weak hydrodynamic stagnant zone is conducive
to CBM accumulation [16]. In addition, the degree of salinity of groundwater in the
stagnant area is higher and easily forms under higher pressure, which is beneficial to CBM
accumulation [17].

CBM is a self-generating and self-storing unconventional natural gas whose top and
bottom lithology can comprise sandstone, mudstone and limestone. The previous research
on CBM reservoirs mainly focused on a depth of less than 1000 m. This is not sufficient to
build an understanding regarding deep CBM accumulation forming geological conditions,
hydrocarbon accumulation characteristics and other concepts. The state of deep coalbed
methane is unclear, the theory of formation and storage is unknown, and the method used to
select favorable zones is not yet systematic. The characteristics of deposition, rock formation
and the storage of deep coal reservoirs are not well understood, and the in situ storage
status is complicated and the storage characteristics are not clear. The present burial depth
ranges from approximately 1698 to 2158 m of the No. 8 + 9 (No. 8 and No. 9 coal seams)
coal seam, Carboniferous Taiyuan Formation, Linxing area, in the eastern Ordos Basin. Gas
content and coal thickness indicated that there is a huge potential for resources in the deep
coal seam of the study area. This paper focuses on deep coal reservoirs in the Linxing area,
and describes the coal quality, reservoir temperature and pressure, gas content, porosity,
and permeability characteristics of deep coal reservoirs. Key factors controlling deep CBM
accumulations are discussed carefully, such as the structural condition, hydrodynamic
condition, and thermal maturity of coal. Furthermore, the geological conditions of deep
CBM determine that special attention should be paid to the high temperature and pressure,
hydrodynamic conditions and the properties of coal in future reservoir engineering, as well
as the co-production of gas from adjacent tight sandstones.

2. Geological Setting

The Ordos Basin contains many coal, gas and oil resources [18,19]. Linxing area is
located in the northeastern Ordos Basin and its tectonic location is the Jinxi flexural fold
belt at the eastern Ordos Basin (Figure 1a,b) [20]. The study area is generally a westward
dipping monoclinic structure with a gentle formation dip. Affected by the Early Cretaceous
tectonothermal events in the North China Plate, a Zijinshan rock mass developed on
the eastern side of the Linxing area; the rock body as a whole exhibits alkaline rock
characteristics (alkali-rich, Mg-poor and Fe-poor) and reverse faults are developed [21].
The structure of Linxing area is divided into three secondary structural units: diapir
structure uplift belt, ring groove belt, and low-amplitude anticlines. The low-amplitude
anticlinal zone is controlled by the north-south extruding stress of the northern margin
of the Ordos Basin, and some anticline structures with an E-W extension were formed
during the Late Paleozoic [22]. The area is far from the northern margin of the basin, so the
amplitude of deformation of anticlines is small, but the northern anticlines are generally
larger than the southern anticlines. The formation of the trench belt is based on the late
Paleozoic fold belt. After the diapirism in Yanshanian, the rock around the diapir structure
is affected by the magma uplift and combines with the upward drag of the diapir tectonics
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to form a peripheral syncline [23]. The faults in the north are formed by E-W compression
stress. They are distributed in two groups in the direction of N-W and N-E, with a short
plane extension distance [24].
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Figure 1. Location of the Linxing area ((a) basin location; (b) study area location in the Ordos Basin)
and stratigraphic sequence of the coal-bearing strata (c).

The coal-bearing rock systems in the Linxing area are the Upper Carboniferous-Lower
Permian Benxi Formation, Taiyuan Formation and Shanxi Formation. (Figure 1c). There
are nine layers of coal seam in this area; among them, the No. 8 + 9 coal seam of Taiyuan
Formation is the main coal seam used in the exploration and development of deep CBM [25].

3. Databases and Methods

To describe the properties of deep coal reservoirs in the study area, the coal thickness,
burial depth, reservoir temperature, reservoir pressure, in-place gas content, produced wa-
ter type and total dissolved solids (TDS), and other reservoir geological parameters of the
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No. 8 + 9 coal seam were collected from 42 CBM exploration wells. These wells were drilled
and data were tested and analyzed by China United Coalbed Methane Co., Ltd. (Beijing,
China). The reservoir temperature was measured by logging, and reservoir pressure was
obtained from well tests and fracturing tests. The in-place gas content was obtained by the
canister tests, according to the method of [26] GB/I'19559-2008; Method of determining coalbed
gas content. Standardization Administration of the People’s Republic of China: Beijing, China,
2008. In addition, in order to reveal the characteristics of deep coal seam, laboratory mea-
surements such as maceral composition analysis, proximate analysis, maturity, maximum
pyrolysis temperature, porosity and permeability of coal were carried out.

(1) Maceral composition and vitrinite reflectance of coal

Maceral composition analysis was performed following the China National Stan-
dard GB/T 8899-2008. During the test of maceral composition and maximum vitrinite
reflectance (%Ro,max), the coal rocks were ground to 60-80 mesh, and marked as 30 mm
diameter, 10 mm thick coal samples. Statistics and photographs were evaluated for maceral
composition. Vitrinite reflectance was performed following China National Standard [27]
GB/T 6948-2008; Method of determining microscopically the reflectance of vitrinite in coal.
Standardization Administration of the People’s Republic of China: Beijing, China, 2008.
These tests were performed on the Laborlxe 12 POL microscope with the MPS 60 photo
system manufactured by the Leitz Company, Oberkochen, Germany.

(2) Maximum pyrolysis temperature and proximate analysis of coal

Following the China National Standard [28] GB/T 18602-2001; Rock pyrolysis analysis.
Standardization Administration of the People’s Republic of China: Beijing, China, 2001,
maximum pyrolysis temperature experiments were performed on coal. The coal samples
were crushed and sieved to sample sizes of 0.07-0.15 mm. The experimental instrument
was the Rock Eva I6 rock pyrolysis instrument. Proximate analysis of coal was conducted
following the China National Standard [29] GB/T212-2008; Proximate analysis of coal.
Standardization Administration of the People’s Republic of China: Beijing, China, 2008.
All coal samples were ground to a particle size of less than 0.2 mm. Approximately 1 g
coal samples were placed in a (105-110) °C nitrogen flow drying oven to dry to a constant
quality, according to the quality loss of coal samples, to calculate the moisture quality
fraction. The volatiles were measured in a covered porcelain crucible and heated at 900 °C
for 7 min isolated from air. The reduced quality accounted for the quality fraction of the
coal sample quality, with the water content subtracted as the volatile content. The ash
content was measured in a muffle furnace. The coal samples were heated to a temperature
of 815 °C at a certain rate and burned to a constant mass; the remaining mass accounts for
the percentage of coal sample quality as the ash content.

(38) Porosity and permeability of coal

Porosity and permeability tests were performed following the conventional method
of the core analysis of the Chinese Oil and Gas Industry Standard [30] SY/T 5336-1996;
Method of core routine analysis. China National Petroleum Corporation: Beijing, China,
1996. The samples were cylindrical coal rocks with a length of 3.58-5.34 cm and a diameter
of 2.39-2.46 cm. The test conditions were a confining pressure of 300 psi and pore pressure
of 200 psi. Porosity was measured using the helium expansion method. Air permeability
testing methods were described by Cai et al. [16]. Experimental test data were provided by
China University of Mining and Technology.

4. Results
4.1. Burial Depth Variations

The depth of the No. 8 + 9 coal seam ranges from 1698 to 2158 m, with an average
value of 1902 m, which is deeper than other typical hydraulic fracture coal seams of coalbed
methane basins (Table 1). Regarding the plane distribution, the depth of the coal seam is
characterized by the distributions of the “northern is shallow and southwest is deep”. The
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north is 1700-2000 m and the south is more than 2000 m (Figure 2). There is a magma uplift
region in the central of the study area, which is explained through seismic data. The depth of
the coal seam is relatively shallow in the uplift region (e.g., the depth of well L3 is 1090 m).

Table 1. Burial depth of typical hydraulic fracture coal seams of coalbed methane basins.

. . . . Black Powder
Basin Ordos Qinshui Piceance San Juan Warrior River Bowen Sydney
Country China China America America America America Australian Australian
Depth (m) 100-1500 200-2000 1560-2561 169-1220 152-1375 55-975 300~1400 650-850
Subbituminous Medium-— Medium—
Low-volatile  Semianthracite Ato . . Subbituminous . . High rank
Coal rank . . - Low . high volatile high volatile Lo
bituminous to anthracite low-volatile : . C-A : . (bituminous)
. - bituminous bituminous
bituminous
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Figure 2. Distribution of depth of the No. 8 + 9 coal seam.

4.2. Material Composition of Coal
4.2.1. Maceral Composition

The maceral composition analysis results indicates that the coals are mainly composed
of vitrinite, followed by inertinite, and then, rarely, exinite. The vitrinite is mainly telocolli-
nite and desmocollinite; telinite is occasionally observed (Table 2). The vitrinite content
varies from 54.9% to 88.6%, with an average value of 75.6%. The vitrinite content of coals
in the south is relatively higher than that in the north. The telinite of well L41 is especially
well-preserved (Figure 3), reflecting a rapid deposition and a short gelation time [31]. The
inertinite content is between 4.1% and 31.2%, with an average value of 13.9%, which is
relatively higher in the north than in the south. The reason for this may be that the source of
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the sediment was from the north and the seawater intrusion was mainly from the south and
southeast, which led to the fusinitization being stronger in the north than in the south [32].

Table 2. Results of maceral composition and proximate analysis of coals in Linxing area.

Coal Maceral Composition (%) Priximate Analysis (%)
Sample No.  Depth(m)

I E M Ay Vdat M,q FCyq
L1-1 2086.61 86.2 6.8 0 7.0 12.36 23.34 0.20 64.10
L1-2 2088.16 88.6 8.1 0 33 9.73 23.39 0.30 66.58
L1-3 2088.23 86.6 4.1 0 9.3 14.47 23.85 0.25 61.43
L3-1 1068.29 - - - - 31.77 5.99 0.95 61.29
L3-2 1090.14 - - - - 23.81 6.56 0.81 68.82
L4-1 1825.50 759 9.8 0 14.3 38.55 2417 0.40 36.88
L5-1 1769.51 729 16.1 0.2 10.8 14.25 27.06 0.40 58.29
L5-2 1770.51 83.6 9.2 0 7.2 11.22 25.79 0.40 62.59
Le-1 1855.64 719 17.9 0.2 10.0 23.48 33.67 0.30 42.55
L8-1 1961.80 85.4 54 0 9.2 33.17 22.35 0.20 44.28
L18-1 1955.60 - - - - 29.64 7.23 0.26 62.87
L32-1 1936.22 63.7 28.8 0 7.5 21.41 24.36 0.61 53.62
L36-1 1846.29 54.9 31.2 0 13.9 20.26 22.79 1.34 55.61
L36-2 1848.26 62.7 20.7 0 16.6 25.07 25.58 1.50 47.85
L41-1 2158.05 85.2 9.2 0 5.6 18.30 22.50 0.80 58.40

Telocollinite

V: vitrinite; I: inertinite; E: exinite; M: minerals; M,4: moisture (air-dry basis); Aq: ash (dry basis); V4,¢: volatile
(dry, ash free basis); FCyq: fixed carbon (air-dry basis).

i

Semifusinite

Fusinite

W, Vitrinite

av
vA

Pytite

/

Telinite

Figure 3. Photos of maceral composition of coal samples from the No. 8 + 9 coal seam in the study
area. (a) describes the telocollinite of well L4 (burial depth of 1825.50 m); (b) describes the fusinite of
well L5 (1769.51 m); (c) describes the semifusite of well L8 (1961.80 m); (d) describes the pytite and
desmocollinite of well 135 (1931.20 m); (e) describes the telinite of well L41 (2158.05 m); (f) describes
the pytite and vitrinite of well L52 (2005.00 m).

4.2.2. Proximate Analysis

As shown in Table 2, the water content obtained from the air-dry basis is between
0.2% and 1.5%; the mean value reaches 0.6%. The fixed carbon content ranges from 36.9
to 68.8%; the mean value reaches 55.9%. The volatile content and ash content both show
large variation ranges. Most of the coals have a medium-to-low ash content range from
10% to 25%. Ash content is higher near the magma uplift region than it is in other areas.
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The magmatic thermal contact increase in coal rank causes the ash content of the coal rock
to increase. In addition, the ash content is abnormally high in the northern part of the
study area. Because the northern part is the source of sediment, the distributary channel
and the tidal channel continuously erode the coal seam in the coal-forming periods [33]. A
relatively high content of inorganic minerals existed in the water, which transported and
accumulated and precipitated in the coal seam, resulting in higher ash content being found
in the coal seam [34].

4.3. Reservoir Pressure and Temperature
4.3.1. Temperature

Stratigraphic temperature influences the adsorption properties of coal, and the ability
of coal to absorb methane will decrease as the temperature increases [35,36]. Temperature
information is obtained by temperature logging during drilling. Overall, there is a positive
correlation between coal reservoir temperature and burial depth. However, this is not a lin-
early increasing relationship because of the difference in the geothermal gradient (Figure 4).
The reservoir temperature is 38.4-64 °C; the mean value is 52 °C. The temperature is higher
in the southwestern study area; because of the increased depth of the coal seam, most of
the wells exceed 50 °C. The highest temperature was measured in well L1 and well L9, and
reached approximately 62 °C. In the magma uplift region, the temperature becomes low
because the depth of the coal seams is shallow (e.g., the temperature of well L3 is 38.4 °C)
(Figure 5).

Temperature/C

35 40 45 50 55 60 65 70
900 T T T T T T 1

1100

Magma uplift area ( well L3)

1300

1500

1700

Burial depth/m

1900 F

2100 F

2300 *=
Figure 4. Reservoir temperature versus burial depth of the No. 8 + 9 coal seam.

4.3.2. Pressure

Based on well test reservoir pressure data, the reservoir pressure is 15.6-18.8 MPa,
except for the magma uplift region. There is a positive correlation between the reser-
voir pressure and burial depth; namely, reservoir pressure increases as depth increases
(Figure 6a). The reservoir pressure gradient is 0.83-1.02 MPa /100 m, which indicates that
the formation is under normal pressure (Figure 6b) [37]. The reservoir pressure gradients
are relatively small in the fault development zone and magmatic uplift zone. The location
of well L1 is in the syncline area, close to the fault. Well L17 and well L23 are near the Zijin-
shan uplift zone, where fractures developed. This indicates that the fissure development
area may lead to strong differences in gas and water migration, resulting in a decreasing
reservoir pressure gradient.
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Figure 6. Reservoir pressure versus burial depth (a) and the pressure gradient (b) of the No. 8 + 9
coal seam.

4.4. Thermal Maturity

Coal rank can affect the formation of methane, desorbed gas content and gas storage
capacity of coal. In general, the maximum gas storage capacity of coal will increase as coal
rank increases. When coal rocks are affected by local heat sources, the gas storage capacity
of coal will increase compared with those not affected by heat sources [38].

The measured data show that the maximum vitrinite reflectance (Ro max) is from 1.06%
to 1.5% of the No. 8 + 9 coal seam. The vitrinite reflectance increases from north to south
with the increase in burial depth, but the increasing trend is mild. The vitrinite reflectance
clearly increases at the uplift area and, if affected by the Zijinshan magma event, can
increase to above 3% (Figure 7).
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Figure 7. Distribution of coal rank of the No. 8 + 9 coal seam.

4.5. Gas Content and Coal Thickness

Gas content and the thickness of the coal reservoir are important parameters for evalu-
ating CBM resources. The canister tests results show that the gas content is 7.18-21.64 m3/t;
the mean value is 12.9 m3/t (Figure 8). The gas content shows a distribution characteristic
of “high in west and low in east”. The higher gas content area exceeds 15 m?/t (e.g., well
L5, well L6, well L8, and well L32), and the lower gas content area appears in the north
(7.18-9.78 m3/1).

The No. 8 + 9 coal seam mainly developed on the intertidal flat, and most of the
two coal seams are merged together; only a few coal seams are bifurcated in some areas,
due to the change in the sedimentary environment. The thickness of the coal seam ranges
from 1.5 to 15.5 m, and the mean value is 5.8 m, which is larger in the south than in the
north (Figure 8).

4.6. Characterization of Porosity and Permeability

Due to the lack of tests of permeability in the deep coal seam, the air permeability
of coals was tested (Table 3). The test results show that the porosity is 3.35-6.50%, with
a mean value of 4.91%, and permeability is 0.08-5.7 mD, with a mean value of 1.69 mD.
Compared with previous scholars’ research results, the testing permeability of 55 wells is
0.01-3.33 mD, and the mean value is 0.65 mD in the eastern margin of Ordos Basin [39]; the
testing permeability of 7 wells is 0.005-4.94 mD, and the mean value reaches 0.98 mD in
the Liulin area of the eastern Ordos Basin [40]. The air permeability of coal in the study
area is higher than that of the testing permeability in other areas, but there is no significant
difference in the order of magnitude.
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Table 3. Porosity and permeability of coal samples.

Depth Diameter Pore Volume Porosity Permeability
Sample No. (m) Length (cm) (cm) (cm?) %) (mD)
L4 1823.0 5.28 2.45 1.25 5.02 0.08
L5-1 1769.2 4.80 2.46 1.24 5.44 2.90
L5-2 1786.0 5.19 2.45 1.41 5.78 0.52
L8 1886.9 3.58 2.44 0.64 4.01 1.95
L10-1 1635.2 4.82 243 0.98 4.58 0.26
L10-2 1635.6 5.34 2.39 1.17 4.86 0.20
L15 1895.0 4.54 2.44 1.37 6.50 5.70
L17 1899.0 4.15 244 0.96 3.35 1.35
L20 1738.7 447 2.44 0.70 4.68 2.21

5. Discussion
5.1. Influences of Structural Patterns on Gas Content

The elevation of the coal seam floor shows large changes in the northern part of the
study area, between —720 m and —1000 m (Figure 9b). Overall, the trend is that the east has
higher depths relative to the western, which has lower depths. The gas content is clearly
controlled by fractures and folds in the northern part of the study area. The gas content
is higher in the syncline zone than the anticline zone (Figure 9a). For instance, well L6 is
16.43 m3/t and well L32 is 21.64 m3/t. The gas content is generally small in the anticline
zone: well L4 is 9.56 m3/t and well 134 is 7.18 m3/t. One reason for this is that synclinal
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reservoirs provide the necessary pressure regimes that are favorable for CBM accumulation,
and the syncline zone may be a favorable CBM accumulation area.
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Figure 9. Comprehensive map and cross-section of structure, gas content (a) and coal floor contour
(b) in the Linxing area.

The elevation of the coal seam floor is between —1000 m and —1050 m in the southern
part, which is relatively flat (Figure 9b). The minor differences in the floor altitude of
coal seam have little effect on the accumulation of CBM. However, faults have different
kinematic properties, wich can affect the distribution of gas content. Well L1 and well
L41 are both located in the south of the study area, although there is little difference in
the coal quality (the ash content of well L1 is 12.2% and well L41 is 18.3%; the maximum
vitrinite reflectance of well L1 is 1.30% and well L41 is 1.47%); the gas content shows large
differences (well L1 is 8.24 m3/t and well L41 is 15.0 m3/t). One reason for this may be
that well L1 is located on the upthrow side of a reverse fault, which may lead to gas—gas
transfer differentiation [41].

5.2. Influences of Hydrodynamic on Gas Content

Based on the data of reservoir pressure and the bottom elevation of the coal seam,
the equivalent reduced water level of the study area was calculated using the reduced
water-level formula [17]. In the calculation, the sea level is taken as the datum, so the
absolute elevation of the datum is taken as 0. The buried depth of No. 8 + 9 coal seam is
1698-2158 m, and the density of water changes very little. Therefore, this can be simplified
to calculate the converted head height as S = 100P + H, where S is the equivalent reduced
water level, m; P is the measured ground pressure, MPa; H is the absolute elevation of the
ground pressure test point, m. The results of the calculation are shown in the table below.

The groundwater flow pathway is from east to west, and two groundwater relative
stagnant zones are formed: one is in the northwest (well L32, well L8 and well L5) and the
other is in the southwest (well L1, well L7) (Figure 10). The gas content of the stagnant
area of the groundwater (e.g., well L32 is 21.64 m3/t, well L8 is 18.45 m3/t, well L52 is
13.7 m3/t, and well L41 is 15.0 m3/t) is higher than that of the groundwater runoff area
(e.g., well L4 is 9.56 m3/t, well L20 is 9.78 m3/t, and well L34 is 7.18 m3/t). The reason
for this is described by Song et al. [14]; the CBM will have a low abundance due to water
washing, as some gas may be lost in the runoff zone. In the stagnant zone, water flow is
not active, resulting in the preservation of a high abundance of CBM. The groundwater
stagnant area may be a favorable area for CBM accumulation.
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Figure 10. Gas content and hydrodynamics of the No. 8 + 9 coal seam.

The degree of mineralization of groundwater water is an important indicator of the
active level of hydrodynamics [42]. Since we did not collect groundwater samples from
coal seam, the data collected from formation water showed that the mineralization of
groundwater water is very high in the study area. The total dissolved solids (TDS) values
were 27,172-48,795 mg/L in the Shanxi Formation, with an average value of 37,975 mg/L;
this is 37,026-50,000 mg/L in the Taiyuan Formation, with an average value of 43,513 mg/L.
The water type is primarily CaCl,, NaCl and NaySO;.

5.3. Influences of High Reservoir Temperature and Pressure
5.3.1. Variations in Deep Buried Strata

Isothermal adsorption experiment results show that the amount of adsorbed methane
decreases with increasing temperature, and this increase in pressure is beneficial for gas
adsorption [43,44]. Because of the large burial depth, the temperature and pressure of the
deep coal reservoir obviously increase in the deep coal seam when compared to shallow
coal seams. Figures 11 and 12 show that when the temperature is less than 50 °C, there
is little effect on the gas content. When the temperature exceeds 50 °C, it has a passive
influence on the gas content. On the whole, an increase in gas content is accompanied by an
increase in reservoir pressure, but this phenomenon is not obvious. A reason for this may
be that gas content is significantly affected by structural and hydrodynamic conditions,
and the influences of the reservoir temperature and pressure are masked.
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5.3.2. Influences from Magma Event

Magmatic intrusions or volcanic eruptions occurred in the Late Jurassic-Early Creta-
ceous in Ordos Basin, and the Zijinshan pluton formed during the Yanshanian magmatic
intrusion. The results of SHRIMP zircon U-Pb dating, combined with previous research,
suggest that the Zijinshan complex was formed between 138.7 Ma and 125.0 Ma, thus
belonging to the early Cretaceous epoch [45]. The thermal contact of magma increases
the maturity of coal rock, which shows an increasing trend around the Zijinshan, e.g., the
vitrinite reflectance of well L3 and well L18 are above 3%. Moreover, the stomatals of
coal increase the available space for the adsorption gas of coal, which is beneficial to the
adsorption of methane gas for coal rock [46].

To explore the effect of magmatic heat on the coal rock in the vertical direction, the
coal samples from L15, L16, L18, and L20 wells, which are relatively close to the magmatic
rock mass, were selected for T,y analysis. The results show that the T}y of coal rocks is
420-600 °C. In the vertical direction, the T,y of coals is 450-470 °C in well L15 and well L16,
and 450-500 °C in well L20 (Figure 13a,b,d). No abnormally high pyrolysis temperatures
occur. The Tyyqy of well L18 can reach approximately 600 °C in 1960 m; however, it tends to
be normal at the upper and bottom ranges of coal samples (Figure 13c), indicating that the
impact of the magma uplift on the coal rock only occurs in a few layers in a vertical direction.
The upwelling of deep magma has a distinct influence on the maturity of coal [47].

5.4. Partition of CBM Accumulation

It is generally thought that CBM accumulation is controlled by structural conditions,
hydrogeology, sedimentology and coal property [48]. In the Linxing area, CBM accumu-
lation is mainly controlled by structural conditions, hydrogeology and thermal maturity
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of coal, and these can be divided into three regions by the floor elevation of coal seams,
thermal maturity of coal and gas content, as shown in Figure 14.
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Figure 13. T,y of coal versus vertical burial depth in the study area.

Structural condition is the key factor controlling CBM accumulation in the northern
part (Region I, shown in Figure 14). The floor elevation of the coal seam shows a large varia-
tion range. There is a high gas content (well L6 is 16.43 m3/t and well L32 is 21.64 m3/t) in
the syncline zones. Nevertheless, the gas content in the anticlinal structure area is generally
less than that in syncline zones (well L4 and L34 is 9.56 m3/tand 7.18 m3/t, respectively).
Due to modern day compressional stresses, the core of the syncline is generally subjected
to compressive stress, which generally leads to higher pressure. Furthermore, the syncline
zone is generally in the stagnant area of groundwater, which is conducive to the formation
of hydraulic plugging gas reservoirs [49,50]. The anticlines and synclines appear alternately
from east to the west in the northern part, which leads to the difference in gas content.

For the magma uplift region, shown as Region I, magma causes the formation tem-
perature to increase during geological history, which influences the maturity of coals. The
increase in coal rank makes the coal adsorption capacity become stronger; for example, the
gas content of well L3 is 14.5 m?3/t, even when the ash content reaches 30% of the air-dry
basis. The direct roof of the coal seam is sandstone with a thickness of 8 m, and it has
sand and shale interbedding of a 20 m thickness above the sandstone. Meanwhile, the
fractures in the uplift area are relatively developed, which results in some gas escaping to
the overlying strata. The gas from adjacent tight sandstones should also be noted.
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The southern part of the study area (Region II) is influenced by coal properties and
regional faults. This region is developed, with gentle structural variations, as the elevation
of the coal seam floor has few differences (between —1000 m and —1050 m), with a small
scale of regional faults. However, the gas content shows great variations. The gas content
of well L1 is 8.24 m3/t, which is lower than the 15.0 m?/t of well L41. One reason for
this is that there is a relatively small difference in the Ry max of coal (well L1 and well L41
are 1.30% and 1.47%, respectively), which leads to the different coal adsorption capacities.
Another important reason is that well L1 is located at the upthrown side of the fault, which
may lead to some gas dissipation due to stress release. The coal seam is overlaid with
shales; this benefits gas preservation.

6. Conclusions

Based on a basic geological analysis of structural and hydrodynamic conditions,
combining field and indoor tests, the factors controlling deep CBM accumulation were
discussed. For deep buried CBM, several factors should be noted: (1) high reservoir
pressure (15.6-18.8 MPa) and temperatures (45.0-64.0 °C); (2) the quite low porosity (from
3.35% to 6.50%) and permeability (from 0.08 to 5.70 mD) of deep coal seams; (3) a wide
range of gas content due to different geological backgrounds.

The thickness of the coal seam is 1.5-15.5 m, with an average value 5.8 m, along
with the gas content of 7.18-21.64 m3/t, indicating a good potential for CBM resources.
The structural conditions and thermal maturity of coal are key factors controlling CBM
accumulation. The study area can be divided into three regions based on the different key
factors controlling the gas content: the north areas by fault/fracture and fold conditions;
the middle area by thermal maturity, where the greater the maturity of coal, the larger the
gas accommulation; the south area by coal properties and regional faults and fractures.

The effect of stratum temperature on the gas content of deep coal seams needs to be
paid attention, while the fracture, fault structure and hydrodynamic conditions of coal have
an important influence on the enrichment and escape of coalbed methane.
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