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Abstract: Transitioning to green energy transport systems, notably electric vehicles, is crucial to both
combat climate change and enhance urban air quality in developing nations. Urban air quality is
pivotal, given its impact on health, necessitating accurate pollutant forecasting and emission reduction
strategies to ensure overall well-being. This study forecasts the influence of green energy transport
systems on the air quality in Lahore and Islamabad, Pakistan, while noting the projected surge in
electric vehicle adoption from less than 1% to 10% within three years. Predicting the impact of this
change involves analyzing data before, during, and after the COVID-19 pandemic. The lockdown
led to minimal fossil fuel vehicle usage, resembling a green energy transportation scenario. The
novelty of this work is twofold. Firstly, remote sensing data from the Sentinel-5P satellite were
utilized to predict air quality index (AQI) trends before, during, and after COVID-19. Secondly, deep
learning models, including long short-term memory (LSTM) and bidirectional LSTM, and machine
learning models, including decision tree and random forest regression, were utilized to forecast the
levels of NO2, SO2, and CO in the atmosphere. Our results demonstrate that implementing green
energy transportation systems in urban centers of developing countries can enhance air quality by
approximately 98%. Notably, the bidirectional LSTM model outperformed others in predicting NO2

and SO2 concentrations, while the LSTM model excelled in forecasting CO concentration. These
results offer valuable insights into predicting air pollution levels and guiding green energy policies to
mitigate the adverse health effects of air pollution.

Keywords: remotesensing; deep learning; urban air pollution; green energy; Sentinel-5P

1. Introduction

The rapid urbanization and industrialization over the past seven decades have led to
significant air pollution in large cities. Consequently, the air quality in urban centers has
severely declined, posing risks to both human health and the environment [1,2]. Unfor-
tunately, there is a lack of spatiotemporal air quality data for populated areas, hindering
data-driven interventions to address environmental deterioration [1]. Regular air quality
monitoring is essential to devise suitable strategies to prevent its negative effects on human
health and the ecosystem of the area of interest [3,4]. Moreover, these monitoring methods
can help track the immediate effects associated with the shift toward sustainable energy
transportation systems. The detection and monitoring of trace gases using remote sensing
data from satellites offer numerous advantages, such as global coverage for extended peri-
ods, enabling researchers to examine the concentration of trace gases over a wider area and
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map their distribution [5]. Additionally, precise measurements of trace gases at multiple
locations help identify sources and sinks, allowing for reasonable budgets to be generated.
However, ongoing urbanization and industrialization have complicated the monitoring
and control of air quality, particularly in rapidly developing nations, such as China and
India. Despite suffering from poor air quality, these nations continue to produce synthetic
gases to meet industrial growth without fully understanding the adverse environmental
effects [1,6]. The high levels of air pollution in certain regions of Asia, such as South Asia
and East Asia, have been associated with higher incidences of respiratory, mental, and
other health issues [7–10]. It is estimated that Asia alone accounts for nearly 6.7 million
premature deaths annually to poor air quality [11].

Besides India and China, Pakistan is also suffering from high air pollution levels owing
to significant population and economic growth. The largest and fastest-growing sources
of air pollution in Pakistan over the past decade have been the automotive and industrial
sectors. During the period 2001–2013, the number of vehicles in Pakistan increased by
130% [12,13]. The city of Lahore alone accounts for 23–26% of extra carbon monoxide (CO)
emissions due to an inadequate and inefficient mass-transit system [14].

In Lahore and Islamabad, emissions from vehicles significantly contribute to the dete-
riorating air quality, highlighting the urgent need for interventions. The air pollution crisis
in Lahore is worsened by the involvement of 40% of the city’s 7 million registered vehicles,
which emit higher than permissible levels of hazardous air pollutants and contribute to
smog-related issues. The situation is exacerbated by traffic congestion and the operation
of heavy transport vehicles without road-worthiness certification [15]. It underscores the
critical need for a transition to green energy in the transportation sector. Leveraging green
transportation systems could substantially reduce air pollution and improve public health.
Green transportation, which includes electric vehicles, hybrid cars, biofuels, and effective
public transit systems, could substantially reduce air pollution and improve public health.
It also helps combat climate change by reducing emissions, conserving energy, and pro-
moting efficient resource use [16–18]. Pakistan was among the top 10 nations most hit
by extreme weather events from 1991 to 2010 [19]. Since 2010, Pakistan has experienced
numerous instances of intense heatwaves, torrential rains, and widespread floods. Hence,
it is important to explore the chemical composition of the atmosphere over Pakistan by
monitoring chemically active trace gases for understanding their impact on surface air
temperature, heat waves, and climate change.

Atmospheric pollution is mainly caused by higher concentrations of various trace gas
species including CO and oxides of nitrogen (NOx) and sulfur (SOx). The primary emissions
from anthropogenic sources are the trace gases such as CO, nitrogen dioxide (NO2), and
sulfur dioxide (SO2). CO is a hazardous air pollutant that negatively impacts air quality
and poses risks to all forms of life. While present in trace amounts, it can severely impair
oxygen supply in the body, leading to severe health problems which include drowsiness and
irritation in the eyes [20]. The main sources of CO include vehicular emissions, fossil fuel
combustion, industry, home heating, and vegetation burning, as well as natural sources like
forest fires and volcanoes [2]. NO2, generated from burning fossil fuels in transportation,
industry, and power generation, is another hazardous gas contributing to air pollution.
Exposure to NO2 can cause respiratory symptoms, reduced lung function, and increased
cardiovascular risks, and has led to millions of premature deaths globally [21,22]. Similarly,
SO2, generated by natural and human activities such as volcanic eruptions, fossil fuel
burning, and industrial operations, directly affects air quality and poses risks to human
health, ecosystems, and the environment. Pakistan’s heavy reliance on coal and industrial
activities has resulted in high SO2 emissions, exceeding WHO standards [23]. During the
COVID-19 pandemic, many cities experienced lockdown measures, resulting in reduced
travel, cutting pollution, fuel consumption, and emissions. Post-pandemic, promoting
sustainable options like cycling, electric vehicles, and public transport is crucial for climate
mitigation. Cities adopt low emissions zones, shared mobility, and innovative transport
for efficient, eco-friendly systems [24,25]. This situation closely resembled a green energy
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transportation scenario, providing valuable insights into the potential improvements in air
quality. Analyzing data from different time periods, including before, during, and after
the pandemic, is essential to assess the potential impact of adopting green transportation
systems [26]. The Pakistan Environmental Protection Agency (Pak-EPA) is attempting to
analyze the concentration of NO2 in a few Pakistani cities, along with other air quality
examinations, but frequent updates are needed to investigate its influence on climate
change. By leveraging data from the Sentinel-5P satellite, which measures air pollutants
such as NO2, CO, and SO2, researchers can obtain frequent, accurate, and comprehensive
information on the levels and distribution of these pollutants in urban areas [27]. This
research enables the evaluation of the effectiveness of green transportation systems in
reducing air pollution and its subsequent positive impact on public health. By accurately
predicting the impact of transitioning to green transportation systems, policymakers can
make informed decisions to prioritize sustainable transportation solutions and create
healthier and more livable cities for everyone. The main contributions of this study are
summarized as follows:

• Exploratory data analysis (EDA) is conducted on Sentinel-5p data to analyze the
effects of green energy transportation on AQI trends in Lahore and Islamabad.

• Machine learning (ML) and deep learning (DL) models are created to forecast future
air pollution levels to provide actionable insights and trends for policymakers to
mitigate the harmful effects of air pollution.

• Comparative analysis of the traditional LSTM and bidirectional LSTM model is per-
formed to predict concentrations of CO, NO2, and SO2. The bidirectional LSTM model
provided an improvement of 10% over the traditional LSTM.

2. Related Work

To effectively address the issue of air pollution and assess the usage of green energy
transportation in evaluating air quality, a comprehensive review of the relevant literature
was conducted. Monitoring air quality is vital for a sustainable environment, achieved
through various methods such as active/passive gas sampling, automatic point moni-
toring, photochemical/optical sensors, remote optical sensing, and imagery data. These
approaches provide a holistic understanding of pollution, enabling precise assessments
and targeted interventions. Combined with deep learning, these techniques offer a detailed
air quality view, helping policymakers in developing effective pollution control strategies.

In traditional approaches, the active and passive sampling methods involve collecting
samples of gases and vapors using pumps, sorbent tubes, or diffusion
techniques [28,29]. The other approach that was utilized by the US Environmental Protec-
tion Agency was automatic point monitoring to detect and calculate the concentration of
selected gases [30]. It provides continuous measurements and real-time data availability,
which helps to identify pollution hotspots and develop mitigation strategies.

Traditional air quality monitoring methods have limitations. Active sampling is
accurate but expensive, slow, and limited. Passive sampling is less sensitive, delayed,
and prone to interference. Automatic point monitoring is costly, fixed, and has technical
problems. Despite their usefulness, these methods should be combined with others for a
complete understanding of air quality.

Apart from traditional methods, sensor-based systems, like photochemical and op-
tical sensor systems, use light-sensitive sensors to detect pollutants in the air, offering
mobility and simultaneous measurement of multiple pollutants [30]. This is especially
useful for urban areas with diverse pollution sources. Another sensor-based approach
is remote optical monitoring, which employs electromagnetic spectrum measurements
to determine pollutant concentrations in real-time [31]. Space-based sensors also utilize
image-based monitoring with aerosol optical thickness for assessing air pollutants, using
various methods based on the application and available resources [32].

Air quality monitoring using Internet of Things (IoT) sensors allows real-time mon-
itoring of air quality parameters [33]. The Atmospheric Air Surveil System (AASS) is a
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transportable prototype that uses IoT sensors to monitor parameters like CO and CO2 in
outdoor environments. The AASS system utilizes microcontrollers, gas sensors, and GPS
to measure gas concentrations and transmit the processed data to a Data Acquisition unit
via MQTT and cloud services. The data are then stored in a remote server, which can be
accessed remotely. This cost-effective AASS system offers real-time air quality data for
analysis and decision-making.

The aforementioned techniques provide precise air quality measurements at a specific
site, but they are restricted by spatial and temporal constraints. To address this, remote
sensing techniques have emerged for broader regional and global air quality monitoring.
These methods encompass satellite-based sensing, airborne measurements, and mobile
ground-based monitoring [34]. Optical, radar, and LiDAR satellites offer high spatial
and temporal resolutions, and advanced satellite-based technologies have the potential to
provide highly accurate and comprehensive data than traditional ground-based monitoring
methods [35–37].

Recent improvements in satellite and aerial remote sensing technology have made
it possible to collect precise data on air pollution across vast areas [38–40]. This aids in
precise air quality mapping and trend tracking. Deep learning and machine learning
analyze these data for real-time monitoring and prediction; this is crucial for public health
in urban areas [38]. These techniques excel due to their capacity to efficiently manage
diverse data [39].

In recent years, there has been a growing interest in using machine learning and deep
learning techniques for air quality prediction and estimation. Lin et al. used a random
forest regression model to forecast PM2.5 and nitrate levels based on road site data [41].
The model showed strong predictive accuracy, gauged by the R-squared value. However,
precision depends on data quality and site conditions, potentially limiting applicability to
diverse locations.

Shafi et al. [42] utilized K-means clustering to detect abrupt changes in air quality.
The method successfully grouped data into clusters based on similarity, detecting
notable changes linked to weather and human activities. This highlights the K-means
clustering promise in crafting early warning systems to predict air quality shifts. These
techniques provide prompt action to counter the adverse effects of pollution on health
and the environment.

Choi et al. [43] employed affordable sensors and machine learning to monitor Seoul’s
air quality for urban planning. Their model effectively predicted pollutants, like PM2.5 and
NO2, using sensor data. The study underscores the value of budget-friendly sensor-based
monitoring and machine learning for the swift identification of pollution areas, providing
proactive solutions in air quality management and urban planning.

Li et al. [44] used a machine learning model to assess the impact of clean air actions
in improving air quality in Beijing on the basis of data from 2008 to 2017. The findings
revealed substantial decreases in pollutants including PM2.5, SO2, and NO2 due to these
actions. The study underscores the actions’ efficacy while underscoring the necessity for
ongoing endeavors to sustain and enhance air quality. Moreover, it showcases machine
learning’s utility in gauging the impact of environmental policies on air pollution.

Huang et al. [45] developed an accurate PM2.5 concentration prediction model using
remote sensing data and machine learning algorithms. The random forest algorithm
performed the best with an R-squared value of 0.80, RMSE of 6.62, and MAE of 4.58.
In another study, Banerjee et al. [46] investigated the potential relationship between air
pollution, economic growth, and COVID-19 mortality rates in India using machine learning
techniques. The study concluded that air pollution levels and economic growth were
significant predictors of COVID-19 mortality rates in India. Specifically, a 10 µg/m3

increase in PM2.5 concentrations was associated with a 9.4% rise in COVID-19 deaths,
while a 1% increase in gross domestic product (GDP) was linked to a 5.5% decrease in
COVID-19 deaths.
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Cosemans et al. [47] compared the performance of three machine learning algorithms
in predicting air pollutant concentrations at different locations across Europe. Random
forest and support vector regression outperformed both linear regression and regulariza-
tion. Researchers have also proposed a deep learning-based model based on air quality
and meteorological data to accurately identify the major sources of air pollution [45,48],
which can help policymakers take targeted actions to reduce emissions. Zhang et al. and
Zhou et al. [49,50] have developed deep learning-based approaches that utilize satellite re-
mote sensing data to identify the sources of particulate matter pollution with high accuracy.

Besides monitoring air quality, researchers have also attempted to estimate the con-
centration of pollutants and predict air quality based on measured data. Kow et al. [51]
proposed a new approach for air quality estimation using image data and deep learning
neural networks, achieving high accuracy in predicting AQI values in real time. Simi-
larly, Sharma et al. [52] reported a novel technique for forecasting PM10 concentrations in
the most polluted hotspots in Australia using satellite data and deep learning methods,
achieving high accuracy with a mean absolute error of less than 10. Another study by
Kurnaz et al. [53] predicted the concentrations of two air pollutants, SO2 and PM10, in the
city of Sakarya in Turkey, with high accuracy. Similarly, Mao et al. [54] have reported a deep
learning method for predicting air quality. In another study, the researchers proposed an
effective convolutional neural network (CNN) for visual understanding of transboundary
air pollution based on Himawari-8 satellite images [55]. The CNN-based model was shown
to accurately identify and classify different types of pollutants.

This [56] study presents a novel deep predictive model for accurately predicting
spatiotemporal PM2.5 in Los Angeles County using meteorological data, wildfire data,
remote-sensing satellite imagery, and ground-based sensor data. The model employs a
graph convolutional network (GCN) and a convolutional long short-term memory (Con-
vLSTM) to learn and predict spatiotemporal correlations in air pollution data. The model
achieves state-of-the-art accuracy in predicting hourly PM2.5 at seven sensor locations in
Los Angeles County. The root mean square error (RMSE) and normalized root mean square
error (NRMSE) decrease over time with later frames, but this is expected as the nature of
PM2.5 results in concentrations 24 h in the future being more correlated with 24 h in the
past as compared to concentrations 48 h in the future.

Das et al. [57] compared the performance of MLP, RNN, and LSTM models in predict-
ing air pollutants such as PM10 and SO2. The evaluation metrics used were MSE, RMSE,
MAE, and R2. The LSTM model outperformed the MLP and RNN models in terms of
accuracy. The study also compared the performance of the proposed model with existing
studies in the literature and found that the LSTM model predicted PM10 and SO2 pollutants
with high accuracy. The study provides valuable insights into the use of deep learning
models for air pollutant prediction.

In [58], multiple techniques for forecasting air pollution levels using statistical and
deep learning methods were used. The data were used from government-built air pollution
monitoring stations in Kolkata and evaluated the performance of different models based
on two performance indicators, RMSE and MAE. It is observed that Holt–Winter-based
forecasting models outperform for PM2.5, PM10, and SO2 time series, while deep learning-
based models, such as ConvLSTM and Bi-LSTM dominate for NO2 time series data.

Shin et al. [59] present a study on the use of an FCN-based deep learning regression
model for real-time indoor air quality monitoring. The dataset is preprocessed to reduce
skewness and convert the raw 1D dataset into 2D image input/output datasets, after
which the model is trained with various hyperparameters. The results show a decrease
in the average prediction error for the MAE and RMSE compared with a deep neural
network model.

LSTM and BiLSTM networks excel in air quality forecasting by capturing sequential
dependencies, handling missing data, and modeling complex temporal relationships. They
retain crucial information from past observations, considering weather and pollution
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factors, and enhance prediction by incorporating future insights. Optimizing these models
requires experimentation, considering data quality, features, and architecture [60].

Machine learning and deep learning offer advantages over traditional methods. They
handle large, irregular data, learn intricate patterns, and leverage remote sensing for precise
pollution source detection. These models inform policies, aid urban planning, and offer
cost-effective data-driven solutions for air quality management [61].

Tables 1 and 2 summarize the performances of various statistical machine learning
and deep learning models used for predicting air quality.

Table 1. An overview of air quality prediction studies using machine learning.

Study Model Advantages Disadvantages Results

Choi et al. [43] LR and RF

Maps urban air
quality using
mobile sampling
with low-cost
sensors

Limited to a
specific region
and type of
pollution

86.1–90.6%
Mean absolute
error (MAE)

Cosemans
et al. [47]

Linear
regression

Develops
Europe-wide
spatial models of
fine particles and
nitrogen dioxide

Limited to
Europe and
specific
pollutants

70.2–79.8%
Coefficient of
determination
(R2)

G.-Y.
Lin et al. [41] RF and XGBoost

Uses machine
learning to
predict PM2.5
and nitrate
concentrations

Limited to a
road site station 0.84–0.88 R2

J. Shafi and A.
Waheed [42] k-means

Detects abrupt
changes in air
quality using
k-means
clustering

Limited to
detecting abrupt
changes, not
predicting
concentrations

82-96% F1-score

Jin et al. [35] Random forest

Accurately
predicted PM2.5
and nitrate
concentrations
using long-term
data

Only focused on
one station

R2 = 0.819
(PM2.5)
R2 = 0.812
(nitrate)

Table 2. An overview of air quality prediction studies using deep learning.

Study Model Advantages Disadvantages Results

Huang et al. [45] CNN-LSTM

Predicts air
pollutants using
meteorological
data and
satellite-based
images

Requires
extensive data
and computing
resources

85.5–87.2%
RMSE

Liu et al. [33] LSTM and MLP
LSTM
Outperformed
MLP

Limited data R2 = 0.897,
MAE = 14.41

Muthukumar
et al. [56] LSTM and RNN

Comparison of
the performance
of different deep
learning models
for forecasting

The
performances
have not been
investigated for
all pollutants
except PM10

R2 = 0.86,
RMSE = 10.27
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Table 2. Cont.

Study Model Advantages Disadvantages Results

Middya,
et al. [58]

ConvLSTM and
Bi-LSTM

Comprehensive
analysis, optimal
model building,
and seasonal
variation
detection

Focuses only on
air pollutant-
specific optimal
model building
and does not
cover other
aspects of air
pollution.

RMSE = 30%
MAE = 22.5%

Shin et al. [59] FCN model

The dataset is
acquired
through
computational
simulation
under various
indoor
geometrical
conditions

Does not
provide a
detailed analysis
of the
computational
resources
required for the
FCN-based
model

MAE = 43.14%
RMSE = 34.77%

3. Methodology

The study was conducted in two major cities of Pakistan—Lahore and Islamabad. The
dataset for the study was based on atmospheric monitoring data collected by the Sentinel-
5P satellite from 2018–2021. The dataset was preprocessed, including the conversion of
L2 to L3 products, filtering for the study areas, interpolation, and outlier removal. The
data were converted from mole/m2 to the AQI standard unit. An exploratory data analysis
(EDA) was performed to analyze the AQI trends before, after, and during COVID-19 in both
cities. Two forecasting models were trained to predict future trends to support data-driven
policy interventions for improving AQI. Figure 1 illustrates the methodology followed in
this study.

Figure 1. Overview of the proposed methodology.
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3.1. Study Area

Air pollution is a serious problem for major population centers of Pakistan as it has
been ranked third among the countries with the highest levels of air pollution [62]. Lahore
and Islamabad, shown in Figure 2, are two major cities and neither is immune from the
curse of environmental pollution. Both cities are renowned for their cultural and historical
significance but they also suffer from air quality issues. Lahore is the second largest city and
the provincial capital of Punjab with a population of over 11 million people growing at an
annual rate of 3% since 1998, resulting in substantial urbanization and a growing reliance
on transportation [63]. This trend has led to significant problems with road congestion and
increased emissions in the area. According to the annual global survey conducted by IQAir,
a Swiss manufacturer of air purifiers, the city of Lahore experienced a significant rise in
its air pollution levels in 2022. The city has jumped more than 10 places to become the
world’s most polluted city. IQAir measures air quality by assessing the concentration of
harmful PM2.5 particles, which can damage the lungs. Lahore’s air quality deteriorated
from 86.5 micrograms of PM2.5 particles per cubic meter in 2021 to an alarming level of
97.4 micrograms per cubic meter in 2022.

Figure 2. Area of study in Pakistan.

The primary sources of pollution in Lahore comprise transportation, industries, agri-
culture (through crop residue burning), open waste burning, and inefficient fuel consump-
tion in the commercial and domestic sectors. Air pollution in Lahore is predominantly
caused by the transportation sector, accounting for a staggering 83% of total pollution.
This sector alone is responsible for 127 Gg of emissions. The majority of these emissions,
amounting to 104.76 Gg, are produced by two-stroke vehicles like motorcycles, scooters,
and auto-rickshaws. Motorcars, jeeps, and wagons contribute a further 16.34 Gg to the total
emissions. The primary pollutant emitted in Lahore is carbon monoxide, resulting from
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the incomplete combustion of fuels in mobile engines and other processes, as illustrated
in Figure 3.

Figure 3. Air pollution sources in Lahore [63].

Non-methane volatile organic compounds (NMVOCs) and nitrogen oxides (NOx)
are secondary major pollutants, largely emitted from the transport and industrial sectors.
Particulate matter, including total suspended particulates, PM2.5, and PM10, are emitted
in lower concentrations. Apart from transportation, emissions from the industrial (9%),
domestic (0.11%), and commercial (0.14%) sectors also contribute to the overall pollution
levels in Lahore. These sectors primarily use inefficient fuels, such as coal and diesel oil,
leading to emissions of pollutants. Additionally, the common practice of burning crop
residues (3.9%) and waste (3.6%) in the outskirts of Lahore also contributes significantly to
the city’s pollution. The resulting pollution levels in Lahore far exceed the recommended
limits, leading to a surge in respiratory ailments among the population. It has been
estimated that if air quality guidelines were adhered to, residents could potentially increase
their life expectancy by an average of 6.8 years [63].

Islamabad, the capital of Pakistan, is home to over 1.7 million people, with an aver-
age growth rate of 3.7%. This has resulted in rapid urbanization, causing an increase in
transportation [64]. While its air quality is generally better than in Lahore, it still faces
pollution challenges. In 2022, it was reported as unhealthy, with the average level of
hazardous air pollutant PM2.5 measured at 49.33 micrograms per cubic meter, exceed-
ing the permissible limit of 35 micrograms per cubic meter [65]. Vehicular emissions
are identified as the primary cause of particle pollution in Islamabad, leading to lev-
els as high as 41.63 micrograms per cubic meter [66]. Astonishingly, these emissions
contribute to a substantial 43% of the country’s overall air pollution. The usage of non-
compliant diesel fuel, containing hazardous sulfur dioxide, exacerbates the problem. It
is crucial to address this issue promptly by implementing stricter regulations on vehicle
emissions, promoting cleaner fuels, and ensuring compliance with environmental stan-
dards. Taking these measures will help improve air quality and safeguard public health in
Islamabad [67]. Emissions in both cities are primarily attributable to transportation activi-
ties, which led to the selection of these urban areas for an analysis of the trends in the AQI
during the COVID-19 pandemic. Concurrently, a prediction model was also developed. The
COVID-19 period, marked by frequent lockdowns, saw a significant reduction in intracity
transportation. Our study was devised to evaluate the impact of this reduction on air
quality. The change in AQI trends captured by the prediction model provides policymakers
with a measure of the effectiveness of their transition toward green energy policies.
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3.2. Data Acquisition and Preprocessing

There are various datasets available that provide information on air quality related to
CO, NO2, and SO2. One of the most commonly used datasets is the one provided by the
World AQI project, which collects and aggregates air quality data from different sources
worldwide. The World AQI project provides hourly data on various air pollutants and
aggregates these data into an overall air quality index that can be used to compare air quality
between different cities or regions. While the World AQI project provides a valuable source
of information on air quality, certain potential limitations must be considered when using
these data. The AQI data are compiled from various sources and are susceptible to gaps, in
terms of geographic coverage, data quality, lack of detail, and time lag. The AQI provides
a broad overview of air quality but typically lacks the level of detail needed for more
localized or in-depth analysis. Additionally, there could be a time difference between the
measurement of pollutants and their inclusion in the AQI data. Therefore, it is important to
be aware of these limitations and consider using additional sources of data and information
to supplement and verify the findings. Other datasets that provide information on air
quality related to these pollutants include those provided by national or regional air quality
monitoring networks. For example, in the United States, the Environmental Protection
Agency (EPA) provides data on air quality through its Air Quality System (AQS), covering
thousands of monitoring sites across the country. The measured data provided information
about various pollutants, including CO, NO2, and SO2. In addition to these datasets, there
are also satellite-based datasets that contain information on atmospheric pollutants such
as NO2 and SO2 on a global scale. For example, the Sentinel-5P mission, which is part
of the European Space Agency’s Copernicus program, provides high-resolution data on
common atmospheric pollutants, including CO, NO2, SO2, and O3. This dataset can be
used to monitor air quality on a global scale. Overall, these datasets play an important role
in helping scientists, policymakers, and the public to understand and address air quality
issues arising from hazardous pollutants like CO, NO2, and SO2.

To collect the data for our study, the Python API was used to query the Sentinel-5P
database, which contains atmospheric data collected by satellite. Incorporating Lahore
and Islamabad as pivotal points in the utilization of Sentinel-5P’s data can produce critical
knowledge. These cities in Pakistan confront significant air pollution levels, partly due
to industrial operations, traffic exhaust, and agricultural burning in surrounding loca-
tions. Therefore, they provide ideal scenarios for exploiting Sentinel-5P’s data collection
capabilities in the environmental and atmospheric monitoring sector. The robustness and
reliability of Sentinel-5P’s data, collected through the Tropospheric Monitoring Instrument
(TROPOMI), are key attributes. TROPOMI’s ability to monitor gases, such as CO, NO2,
and SO2, has proven consistently accurate, making the data highly reliable. Furthermore,
the global scientific community, environmental agencies, and government bodies place con-
siderable reliance on the data produced by Sentinel-5P. This extensive data collection can
significantly support local and national policymakers in making well-informed decisions
about environmental policies and mitigation strategies, underscoring the instrument’s
significant reliance and relevance. The API was programmed to retrieve data for the spe-
cific region of interest, which was defined by a GeoJSON file of Pakistan. GeoJSON is a
file format used to represent geographical data and is commonly employed in mapping
applications. By providing the GeoJSON file, the Python API was able to extract the data
for the cities of Lahore and Islamabad. The satellite collected data daily basis from 2017
to 2021 for the three pollutants of interest, NO2, CO, and SO2. However, monitoring data
for April 2018 onward is made public, and the same is used in this study. The data were
downloaded in ‘netcdf’ format, which is a standard format used for storing, manipulating,
and analysis of scientific data. The size of the dataset for SO2, NO2, and CO was 1651.15 GB,
771.26 GB, and 274.23 GB, respectively. The following data preprocessing steps were taken:

• Conversion from Level-2(L2) to Level-3(L3) Products: L2 products are the minimally
processed or unprocessed data that a satellite sensor has collected. These deliverables
often include measurements of particular variables with great spatial and temporal
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resolution, such as atmospheric composition. However, the accuracy and interpreta-
tion of the measurements may be impacted by noise, artifacts, or anomalies in the L2
data. The L2 data are transformed into L3 products using the HARP Python package
to address these limitations. Aggregating the L2 data over more expansive spatial
and temporal scales is implemented to reduce data noise and improve measurement
accuracy. The conversion of the L2 to L3 product aggregation procedure enables a
more thorough understanding of the atmospheric composition in the studied area.
L3 products offer a broader viewpoint and capture the qualities of the variables of
interest that have been averaged or aggregated. These tools help carry out national or
international assessments, capture trends, and explore long-term patterns.

• Filtering and conversion to CSV: The L3 data were filtered separately for Lahore and
Islamabad for each pollutant to isolate data relevant to the study area and eliminate
extraneous data points. The data were then converted from netcdf files to CSV files to
simplify data manipulation and facilitate further analysis.

• Checking for null values: The CSV files were examined for null values to identify
missing data points. It was observed that these missing values were clustered in
specific areas, suggesting that interpolation could be employed to estimate the miss-
ing values.

• Interpolation: Linear interpolation was performed to estimate the missing values
based on neighboring data points. This technique is commonly used to impute missing
data in scientific datasets and results in the creation of a complete dataset.

• Outlier removal: To ensure data quality, any outliers were removed by utilizing
GeoJSON files containing the geographical boundaries of Lahore and Islamabad.
This step filtered out data points located outside the city boundaries, improving the
accuracy and reliability of the dataset.

• Duplicate values: To address the issue of duplicate values, the pandas library provides
two key functions: duplicated() and drop_duplicates(). The duplicated() function was
employed to identify duplicate values in a DataFrame, while the drop_duplicates()
function was used to eliminate those duplicates.

• Conversion to AQI standard unit: The initial gas concentrations, measured in units of
moles per square meter (mol/m2), were converted to air quality index (AQI) standard
units. The mass concentrations of each gas in micrograms per cubic meter (µg m−3)
were calculated using the molecular weight and molar volume of air. The AQI val-
ues for each gas concentration were determined by comparing these to the relevant
AQI standards.

After performing the pre-processing steps on Sentinel-5p data, the clean data statistics
are shown in Table 3.

Table 3. Statistics of air quality after pre-processing Sentinel-5p data.

Lahore Islamabad

Pollutant Count Mean Std Count Mean Std

1 NO2 3,068,481 304.17 352.2 1,608,122 242.09 260.27

2 SO2 3,035,501 266.5 245.67 1,574,120 328.85 394.20

3 CO 3,036,501 319.84 126.07 1,583,159 220.8 89.16

It is important to note that the specific AQI standards may vary depending on the
location and regulations governing air quality monitoring.

3.3. Training of Machine/Deep Learning Models

Two machine learning models, random forest, and decision tree, as well as two deep
learning models, LSTM and bidirectional LSTM, are utilized to predict air quality. The
LSTM model, being a recurrent neural network (RNN) variant, is particularly well-suited
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for modeling sequential data, making it an optimal choice for analyzing time-series data.
On the other hand, random forest and decision tree models are well-known for their
ability to handle structured data and make accurate predictions in various domains. Each
model was trained using six input features (“latitude”, “longitude”, “year”, “month”,
“day”, and “hour”) and one output label (“respective gas”). Initially, the input features
consisted of longitude, latitude, and timestamp. However, to enhance the feature set and
improve the accuracy of the model, feature engineering was applied to the timestamp. This
resulted in the generation of four new features, namely year, month, day, and hour. These
additional features are crucial for both increasing the accuracy of the model and performing
Exploratory Data Analysis. The dataset is split into 80% for training and 20% for testing
with random shuffling. This approach ensures that the model learns from a variety of data
points during training, improving its ability to generalize and make accurate predictions
on unseen data. Random shuffling also helps in assessing the model’s performance by
providing an unbiased representation of the dataset for evaluation.

3.3.1. Decision Tree

The decision tree model is an effective machine-learning approach that enables the
division of the feature space into different and independent regions. It can effectively
represent non-linear correlations between these variables by using the predictor variables.
Decision tree models do have the propensity to overfit the data, which means they could
become overly specialized to the training dataset and have trouble generalizing successfully
to new data. To mitigate overfitting, k-folds cross-validation is used. Additionally, the
criterion parameter is set to mean squared error (MSE), which guides the decision tree’s
construction by minimizing the squared differences between predicted and actual values.
Also, the splitter parameter is set to “best”, which determines the best possible split point
at each node based on the chosen criterion. This encourages the model to make more
informed and accurate decisions during the tree-building process.

3.3.2. Random Forest

The random forest model is an ensemble model that combines multiple decision trees
to reduce overfitting, as shown in Figure 4. It can improve the performance of the decision
tree model by reducing its variance. We also performed k-fold cross-validation for each
model to obtain a more reliable estimate of the model’s performance. We used five-fold,
shuffled the data, and used MSE as a criterion. The mean of the MSE scores across all folds
was utilized to obtain the cross-validation MSE.

Figure 4. Architecture of the random forest model [68].
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3.3.3. Long Short-Term Memory (LSTM) Model

The LSTM regression model consists of one LSTM layer with 50 units and a dense
output layer with one unit (Figure 5). The LSTM layer uses the ReLU activation function
and has an input shape of (1, number of features). The output layer has no activation
function and one unit. The model is compiled using the Adam optimizer and the mean
squared error loss function. The mean absolute error is used as a metric to evaluate the
model’s performance during training. The LSTM layer has several parameters that can
be adjusted to optimize the model’s performance. The dropout and recurrent dropout
parameters are used to prevent overfitting by randomly dropping out some of the LSTM
layer’s output values during training. The return sequences and return state parameters
can be used to return the LSTM layer’s output sequences and final state, respectively. The
LSTM model is trained for 100 epochs with a batch size of 32. During training, the model’s
performance is evaluated on a validation set, and the MSE and mean absolute error (MAE)
are calculated for the testing set after training.

Figure 5. An overview of LSTM architecture.

3.3.4. Bidirectional LSTM

The bidirectional LSTM (Figures 6 and 7) regression model consists of one bidirectional
LSTM layer with 50 units and a dense output layer with one unit. Like the LSTM model,
the bidirectional LSTM layer uses the ReLU activation function and has an input shape
of (1, number of features). The output layer has no activation function and one unit. The
model is compiled using the Adam optimizer and the MSE loss function, with the mean
absolute error used as a metric to evaluate the model’s performance during training. The
bidirectional LSTM layer processes the input sequence in both forward and backward
directions, allowing the model to take into account both past and future information. This
improves the model’s performance compared to the LSTM model, especially for time-series
data with long-term dependencies. The bidirectional LSTM layer has the same parameters
as the LSTM layer, including the dropout and recurrent dropout, return sequences, and
return state. The model is trained for 100 epochs with a batch size of 32, and the MSE and
MAE are calculated for the testing set after training.

To summarize, this section has discussed the study area, dataset, and analytical tech-
niques used to predict air quality in Lahore and Islamabad based on remote sensing data
from the Sentinel-5P satellite. The prediction models employed include machine learning
and deep learning techniques such as random forest, decision tree, LSTM, and bidirec-
tional LSTM. The models are trained on preprocessed data and evaluated to predict air
quality parameters for the cities of interest. When it comes to air quality forecasting using
LSTM, it is essential to address the time-consuming calculations and stability concerns
to achieve efficient and accurate predictions. To tackle these challenges and optimize the
forecasting process, several strategies can be implemented. Firstly, reducing the num-
ber of LSTM layers or units can significantly improve computational efficiency without
sacrificing forecasting performance. By optimizing the architecture and finding the right
balance between complexity and accuracy, training and inference times can be reduced. In
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addition to reducing complexity, regularization techniques play a vital role in stabilizing
LSTM models. Applying dropout or recurrent dropout to the LSTM layers helps prevent
overfitting and enhances the generalization capability of the model. This ensures that the
LSTM network learns meaningful patterns from the air quality data and produces reliable
forecasts. To further improve stability, incorporating batch normalization into the LSTM
layers is beneficial. By normalizing the activations within each layer, batch normalization
helps stabilize the training process, leading to faster convergence and better overall model
stability. Addressing gradient explosion or vanishing is essential for LSTM models in air
quality forecasting. Implementing gradient clipping techniques prevents the gradients
from becoming too large or too small during backpropagation. This regularization tech-
nique ensures stable updates to the LSTM parameters, enabling more accurate and reliable
predictions. Considering the nature of air quality forecasting, which often involves long
sequences, truncated backpropagation through time (BPTT) can be employed. By breaking
down the input sequences into smaller subsequences, the memory requirements and com-
putation times are reduced. Although some long-term dependencies may be sacrificed, the
trade-off allows for stable and efficient training of LSTM models. Optimizing hardware and
software resources is also crucial for efficient air quality forecasting. Leveraging hardware
accelerators, such as GPUs or TPUs, can significantly speed up the calculations involved
in LSTM training and inference. Additionally, using optimized software frameworks like
TensorFlow or PyTorch allows for efficient utilization of parallel processing capabilities
and optimized implementations, further enhancing performance. By implementing these
strategies specifically in the context of air quality forecasting, researchers and practitioners
can effectively address the challenges of time-consuming calculations and stability con-
cerns associated with LSTM models. This leads to more efficient training and inference,
improved stability, and reliable forecasts, ultimately aiding in better decision-making and
management of air quality.

Figure 6. An overview of bidirectional LSTM architecture.
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Figure 7. Structure of bidirectional LSTM.

4. Results

The section presents the results of the study on air quality monitoring using machine
learning and deep learning techniques. The effectiveness of different models to predict air
quality levels is evaluated using commonly employed metrics such as MSE and MAE. The
results are then discussed in detail, including exploratory data analysis of seasonal trends
in air quality and the impact of COVID-19 on air pollution levels in Lahore and Islamabad.

4.1. Predicting Air Quality Levels Using Machine Learning and Deep Learning

MSE and MAE are used as evaluation metrics to evaluate the machine/deep learning
models. MSE measures the average squared difference between the predicted values and
the true values of a set of samples. MAE measures the average absolute difference between
the predicted values and the true values of a set of samples. The results of the decision tree
and random forest are computed for all three hazardous gases but for discussion purposes,
only the results for CO are shown in Figures 8 and 9, where it can be seen that both models
are overfitting. Overfitting is an undesirable phenomenon in machine learning when a
model is too complex, leading to high variance and low bias. In other words, the model
fits the training data too closely for training data, and as a result, it fails to generalize well
to new data. To overcome this problem the K-fold cross-validation is applied during the
model training. K-fold cross-validation is a widely used technique in machine learning
that helps to address the issue of overfitting. By dividing the data into K subsets or folds,
the model is trained on a different subset each time, allowing for more robust and accurate
estimates of the model’s performance on new data. This technique can also help to identify
potential sources of bias or variability in the data and model, enabling more informed
model selection and parameter tuning. The results are calculated for all the gasses and but
for the representation of results, only SO2 results are shown in Figures 10 and 11, where it
can be seen that the problem of overfitting is eliminated.
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Figure 8. CO decision tree results on 500 samples.

Figure 9. SO2 random forest results on 500 samples.

Figure 10. CO K-fold decision tree results on 500 samples.
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Figure 11. SO2 K-fold random forest results on 500 samples.

The LSTM and bidirectional LSTM models are utilized for forecasting the concen-
trations of NO2, SO2, and CO gases. However, in terms of presenting the results, the
discussion primarily focuses on the prediction of NO2, as illustrated in Figures 12 and 13,
respectively. It is evident from Figure 12 that the LSTM model provides actuate prediction
and adequately captures the underlying patterns and trends in the data.

Figure 12. NO2 LSTM prediction on 500 samples.

Figure 13. NO2 bidirectional LSTM prediction on 500 samples.
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The bidirectional LSTM results, shown in Figure 13, confirm that the model is effective
in accurately predicting air quality levels. The predicted values closely match the actual
values, indicating that the model has successfully captured the underlying patterns and
trends in the data. Moreover, the results obtained from bidirectional LSTM are improved as
compared to the results obtained from the standard LSTM model, indicating that bidirec-
tional LSTM can improve the accuracy of air quality predictions. The previously presented
figures display generalized learned patterns derived from a randomly shuffled dataset.
In contrast, Figure 14 represents the results of the LSTM model trained on a timestamp-
ordered, non-shuffled dataset. This methodological distinction enhances the accuracy of
predictions as it respects the temporal continuity of the data, thereby providing a more
precise forecast.

Figure 14. Prediction of NO2 levels using LSTM in the time period from 1 July 2021 to 31 December 2021.

Evaluation Metrics

The study used both machine learning and deep learning techniques for air quality
prediction. The machine learning models included decision tree and random forest, while
the deep learning models included LSTM and bidirectional LSTM. These models were
trained and tested on the pre-processed dataset using evaluation metrics, such as MSE
and MAE.

The results of the study using deep learning models are given in Tables 4 and 5. The
results indicate that the bidirectional LSTM outperformed the machine learning models
in predicting air pollution levels. The bidirectional LSTM model achieved, respectively,
an MSE of 0.41, 0.38, and 0.34 for NO2, SO2, and CO. As regards the MAE performance
metric, values of 0.41, 0.38, and 0.34 were obtained for NO2, SO2, and CO, respectively. This
indicates the high degree of accuracy of said bidirectional LSTM model in predicting air
pollution levels. The LSTM model also performed well, achieving an MSE of 0.50, 0.44, and
0.47; and an MAE of 0.48, 0.40, and 0.52 for NO2, SO2, and CO, respectively. In contrast,
the machine learning models, specifically the decision tree and random forest models,
provided reasonable predictions of air pollution levels but were not as accurate as the deep
learning models.
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Table 4. Comparison of LSTM and bidirectional LSTM models for predicting air pollutant concentra-
tions in Lahore.

LSTM Bidirectional LSTM

Pollutant MSE MAE MSE MAE

1 NO2 0.55 0.49 0.44 0.43

2 SO2 0.66 0.54 0.61 0.52

3 CO 0.34 0.41 0.26 0.37

Table 5. Comparison of LSTM and bidirectional LSTM models for predicting air pollutant concentra-
tions in Islamabad.

LSTM Bidirectional LSTM

Pollutant MSE MAE MSE MAE

1 NO2 0.50 0.48 0.41 0.43

2 SO2 0.44 0.40 0.38 0.39

3 CO 0.47 0.52 0.34 0.45

4.2. Exploratory Data Analysis (EDA)

After prepossessing the data, the EDA analysis is performed to summarize the main
characteristics of the dataset and gain a better understanding of the patterns and relation-
ships within the data.

4.2.1. Seasonal Comparison of AQI Trends

The calculated AQI levels of SO2 for Lahore and Islamabad are shown in Figures 15 and 16,
respectively. Similar patterns were found for seasonal AQI trends of NO2 and CO. The
AQI levels vary throughout the year due to various factors, such as weather conditions,
seasonal activities, and changes in human behavior. In Lahore, higher levels of NO2, SO2,
and CO were observed during the winter months (November to February) due to increased
usage of heating appliances and more significant vehicular traffic. During the summer
months (June to August), AQI levels were lower due to increased wind speeds and warmer
temperatures, which can help to disperse the pollutants.

Figure 15. Lahore SO2 seasonal AQI trends.
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Figure 16. Islamabad SO2 seasonal AQI trends.

4.2.2. AQI Trends before and after COVID-19 in Lahore and Islamabad

The COVID-19 pandemic had a significant impact on air quality in both cities. The
AQI results based on NO2 levels in Lahore and Islamabad are shown in Figures 17 and 18),
respectively. Similar results were obtained for SO2 and CO pollutants. Before the pandemic,
the AQI levels in Lahore and Islamabad were significantly higher, with raised levels of
SO2, NO2, and CO. However, during the COVID-19 lockdowns, the AQI levels dropped
significantly in both cities, with a considerable reduction in SO2, NO2, and CO levels.

Figure 17. Lahore NO2—after and before the COVID-19 AQI trend.

In Lahore, the SO2 levels dropped by 66%, NO2 levels dropped by 64%, and CO levels
dropped by 43% during the lockdown period. Similarly, in Islamabad, the SO2 levels
dropped by 64%, NO2 levels dropped by 57%, and CO levels dropped by 51% during the
lockdown period. After the lockdowns were lifted, the AQI levels started to increase again,
with SO2, NO2, and CO levels returning to their pre-pandemic levels by the end of 2020.
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Figure 18. Islamabad NO2—after and before the COVID-19 AQI trend.

4.3. Heatmap Visualization—A Conclusive Overview

In our air quality monitoring study, we utilized heatmap visualization to effectively
represent the spatial distribution of pollutant concentrations in Lahore and Islamabad. This
technique facilitates the identification of pollution hotspots and temporal patterns underly-
ing the raw data of the Sentinel-5P satellite that has been processed through deep learning
algorithms. We chose Tableau as our data visualization tool for generating heatmaps due
to its user-friendly interface, flexibility, and powerful mapping capabilities. The heatmap
visualizations are created by assigning a color gradient to the gas concentration values,
making it easy to distinguish between areas with high and low concentrations of the pollu-
tant. The AQI chart, depicted in Figure 19, illustrates the air quality index values offering a
visual representation of air pollution levels. The heatmaps of the NO2 gas for Lahore before,
during, and after the COVID-19 pandemic are shown in Figures 20, 21, and 22, respectively.
Similarly, Figures 23–25 show NO2 pollution patterns for Islamabad. Heatmaps generated
for other pollutants (SO2 and CO) showed similar patterns for both cities.

Figure 19. Air quality index chart [69].
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Figure 20. NO2 trend (Lahore)—before COVID-19.

Figure 21. NO2 trend (Lahore)—during COVID-19.

Figure 22. NO2 trend (Lahore)—after COVID-19.
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Figure 23. NO2 trend (Islamabad)—before COVID-19.

Figure 24. NO2 trend (Islamabad)—during COVID-19.

Figure 25. NO2 trend (Islamabad)—after COVID-19.
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In Lahore, a distinct variation in air quality visualizations can be observed as demon-
strated by the AQI Index, which transitioned from “Very Poor” and “Severe” categories
(pre-COVID-19—Figure 20) to predominantly “Poor” (during COVID-19—Figure 21). This
change underscores the improvement in air quality during the COVID-19 pandemic owing
to less traffic and industrial activity. During the post-pandemic period (Figure 22), the AQI
reverted to “Severe” and “Very Poor” classifications, which suggests a significant influence
of human activities on the city’s air quality. Consequently, there is an urgent need for policy
development aimed at reducing industrial emissions and traffic related to air pollution.

A comparable trend was observed in Islamabad’s air quality, where a slight im-
provement was noted within the “Severe” category during the COVID-19 pandemic
(Figures 23 and 24). This subtle improvement may be attributed to the implementation of
targeted lockdown measures. However, during the post-pandemic (Figure 25), the AQI in-
dex values not only reverted but also deteriorated further. This observation emphasizes the
necessity to maintain stringent emission standards for both industrial and transportation
sectors, particularly in light of increasing population growth. Based on these observations,
some action points for policy-making are discussed in Section 5.

The exploratory data analysis presented in this section provides valuable insights into
the seasonal trends in air quality and the impact of external factors such as COVID-19 on
air pollution levels. The study confirms a significant decrease in air pollution levels during
the COVID-19 lockdown, highlighting the potential of reducing emissions to improve
air quality. Overall, the findings of the study demonstrate the potential of advanced
techniques such as machine learning and deep learning for more accurate and efficient
air quality monitoring. The evaluation metrics used in this study, such as MSE and MAE,
provide a quantitative assessment of the model’s accuracy, making it easier to compare
the effectiveness of different air quality monitoring approaches. The use of deep learning
models, specifically bidirectional LSTM, can provide highly accurate predictions of air
pollution levels, enabling effective air quality management strategies. The study’s findings
can assist policymakers and stakeholders in developing strategies to reduce air pollution
and improve public health.

5. Discussion

Policy development plays a vital role in addressing the issue of traffic-related air
pollution, which is crucial for the long-term improvement of air quality in urban areas.
Pollution data representation (Figures 20–25) can be an effective tool to quickly grasp the
extent of the problem and initiate meaningful interventions. Figure 26 visually depicts the
noticeable impact of lockdown measures on air quality improvement in both cities. The
population of Islamabad is approximately 15.45% of the population of Lahore. As expected,
due to its larger population Lahore exhibits a worse average AQI than Islamabad. When
examining the average AQI in the Figure, Lahore exhibits a value of 333.5, while Islamabad
demonstrates a lower average AQI of 241. Table 6 displays the lockdown time periods in
Pakistan. From Figure 26 it is evident that the implementation of lockdown measures led
to an improvement in air quality. Indirectly this can be interpreted as potential benefits in
terms of improved AQI if cities adopt green transportation systems. The observed improve-
ment in the AQI during the COVID-19 lockdowns confirms the substantial contribution
of the transportation system to emissions. This finding underscores the importance of
addressing transportation-related factors to improve air quality. By utilizing our predictive
model, policymakers can assess the effectiveness of their initiatives in enhancing the AQI
in both cities.
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Figure 26. Air quality improvement and decrement analysis during COVID-19 lockdowns and
open-ups.

Table 6. Lockdowns Dates in 2020 and 2021.

Year Dates Details

2020 23 March–14 April
Nationwide lockdown with the closure of non-essential
businesses and public places, ban on public gatherings and
flights [70].

2020 16 June–1 July Smart lockdown in COVID-19 hotspots in seven cities, with
restriction of movement and essential services only [71].

2020 20 November–31 December
New restrictions with a ban on indoor weddings and din-
ing, closure of cinemas, theaters, and shrines, and a limit
on public gatherings and office staff [70].

2021 15 March–11 April Spring break for schools in seven cities, and ban on all types
of gatherings [70].

2021 8 May–15 May
Complete lockdown in Punjab with the closure of markets,
malls, transport, and tourist spots, and only grocery stores,
pharmacies, and vaccination centers open [70].

2021 30 July–9 August
Partial lockdown in Sindh due to the Delta variant, affecting
intercity transport and flights between Karachi, Lahore, and
Islamabad [70].

2021 3 August–12 September
Eased restrictions in 15 districts of Punjab and Islamabad,
allowing indoor dining, cinemas, theaters, contact sports,
festivals, and full office staff for vaccinated people [72].

To formulate effective policies for addressing traffic-related air pollution, several
potential approaches can be considered:

1. Promoting public transportation: Encouraging the use of public transportation
through the development of efficient, accessible, and affordable transit systems can
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help reduce the number of private vehicles on the road, subsequently diminishing
traffic-related pollution.

2. Implementing vehicle emission standards: Introducing stringent vehicle emission
standards can promote cleaner and more efficient technologies in the automotive
sector. Regular inspection and maintenance programs can ensure vehicles on the road
comply with these regulations.

3. Traffic management: Developing intelligent traffic management systems can help
reduce congestion and optimize the flow of traffic, thereby minimizing emissions
from idling vehicles.

4. Encouraging non-motorized transport: Investing in infrastructure for cycling and
walking can promote healthier and more sustainable modes of transportation, result-
ing in reduced vehicular emissions.

5. Electric vehicle adoption: Encouraging the adoption of electric vehicles (EVs) through
incentives, infrastructure development, and public awareness campaigns can help
replace conventional vehicles, leading to a reduction in traffic-generated air pollution.

6. Carpooling and ridesharing: Promoting carpooling and ridesharing options can
help reduce the number of single-occupancy vehicles on the road, resulting in lower
overall emissions.

7. Urban planning and land use policies: Integrating air quality considerations into
urban planning and land use policies can help reduce exposure to traffic-related
air pollution by concentrating development around public transportation hubs and
creating buffer zones between major roadways and residential areas.

8. Transitioning to cleaner energy sources: Encouraging industries to shift from fossil
fuels to cleaner energy sources, such as renewable sources, can significantly reduce
air pollution generated by industrial processes.

9. Waste management and pollution control: Implementing effective waste manage-
ment practices and pollution control technologies can help industries minimize the
release of pollutants into the air.

10. Industrial zoning and land use policies: Integrating air quality considerations into
industrial zoning and land use policies can help reduce exposure to industrial air
pollution by creating buffer zones between industrial facilities and residential areas.
By implementing these policy measures and fostering a collaborative approach among
government agencies, industry stakeholders, and the general public, traffic-related
air pollution can be significantly reduced, leading to improved air quality and pub-
lic health.

6. Conclusions and Future Work

This research endeavor focused on investigating the potential of green energy trans-
portation systems to significantly enhance air quality in the urban areas of Islamabad
and Lahore. To accomplish this, a thorough exploratory data analysis was conducted to
assess the feasibility of implementing such systems. Additionally, predictive models were
trained and validated to accurately forecast the trends in AQI. Remote sensing data from
Sentinel-5P were utilized and machine learning and deep learning models were deployed,
such as decision trees, random forests, LSTM, and bidirectional LSTM, to predict pollutant
levels. The models exhibited high efficacy, with the trained LSTM model achieving an MSE
of 0.50, 0.44, and 0.47 for NO2, SO2, and CO, respectively, in Islamabad. The MSE results
improved with the trained Bi-LSTM model to 0.41, 0.38, and 0.34 for the same pollutants.
In Lahore, the LSTM model produced an MSE of 0.55, 0.66, and 0.34, while the Bi-LSTM
model achieved 0.44, 0.61, and 0.26. The findings present substantial evidence that transi-
tioning to green transportation could significantly lessen urban air pollution. Consequently,
this underlines the urgent need for a policy shift toward sustainable transportation. The
developed predictive models can help policymakers understand the potential impacts of
green energy transition efforts on air quality. Nonetheless, it is essential to combine the
trained models with other metrics, such as renewable energy usage and specific pollutant
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reductions, given the multi-factorial nature of AQI and the varying reliability of predictive
models. In the future, the integration of data from various sources will be explored, such as
moderate resolution imaging spectroradiometer (MODIS) or cloud–aerosol lidar and in-
frared pathfinder satellite observation (CALIPSO) satellites, along with existing on-ground
monitoring devices. This could generate a more diverse dataset, potentially leading to
improved air quality forecasting and a broader understanding of air quality trends. The
inclusion of other air pollutants—like ground ozone and particulate matter into predictive
models—will further widen the scope of air quality analysis. This comprehensive approach
is vital for improving data quality and achieving a holistic understanding of atmospheric
conditions. To facilitate this, machine learning models will need to be fine-tuned with a
diverse array of parameters that influence atmospheric processes. These models could
incorporate features representing influential factors, like El Niño or the Schwabe cycle.
Furthermore, the deployment of upscaling or downscaling techniques will play a crucial
role in mitigating disparities in spatial resolution among different datasets. Striking a
balance between preserving fine-grained details and adjusting resolution will be key in
enabling localized predictions. Additionally, developing reporting and monitoring solu-
tions for relevant government bodies and environmental agencies based on the trained
models influence decisions around green energy resource management. A geographical
expansion of the analysis to other major cities of Pakistan may provide a more holistic
view of the country’s air quality dynamics and regional variations. This comprehensive
approach will better illustrate the immediate and long-term benefits of transitioning to
green energy transportation systems.
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