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Abstract: In asset management for energy portfolios, quantitative methodologies are typically em-
ployed. In Brazil, the NEWAVE computational model is universally used to generate scenarios of
hydraulic production and future prices, which result in revenue distributions. These distributions are
then used to estimate the portfolio’s revenue and assess its risk. Although this is a well-established
analysis, it has some shortcomings that are not always considered. The validity of the revenue series
constructed by NEWAVE, especially in long-term analysis, is a real problem for agents concerning the
acquisition of assets such as power plants. Another issue is the disregard for other objectives that are
important for the operationality of the management task and are often ignored, such as operational
risk. To address these limitations, this work combines the areas of multicriteria decision making
under uncertainty and risk management and presents a methodology for evaluating the acquisition
of long-term energy assets, as well as a practical application of the proposed method. Investment
alternatives are evaluated in multiple developed scenarios, so it is possible to measure how robust a
given option is. By analyzing several scenarios simultaneously, a larger region of uncertainties can be
covered, and therefore, decision making becomes more secure. The proposed methodology includes
six objectives, designed to address a wider range of stakeholder needs. This approach is applied to
an illustrative portfolio, producing results that allow for a more comprehensive understanding of
decision attributes. Therefore, this work not only addresses the current limitations in the field but
also adds an original contribution by considering simultaneously several scenarios and integrating
multiple objectives in a robust and secure decision-making framework.

Keywords: energy investments; energy trade; risk management; long-term planning; multicriteria
decision making

1. Introduction

Electric power is a commodity with high volatility and uncertainty in its price. With
the evolution of energy markets, the possibility was created for market agents to freely
trade this commodity. This fact makes markets more dynamic and competitive [1,2]. With
the changes in the electric sector and advances in opening the energy market, which led to
an increase in the number of transactions, agents realized that efficient risk management is
essential for the healthy performance of this activity [3].

Risk analysis is strategically important as it is necessary to identify factors that will
influence the financial return of an investment [4]. The acquisition of new energy assets
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by a generating agent cannot be decided solely based on their costs, whether investment
or generation, as it is an activity with long-term impacts. During decision making about a
change in the portfolio, risks of different natures are to be considered [5–7].

To define a portfolio, market participants adhere to two objective functions: maximiz-
ing the expected net revenue of the portfolio (E[NPV]) and maximizing revenue in the
worst scenarios (written through the conditional value at risk (CVaR)) [8,9]. The use of
revenue at risk (RaR) as an operational limit is also common, in an attempt to control the
size of revenue dispersion. However, other ways of measuring risk could be used, such as
the lower partial moments used in [10] or the cash flow at risk approach presented in [6].

An important point in decision making under conditions of uncertainty is the absence
of optimal solutions (regardless of whether the problem is monocriteria or multicriteria):
the solution optimal for one scenario is not optimal for another scenario. So, what is a
decision under conditions of uncertainty? The solution under conditions of uncertainty is a
robust (or non-dominated) solution, which permits one to attend any scenario in the best
way [11]. How is it possible to find a robust solution? The discipline of Operations Research
cannot help her. It is based on the concept of existing optimal solutions. All approaches,
methods and strategies of Operations Research are directed at obtaining optimal solutions,
which do not exist. Considering this, a strategy applied in this work is directed at finding
the worst solutions, which are dominated by other solutions. By cutting off the worst
solutions and applying any type of preference information, it is possible to reduce decision
uncertainty regions.

This paper proposes an evolution of a methodological inheritance for the selection
of energy portfolios. The Brazilian energy market operates and is oriented towards a
periodic autoregressive model used by the National System Operator for its control and
operation [12]. In turn, other market participants also use this tool for their commercial
and operational risk management. However, due to the characteristics of the sector, the
price and generation forecasts returned by this system are sensitive to initial conditions
and climate forecasts. This sensitivity can influence the accuracy of the model’s result, and
relying on a single forecast may not be sufficient for decision making.

Therefore, the objective of this work is to use the decision-making techniques proposed
in [11,13] for the construction of portfolios and their analysis in multiple scenarios. To
achieve this, the performance of an agent’s portfolio in different constructed scenarios
was evaluated. This performance is assessed by applying the 〈X, F〉 decision-making
model [11,13] using the functions of expected net present value, CVaR, and revenue at
risk, which are already used by the market. This article also proposes the use of new
objective functions—insurance index (InS), alternative synergy with the current portfolio
and operational risks—in addition to the classical objective functions for making decisions
on energy portfolios. By stressing the cases and using decision-making methodologies, it is
possible to construct a robust portfolio for the company’s position.

Characterizing the originality and contribution of this work, it is necessary to stress
that the majority of methods related to energy trade and portfolio management are based
on the probabilistic approach [14]. However, it is not possible to talk about the future and
construct the future based on past information and trends, at least for long-term planning
(as evident from events such as the global financial crisis of 2008 and the COVID pandemic
in 2020). Considering this, in the present work, we try to use the possibilistic approach,
which consists in constructing and using representative combinations of initial data, states
of nature, or scenarios. This work proposes the use of six objective functions, designed
specifically to address the unique demands of agents engaged in asset acquisition during
the process of energy portfolio management.

The paper is structured as follows. Section 2 presents a review of correlated works and
theoretical references. Section 3 describes the proposed method and objective functions.
Section 4 presents the characteristics of the problem, the problem formulation, the initial
data, and the evaluated alternatives. The results of this paper are illustrated by considering
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a case study given in Section 5. Finally, in Section 6, the main conclusions of this study
are presented.

2. Theoretical Reference
2.1. Private Investments in Energy

In the context of energy market operations, companies buy and sell energy to manage
their energy balance over time and ensure their operational stability while seeking the
lowest possible cost. To improve the way they perform this task, companies have started
applying financial risk management models and began trading energy based on a multicri-
teria approach, considering revenues and market risks directly in the construction of their
energy portfolios.

Considering that this work, from a practical application perspective, is dedicated to the
risk management of energy portfolios, it is necessary to indicate the results of [2,3,5,6]. These
works can be considered as the initial theoretical bases of the discussion of the problem
of risk management in energy portfolios, which continues today. These works present
the reason why energy prices are volatile parameters and discuss financial engineering
approaches to measuring risks in the energy market.

The results presented in [2] addressed the modeling of the risk metric value at risk
(VaR). The authors of [2] explain how the methodology should be used, presenting re-
quirements such as return forecasts. The VaR metric is also addressed in [5], as well as
CVaR and other metrics. It exposes some examples and comparisons of results from the
used methods. In [6], different risk metrics are presented, and how market risks can be
measured and managed using real options models and stochastic optimization techniques
is explored. Moreover, in [3], there is a discussion about how energy prices can fluctuate
and the associated risks when pricing and hedging electricity derivatives.

Regarding trading, in general, agents seek commercial strategies that contemplate
seasonal productions of each source at each period of the year, in order to offer the best
negotiation. The work of Camargo et al. [15] deals with the management of energy trading
contracts through the formation of portfolios composed of renewable energy sources,
from the point of view of the generator, consumer, and trader. From the generator’s
perspective, this work analyzes risk management policies defined based on the periodic
accounting of CVaR and their influence on contracting strategies. Additionally, this work
explores how Swap contracts are used to provide security for parties during times when
the short-term market is vulnerable, given the conditions of purchase and sale prices, the
hydraulic generator’s contractual balance, the agent’s risk aversion, and the projections of
the settlement price for differences (Preço de Liquidação das Diferenças (PLD)) and generation
scaling factor (GSF) in the planning horizon.

To define these projections in the Brazilian market, agents use a computational model
called NEWAVE. However, since it is a tool undergoing constant changes, using it as
the only reference in decision making can be inadequate [12]. The fact that the electrical
system undergoes constant regulatory evolutions and the use of new technologies can also
invalidate these projections in the long term [16].

In order to address the limitations of conventional risk assessment methods, the work
of Ilbahar et al. [17] incorporates the subjective judgment of decision makers to map
uncertainties in the risk factors of renewable energy projects. Overall, the paper presents a
new and comprehensive approach to assessing risks in renewable energy investments that
overcomes the limitations of traditional methods. However, the proposed approach may
require a higher level of expertise and effort in data collection and analysis, which may
limit its practical application in some contexts.

Another work dealing with decision making in energy investments is [18]. This work
proposes an approach that combines a fuzzy analytical hierarchy process (FAHP) and a
technique for order preference by similarity to the ideal solution (TOPSIS) to assess the
suitability of new potential services in the renewable energy sector. The challenges and
complexities associated with the process of developing new services in the renewable
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energy sector are also discussed, including technological uncertainty and the need for
collaboration among stakeholders.

On the same path, the authors of [19] propose a stochastic decision support model
for renewable energy investments in Brazil that considers expected returns and CVaR as
objective functions and NEWAVE output data for scenario creation. The study reveals that
the risk associated with intermittent sources can be managed through CVaR assessments,
although the level of the decision maker’s risk aversion significantly influences the com-
pany’s market position. The authors found that a diversified firm’s asset base, along with
the complementary nature of generation sources, can significantly reduce the financial risks
of the investor’s portfolio. These results showed that the decision of a new investment
must consider the current portfolio of the company.

Recent studies discussing multiobjective decision making in energy trading also
include works [20,21]. The authors of [20] propose a hybrid trading mechanism that
operates on multiple time scales, taking into account the transmission speeds and limits
of various energy sources, while developing a strategy based on the Markov decision
process. On the other hand, the authors of [21] explore energy trading strategies in a
residential energy system. Although both studies present strategies that improve energy
costs for the involved agents, these studies tend to overlook other needs of the agents,
thereby compromising the construction of a robust portfolio. Additionally, they focus on
short-term analysis, which may limit the comprehensiveness and real-world applicability
of their strategies.

When making long-term decisions, it is essential to consider the uncertainty and
variability of the future. This is where possibilistic information becomes crucial. Unlike
probabilistic information, which relies on statistical analysis and provides the likelihood
of certain outcomes occurring, possibilistic information considers the uncertainty of the
future and focuses on the range of possible outcomes without assigning probabilities [11].
This is necessary since the future is constantly evolving, with regulatory, technological, and
other changes constantly altering the range of possible outcomes, and is what makes this
work different from those mentioned above. Therefore, decision makers should be aware
that probabilities can quickly become outdated and should be prepared to adapt their plans
accordingly. In this sense, a possibilistic view of decision making, focusing on the range
of possible outcomes instead of assigning probabilities, may be more reliable in the long
term [22].

According to [23], to account for the revenue of an energy portfolio, let W be the set of
energy assets. It follows that xi,t ∈ W is the volume resulting from the purchase (or sale,
if negative) of an energy asset i in period t. Therefore, the result (revenue or expense) of
trading an energy asset can be described as follows:

$E
t (xt) = ht

(
C

∑
c=1

pc,tvc,t +
I

∑
i=1

pi,txi,t

)
, ∀i ∈Wc, (1)

where ht is the number of hours within period t, Wc is the set of assets that are energy
contracts, C is the total number of contracts, I is the total number of assets of a certain type,
v is the volume of energy bought/sold already existing in the portfolio, and p is the price
of the contract/asset.

The operation and maintenance cost of the agent’s assets can be described as:

$M
t,s(xt) = ht

I

∑
i=1

(−θi(gi,t,s + xi,t)), ∀i ∈W ∧ ¬Wc, (2)

where θi is the operation and maintenance cost of the plant, modeled by a constant whose
unit is expressed in R$/MWh, and gi,t,s is the volume of energy existing in the portfolio.

The revenue, or expense, resulting from energy exposed to the spot market can be
described as:
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$P
t,s(xt) = htPLDt,sξt,s(xt), (3)

where the energy exposure to the short-term market is calculated as follows:

ξt,s(xt) =
I

∑
i=1

γt,s · xi,t +
I

∑
i=1

g̃i, t, s + V̂t, s− V̌t,s. (4)

In (4), γt,s equals 1 for all assets, except for hydraulics, participating in the MRE, since
γ is the generation scaling factor (GSF). The g̃i,t,s is the adjusted physical guarantee of
the agent, if the asset is hydraulic plants participating in the MRE, since in this case, the
resource considered for the plant is its physical guarantee multiplied by the GSF factor.
The physical guarantee value, in general, defines the maximum amount of energy that the
project can trade [23].

The total volumes resulting from energy purchase or sale contracts are represented by
the terms V̂t,s and V̌t,s, respectively. In other words, the portion that composes the exposure
result consists of the balance value between the resource and the requirement.

Therefore, the total revenue of an agent with multiple assets of different types can be
defined by the following equation:

$t,s(xt) = $E
t (xt) + $M

t,s(xt) + $P
t,s(xt). (5)

Since this is a long-term investment evaluation approach, seasonality and energy mod-
ulation, practices used by the Brazilian market agents for portfolio operation in monthly
and daily time frames, will not be considered.

2.2. Generalization of the Classical Approach to Dealing with Information Uncertainty

The classical approach [24–26] for dealing with information uncertainty is based on
the assumption that the analysis is carried out for a given number K of solution alternatives
Xk, k = 1, . . . , K and a given number J of representative combinations of initial data (the
states of nature or scenarios) Yj, j = 1, . . . , J, which define the corresponding payoff matrix.
The payoff matrix, presented in Table 1 (the first six columns), reflects the effects (or
consequences) of an action Xk for the corresponding state of nature.

Table 1. Payoff matrix with characteristics estimates.

Y1 ... Yj ... YJ Fmin(Xk) Fmax(Xk) F̄(Xk) Rmax(Xk)

X1 F(X1, Y1) ... F(X1, Yj) ... F(X1, YJ) Fmin(X1) Fmax(X1) F̄(X1) Rmax(X1)

... ... ... ... ... ... ... ... ... ...

Xk F(Xk, Y1) ... F(Xk, Yj) ... F(Xk, YJ) Fmin(Xk) Fmax(Xk) F̄(Xk) Rmax(Xk)

... ... ... ... ... ... ... ... ... ...

XK F(XK , Y1) ... F(XK , Yj) ... F(XK , YJ) Fmin(XK) Fmax(XK) F̄(XK) Rmax(XK)

Source: [22].

The analysis of payoff matrices and the choice of rational solution alternatives are
based on the use of choice criteria [24–26]. The application of the choice criteria of Wald,
Laplace, Savage, and Hurwicz, which are of a general nature, is discussed next. There
are other choice criteria, for example, Bayes, maximum probability, minimum dispersion,
maximum measure of Bayesian sets, maximum integral power, etc. [27,28]. However, these
criteria assume certain informational situations about the states of nature.

To better understand the use of the criteria of Wald, Laplace, Savage, and Hurwicz,
Table 1 includes the following characteristics estimates for a solution alternative:
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• The minimum level of objective function:

Fmin(Xk) = min
1≤j≤J

F(Xk, Yj), (6)

which is the most optimistic estimate if the objective function is to be minimized or
the most pessimistic estimate if the objective function is to be maximized;

• The maximum level of objective function:

Fmax(Xk) = max
1≤j≤J

F(Xk, Yj), (7)

which is the most optimistic estimate for the maximized objective function or the most
pessimistic estimate if the objective function is to be minimized;

• The average level of objective function:

F̄(Xk) =
1
J

J

∑
j=1

F(Xk, Yj); (8)

• The maximum level of regret:

Rmax(Xk) = max
1≤j≤J

R(Xk, Yj), (9)

where R
(
Xk, Yj

)
is an excess of expenses that occur under the combination of the

state of nature Yj and the choice of the solution alternative Xk instead of the solution
alternative that is locally optimal for the given Yj.

To determine the regrets R(Xk, Yj), it is necessary to define the minimum value of the
objective function for each combination of the state of nature:

Fmin(Yj) = min
1≤k≤K

F(Xk, Yj). (10)

On the other hand, if the objective function is to be maximized, it is necessary to define
its maximum value for each combination of the state of nature (for each column of the
payoff matrix):

Fmax(Yj) = max
1≤k≤K

F(Xk, Yj). (11)

The regret for any alternative solution Xk and any state of nature Yj can be assessed as:

R(Xk, Yj) = F(Xk, Yj)− Fmin(Yj), (12)

if the objective function is to be minimized, or

R(Xk, Yj) = Fmax(Yj)− F(Xk, Yj), (13)

if the objective function is to be maximized.
The choice criteria, based on the use of characteristic estimates, are represented

as (14)–(17) under the assumption that the objective function is to be minimized. The
Wald choice criterion uses the estimate Fmax(Xk) and allows choosing the solution alterna-
tives XW , for which the estimate is minimum:

min
1≤k≤K

Fmax(Xk) = min
1≤k≤K

max
1≤j≤J

F(Xk, Yj). (14)

The use of this criterion generates solution alternatives, assuming the most unfavorable
combination of initial data. It ensures that the level of the objective function is not greater
than a certain value under any possible future conditions. On the other hand, the focus
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on the most unfavorable combination of initial data is extremely cautious (pessimistic or
conservative) [26].

The Laplace choice criterion, F̄(Xk), uses the estimate (8) and is aimed at choosing the
solution alternatives XL, for which the estimate is minimum:

min
1≤k≤K

F̄(Xk) = min
1≤k≤K

1
J

J

∑
j=1

F(Xk, Yj). (15)

This criterion corresponds to the principle of “insufficient reason” [26], that is, the
assumption that we have no basis for distinguishing a particular combination of initial
data. Therefore, it is necessary to act as if they are equally likely, which is a disadvantage.
However, the average score is sufficiently important.

The Savage choice criterion is associated with the use of the estimate Rmax(Xk) and
allows choosing the solution alternatives XS, for which the estimate is minimum:

min
1≤k≤K

Rmax(Xk) = min
1≤k≤K

max
1≤j≤J

R(Xk, Yj). (16)

As in the case of the Wald choice criterion, the use of Equation (16) is based on the
minmax principle. Therefore, the Savage choice criterion can also be considered conser-
vative. However, the experience of [26] shows that the recommendations based on the
application of Equation (16) can be inconsistent with the decisions obtained with the use of
Equation (14). Operating with values of Rmax(Xk), we obtain a slightly different assessment
of the situation, which could lead to more “daring” (less conservative) recommendations.

Finally, the Hurwicz choice criterion uses a convex combination of Fmax(Xk) and
Fmin(Xk) and allows choosing the solution alternatives XH that produce the minimum for:

min
1≤k≤K

(
βFmax(Xk) + (1− β)Fmin(Xk)

)
= min

1≤k≤K

(
β max

1≤j≤J
F(Xk, Yj) + (1− β) min

1≤j≤J
F(Xk, Yj)

)
, (17)

where β ∈ [0, 1] is the “pessimism–optimism” index whose magnitude is defined by the
decision maker. If β = 1, the Hurwicz choice criterion is transformed into the Wald choice
criterion, and if β = 0, Equation (17) is transformed into the criterion of “extreme optimism”
(minmin) for which the combination of initial data is most favorable. The author of [26]
recommends choosing a range of 0.5 < β < 1.

The choice criteria discussed above have found widespread practical applications, as
in [26,29] in both mono-objective and multiobjective problems.

The definition of the solution alternatives can be based on applying the modifica-
tion [30] of the Bellman–Zadeh approach to decision making in a fuzzy environment [31].
This approach is used for solving multiobjective problems for each scenario, with the
modification providing constructive lines for obtaining harmonious solutions to such
problems [32]. These solution alternatives, also referred to as locally optimal solution
alternatives, serve as the basis for constructing the payoff matrices. Nonetheless, in some
instances, the decision makers themselves may also propose solutions for constructing
these matrices, such as in this paper.

The generalization of the classical approach to dealing with information
uncertainty [11,32,33] is associated with the analysis of the problems defined by Equa-
tions (14)–(17) for a given objective function in an environment with multiple states of
nature Yj, j = 1, . . . , J. Therefore, considering the Wald, Laplace, Savage, and Hurwicz
choice criteria, respectively, as objective functions, we consider:

FW(Xk) = Fmin(Xk) = min
1≤j≤J

F(Xk, Yj), (18)

FL(Xk) = F̄(Xk) =
1
J

J

∑
j=1

F(Xk, Yj), (19)
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FS(Xk) = Rmax(Xk) = max
1≤j≤J

R(Xk, Yj), (20)

FH(Xk) = βFmax(Xk) + (1− β)Fmin(Xk) = β max
1≤j≤J

F(Xk, Yj) + (1− β) min
1≤j≤J

F(Xk, Yj). (21)

This consideration of the choice criteria allows constructing q problems that generally
include four or fewer objective functions (if not all choice criteria are used in the analysis)
as follows:

Fr,p(X)→ extr
X∈L

, r = 1, . . . , t ≤ 4, p = 1, . . . , q, (22)

where L represents the feasible region for choosing solutions.
Thus, the analysis of solution alternatives and consequent choice of rational solution

alternatives can be carried out within the 〈X, F〉models [11,13,33].
The analysis, performed in this way, ensures the choice of rational solution alternatives

according to the principle of Pareto optimality [32]. Considering this, the payoff matrix
with characteristic estimates, presented in Table 1, is transformed into the matrix of choice
criteria estimates in Table 2.

Table 2. Matrix with the choice criteria for the objective function of number p.

FW
p (Xk) FL

p (Xk) FS
p (Xk) FH

p (Xk)

X1 FW
p (X1) FL

p (X1) FS
p (X1) FH

p (X1)

... ... ... ... ...

Xk FW
p (Xk) FL

p (Xk) FS
p (Xk) FH

p (Xk)

... ... ... ... ...

XK FW
p (Xk) FL

p (Xk) FS
p (Xk) FH

p (Xk)

min
1≤k≤K

FW
p (Xk) min

1≤k≤K
FL

p (Xk) min
1≤k≤K

FS
p (Xk) min

1≤k≤K
FH

p (Xk)

max
1≤k≤K

FW
p (Xk) max

1≤k≤K
FL

p (Xk) max
1≤k≤K

FS
p (Xk) max

1≤k≤K
FH

p (Xk)

Source: [33].

Therefore, using q matrices for the estimates of the choice criteria, we can construct
q modified matrices of the choice criteria estimates, as shown in Table 3, by applying
the relations:

µAp(X) =

 max
X∈L

Fp(X)− Fp(X)

max
X∈L

Fp(X)−min
X∈L

Fp(X)

λp

, (23)

for the objective functions that must be minimized and relations:

µAp(X) =

 Fp(X)−min
X∈L

Fp(X)

max
X∈L

Fp(X)−min
X∈L

Fp(X)

λp

, (24)

for the objective functions that must be maximized. In (23) and (24), µAp is the membership
function of the p-th objective function, and λp is the importance coefficient of the p-th
objective function.
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Table 3. Matrix with the modified choice criteria for the objective function of number p.

µW
Ap

(Xk) µL
Ap

(Xk) µS
Ap

(Xk) µH
Ap

(Xk)

X1 µW
Ap
(X1) µL

Ap
(X1) µS

Ap
(X1) µH

Ap
(X1)

... ... ... ... ...

Xk µW
Ap
(Xk) µL

Ap
(Xk) µS

Ap
(Xk) µH

Ap
(Xk)

... ... ... ... ...

XK µW
Ap
(Xk) µL

Ap
(Xk) µS

Ap
(Xk) µH

Ap
(Xk)

Source: [33].

Finally, in the presence of q modified matrices of the choice criteria estimates, applying
the results from [11,33], we can construct the aggregated matrix of the choice criteria
estimates, as shown in Table 4. This matrix includes the estimates calculated based on [11]
and can be used to select non-dominated or robust solution alternatives.

Table 4. Matrix with the aggregated levels of the fuzzy choice criteria.

µW
D (Xk) µL

D(Xk) µS
D(Xk) µH

D(Xk)

X1 µW
D (X1) µL

D(X1) µS
D(X1) µH

D(X1)

... ... ... ... ...

Xk µW
D (Xk) µL

D(Xk) µS
D(Xk) µH

D(Xk)

... ... ... ... ...

XK µW
D (Xk) µL

D(Xk) µS
D(Xk) µH

D(Xk)

max
1≤k≤K

µW
D (Xk) max

1≤k≤K
µL

D(Xk) max
1≤k≤K

µS
D(Xk) max

1≤k≤K
µH

D(Xk)

Source: [33].

Where µD is the aggregated membership function, which is obtained using the mini-
mum operator. Taking into account the results presented above, it is possible to suggest the
general scheme of multicriteria decision making under conditions of information uncer-
tainty that is associated with the following steps, in the general case:

• The first step involves constructing q payoff matrices, corresponding to the number
of objective functions. These matrices account for all combinations of solution alter-
natives Xk, k = 1, . . . , K and the representative states of nature Yj, j = 1, . . . , J. To
construct payoff matrices, it is necessary to solve q multicriteria problems formalized
within the framework of 〈X, F〉models. By solving them, it is possible to obtain the so-
lution alternatives Xk, k = 1, . . . , K (K ≤ J). After that, Xk, k = 1, . . . , K are substituted
Fp(X), p = 1, . . . , q for Yj, j = 1, . . . , J. These substitutions generate q payoff matrices;

• The second step is related to the analysis of the obtained payoff matrices. The ex-
ecution of this phase is based on the approach proposed in [11] discussed above.
However, the insufficient resolving capacity of this phase may lead to non-unique or
not well-distinguished solutions, and this circumstance demands the application of
the third phase;

• The third step is associated with the construction and analysis of 〈X, R〉models [11,22]
for the subsequent contraction of decision uncertainty regions. The use of 〈X, R〉
models allows taking into account indices of quantitative character and qualitative
character, based on the knowledge, experience, and intuition of the involved experts

2.3. 〈X, R〉 Decision-Making Models

Decision-making models based on qualitative information are a type of decision-
making tool that relies on non-numerical information to evaluate, compare, select, order,
and/or prioritize solution alternatives on the basis of the corresponding preferences of
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decision makers. These models are particularly useful when there is a lack of reliable data or
when the decision encounters complex or ambiguous situations. One of the main features
of decision-making models that use qualitative information is that they rely on subjective
judgments and opinions, rather than objective data. These models permit one to include
things such as personal experience, specialized knowledge, and intuition. Although this
may seem less reliable than quantitative data, qualitative information can be invaluable
in situations where there are no reliable data available or where the decision is based on
human behavior, emotions, or beliefs [34].

Another feature of qualitative information-based decision-making models is that they
are often used in situations where the decision maker faces uncertainty or ambiguity of
information. One of the advantages of qualitative decision-making models is that they can
be more flexible than quantitative models. Since they do not rely on specific numerical data,
they can be adapted to suit different situations and circumstances. This can be particularly
useful when making decisions in dynamic or changing environments, where data may be
incomplete or unreliable [35].

Moreover, many situations requiring the application of the multicriteria approach
are associated with the problems that can initially be solved based on a single criterion
or multiple criteria. However, if the uncertainty of information does not allow defining a
unique solution, it is possible to use additional criteria to distinguish the alternatives.

There exist diverse formats of preference representation, as discussed, for instance,
in [22]. Taking this into account, it is necessary to indicate that the results of [13] permit
one to transform different formats as well as information of qualitative character to non-
reciprocal fuzzy preference relations, applying so-called transformation functions. It allows
us to concentrate attention on procedures of decision making in a fuzzy environment.

Suppose there is a set X of alternatives coming from the decision uncertainty region
and/or predetermined alternatives, which are to be evaluated on q criteria. The decision-
making problem can be presented by the pair 〈X, R〉 where R =

{
R1, R2, . . . , Rp, . . . , Rq

}
is

a vector of fuzzy preference relations [11,22], which can be presented as:

Rp =
[

X× X, µRp(xk, xl)
]
, p = 1, 2, . . . , q, xk, xl ∈ X, (25)

where µRp(xk, xl) is the membership function of the p-th fuzzy preference relation.
In (25), Rp is defined as a fuzzy set of all pairs from the Cartesian product X×X, where

the membership function µRp(xk, xl) represents the degree to which xk weakly dominates
xl , and consequently, the degree to which xk is not worse than xl for the p-th criterion. It
should be noted that non-reciprocal fuzzy preference relations and fuzzy estimates are
somewhat equivalent. In particular, if two alternatives xk ∈ X and xl ∈ X have fuzzy
estimates with membership functions µ(xk) and µ(xl), then the quantity R(xk, xl) is the
preference degree µ(xk) � µ(xl), while the quantity R(xl , xk) is the preference degree
µ(xl) � µ(xk). According to [13,36], the quantities R(xk, xl) and R(xl , xk) can be evaluated
as follows:

R(xk, xl) = sup
xk, xl ∈ X

xk ≤ xl

min{µ(xk), µ(xl)}, (26)

R(xl , xk) = sup
xk, xl ∈ X

xl ≤ xk

min{µ(xk), µ(xl)}. (27)

If the indicator has a maximization character, (26) and (27) should be written for
xk ≥ xl and xl ≥ xk, respectively. More information on the construction of Rp can be found
in [11,13].
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The fuzzy preference relation matrices can be processed to construct strict preference
relation matrices according to the following equation:

RS = R \ R−1, (28)

where R−1 is the inverse fuzzy preference relation.
The membership function corresponding to (28) can be described as follows:

µS
R(Xk, Xl) = max{µR(Xk, Xl)− µR(Xl , Xk), 0}. (29)

The use of (29) allows constructing the set of non-dominated alternatives with the
membership function that allows evaluating the non-dominance level of each alternative
Xk according to the following equation:

µND
R (Xk) = inf

Xl∈X

[
1− µS

R(Xk, Xl)
]
= 1− sup

Xl∈X
µS

R(Xk, Xl). (30)

Considering that it is natural to choose alternatives that provide the highest level of
non-dominance, one can choose alternatives XND according to the following equation:

XND =

{
XND

k |XND
k ∈ X, µND

R (XND
k ) = sup

Xl∈X
µND

R (Xk)

}
. (31)

Equations (29)–(31) can be used for the solution of choice problems, as well as for
evaluation, comparison, ranking, and/or prioritization of alternatives for some criterion.
These equations can also be applied when R is a vector of fuzzy preference relations, under
different approaches for multiattribute analysis. The application used in this work consists
of the flexible approach with an optimism degree adjustment, although other approaches
can be found in [11,32].

This application approach is performed using the ordered weighted average (OWA)
operator, originally introduced in [37], as follows:

µND(Xk) = OWA
(

µND
R1

(Xk), µND
R2

(Xk), . . . , µND
Rq

(Xk),
)
=

q

∑
i=1

wiBi(Xk), (32)

where Bi(Xk) is the largest value among µND
R1

(Xk), µND
R2

(Xk), . . . , µND
Rq

(Xk). The weights
in Equation (32) need to satisfy the following constraints: wi > 0, i = 1, 2, . . . , q and also
∑

q
i=1 wi = 1. These weights can be indirectly defined by decision makers as described

in [11,32].

3. Objectives in Energy Investments

The decision to invest in a new asset alongside an existing portfolio is often evaluated
using net present value (NPV), one of the most common factors in investment appraisal.
The NPV depicts the result of the portfolio’s cash flow over a period, including the initial
capital investment for the acquisition of the asset, the estimate of profit related to this
investment, and the residual value of the investment. The adopted equation is expressed
as follows:

NPVs(xt) = −CI(x) +
T

∑
t=1

$t,s(xt)

(1 + τ)t +
VR(x)

(1 + τ)T , (33)

where τ is the discount rate, the investment costs CI are discounted at t = 1, and the
residual value VR is added at T. Therefore, the first considered objective function is the
expected net present value of the portfolio [19,38], which can be calculated as follows:

E[NPV] =
1
S

S

∑
s=1

NPVs(xt). (34)
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The portfolio risk analysis in this study is based on the conditional value at risk (CVaR),
a special case of the value at risk (VaR), proposed in [39]. The CVaR represents, among the
scenarios studied, the expected revenue in the worst α% cases, generating a conservative
decision that focuses on the least profitable conditions.

The approach considers that for a given histogram of revenues, one should identify
the worst α% revenues (highlighted area in Figure 1). The value of VaR represents the
revenue that delimits this area, and the value of CVaR reflects the average of the worst
revenue values. The revenue at risk (RaR) can be calculated from the difference between
the expected NPV and the CVaR. Therefore, the second considered objective function is
the CVaR, and the third one is the RaR. The choice of the CVaR as the second objective
function is explained by its advantages over the VaR [5,39].

Figure 1. Revenue distribution estimates.

Moreover, it is rational to introduce the insurance index (InS) as the fourth objective
function. This index quantifies the degree of improvement in the CVaR compared to
the E[NPV] when transitioning from one position to another and is useful when evalu-
ating alternatives of different volumes [11]. It is calculated for positive CVaR variations
as follows:

InS =
∆CVaR

∆E[NPV]
, ∆CVaR > 0, ∆E[NPV] 6= 0, (35)

where ∆CVaR is the variation of CVaR compared to the current position, and ∆E[NPV] is
the variation of the expected revenue compared to the current position.

To complement the decision-making process, if there are doubts about the robustness
of the alternatives, for example, the following additional objectives of the qualitative
character are proposed:

• Prioritize alternatives that have the greatest synergy with the portfolio’s resources;
• Prioritize alternatives with the lowest operational risk.

The first additional objective function is designed to encapsulate the issues raised
in [23], whereas the second additional objective function responds to the operational con-
cerns specified in [40]. However, unlike these works, the functions in this paper have been
designed with a qualitative approach. Therefore, the evaluation of alternatives according
to these criteria relies on expert opinions, which can be expressed in any preference format.
Since any format can be translated into fuzzy preference relations [13], this evaluation takes
place within the 〈X, R〉 decision-making models.

4. Application Example

An example illustrates the practical application of the results described above. In this
example, two scenarios obtained through the NEWAVE model applied in the long term
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are evaluated. These scenarios are official results of the energy expansion studies of the
Empresa de Pesquisa Energética [41,42]. The study horizon from 2023 to 2033 was considered.

Figure 2 shows the average behavior of the prices over time in each scenario, as well as
the adopted over-the-counter (OTC) price definition. The OTC forward price will represent
the price profile that agents are willing to negotiate in the free market over the horizon.

Figure 2. Average PLD of scenarios and forward over-the-counter price.

The existing mix of assets for the power producer examined in this study can be seen
in Table 5. This table compiles the company’s resources (where physical guarantee ≥ 0)
and requirements (where physical guarantee ≤ 0), categorizing them by their source type.

Table 5. Portfolio composition.

Type Total Physical
Guarantee [MWm]

Average Cost
of Operation and

Maintenance
[R$/MWh]

Concession
Expiration

Hydraulic power plants—Group 1 38.3 0.54 31 May 2028
Hydraulic power plants—Group 2 36.0 0.54 31 July 2032
Hydraulic power plants—Group 3 128.6 0.54 31 December 2035
Hydraulic power plants—Group 4 122.8 0.54 25 August 2036
Wind power plants 67.5 0.21 31 December 2033
Sales contracts 1 −325.0 225.00 31 December 2033
Sales contracts 2 −23.0 230.00 31 December 2033

The resource considered for the plants depends on their associated generation profile,
as shown in Figure 3. The hydroelectric plants in the portfolio depend on the evaluated
scenario since their resource is characterized by the GSF projection for the future (shown in
Figure 4), as they belong to the MRE.
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Figure 3. Predicted generation profile of the plants.

Figure 4. Average GSF in the scenarios.

The investment alternatives are described in Table 6, and the characteristics of the
plants in question are given in Table 7. Therefore, these alternatives will be evaluated
considering either the individual purchase of each plant combined with the total or partial
energy sale, or the acquisition of the plants together for forming the portfolio composition.
In all contracting cases, only firm contracts are considered, which are contracts with fixed
volume and price over the contracting horizon, without any flexibility or premium.

Table 6. Description of alternatives.

Alternative Type Physical
Guarantee

(MWm)

Operation
Cost

(R$/MWh)

Portfolio
Entry

Concession
Expiration

Wind power plant 28.0 0.00 1 September
2024 31 May 2057

Solar power plant 8.0 0.00 1 January
2022

31 December
2033

Wind power plant sales contract −28.0 210.00 1 January
2022

31 December
2033

Solar power plant sales contract −8.0 197.50 1 September
2024

31 December
2033

Table 7. Characteristics of the alternatives.

Name Installed
Capacity (MW)

Capacity Factor Investment
Cost (M R$)

Wind power plant 53.7 0.52 250.00
Solar power plant 47.0 0.17 172.00
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The final alternatives for decision making are defined as follows:

• X0: Maintain the current portfolio;
• X1: Current portfolio with the addition of the solar plant with a contract sale of 100%

of its physical guarantee;
• X2: Current portfolio with the addition of the wind plant with a contract sale of 100%

of its physical guarantee;
• X3: Current portfolio with the addition of the wind plant with a contract sale of 80%

of its physical guarantee;
• X4: Current portfolio with the addition of the wind plant with a contract sale of 50%

of its physical guarantee;
• X5: Current portfolio with the addition of the wind and solar plants with a contract

sale of 100% of their physical guarantees;
• X6: Current portfolio with the addition of the solar plant with a contract sale of 75%

of its physical guarantee;
• X7: Current portfolio with the addition of the solar plant with a contract sale of

75% of its physical guarantee and the wind plant with a contract sale of 80% of its
physical guarantee.

All alternatives are simulated to obtain their performance in each objective for each of
the scenarios. The NPV is calculated considering an annual discount rate of 8%.

5. Results

The portfolio’s behavior, as depicted in Figure 5, showcases the relationship between
revenue variation and the CVaR for each scenario. Additionally, the risk associated with
revenue is presented in Figure 6. The construction of the market line is carried out by ma-
nipulating the contract volume in the portfolio along a contracting range from −100 MWm
to 100 MWm, where PDE_2029 is transcribed as Y1 and PDE_2030, as Y2. This calculation
is carried out considering that the trading will be carried out according to the over-the-
counter price (Figure 2). The market line is not considered in the decision-making process;
however, it can indicate a comparison basis that can be used to invalidate some choices.

Figure 5. NPV vs. CVaR.
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Evaluating the portfolio’s behavior in the scenarios shown in Figure 5, we notice
that the portfolio’s CVaR value is more responsive in the scenario with higher prices. In
this scenario, options X2, X3, and X4 outperform all other alternatives. These choices
symbolize the purchase of the wind plant with different committed sales volumes in
contracts. However, options that solely involve purchasing the solar plant, such as X1 and
X6, are outperformed by the current position and should consequently be excluded from
the consideration. Yet, if the solar plant is purchased along with the wind plant, as in X5 or
X7, they outperform the current position.

The options that include the standalone purchase of solar plants continue to perform
poorly in scenario Y2. They are outperformed by the current position and fall within this
scenario’s market curve. The standout options in this scenario are those where a substantial
portion of energy from the purchased plants is committed, such as X2, X3, and X5. Among
these, option X2 outperforms all others in this scenario.

Figure 6. NPV vs. RaR.

Similarly, in both scenarios in Figure 6, the alternatives that stood out the most were
those that consisted of the acquisition of the wind plant or simultaneously with the solar
plant with the partial sale of their energy. For this figure, the total sale of the solar plant’s
energy is dominated by the current position in both scenarios, and X5 is also dominated by
other alternatives.

To evaluate the robustness of the alternatives in the considered scenarios, payoff
matrices were constructed for the objectives in question. These matrices can be seen in
Tables 8–11.

Table 8. Payoff matrix of expected NPV.

Alternative PDE_2029 PDE_2030

X0 4791.51 4732.74
X1 4769.46 4713.26
X2 4900.36 4839.31
X3 4892.69 4816.45
X4 4880.84 4781.12
X5 4878.31 4819.83
X6 4762.62 4699.49
X7 4863.80 4783.20
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Table 9. Payoff matrix of CVaR.

Alternative PDE_2029 PDE_2030

X0 4664.09 4594.92
X1 4639.48 4573.23
X2 4772.78 4701.65
X3 4779.64 4694.74
X4 4781.34 4680.04
X5 4748.16 4679.91
X6 4639.42 4565.59
X7 4754.29 4665.14

Table 10. Matriz payoff of RaR.

Alternative PDE_2029 PDE_2030

X0 127.42 137.82
X1 129.98 140.03
X2 127.58 137.66
X3 113.05 121.71
X4 99.50 101.08
X5 130.14 139.92
X6 123.20 133.90
X7 109.50 118.06

Table 11. Payoff matrix of InS.

Alternative PDE_2029 PDE_2030

X0 0.00 0.00
X1 143.45 143.45
X2 119.91 119.91
X3 111.46 111.46
X4 94.05 94.05
X5 125.14 125.14
X6 133.94 133.94
X7 116.34 116.34

The results presented in Table 12 can be considered as the final response to the analysis
of the 〈X, F〉models. According to the results in this table, alternatives X0, X1, X2, X5, and
X6 are to be discarded from the decision-making process. On the other hand, alternative
X3 received an intermediate score in all the selection criteria. Meanwhile, it is not possible
to define a significant relevance between alternatives X4 and X7, making it necessary to
evaluate these two alternatives using additional criteria. Decision makers assessed these
two alternatives according to the two additional criteria using fuzzy estimates presented in
Figure 7, where the vertical axis represents µ(Xk) [13].

Table 12. 〈X, F〉model result.

Alternative Wald Laplace Savage Hurwicz

X0 0.00 0.00 0.00 0.00
X1 0.00 0.00 0.00 0.00
X2 0.06 0.07 0.06 0.06
X3 0.47 0.51 0.47 0.49
X4 0.58 0.66 0.58 0.65
X5 0.00 0.00 0.00 0.00
X6 0.00 0.00 0.00 0.00
X7 0.56 0.61 0.56 0.59
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Figure 7. Qualitative scales based on fuzzy sets used for objectives based on qualitative information.
Source: [13].

For the criterion of prioritizing alternatives that have greater synergy with the portfo-
lio’s resources, the following were indicated: X4—high; X7—very high. As for the criterion
of prioritizing alternatives with the lowest operational risk, the following estimates were
indicated: X4—medium; X7—high. Using (26) and (27) for these estimates it is possible to
contruct the following non-reciprocal fuzzy preference relation as:

R1 =

[
1 0.75
1 1

]
, R2 =

[
1 0.5
1 1

]
, (36)

where R1 is the preference relation matrix concerning prioritizing alternatives that have the
greatest synergy with the portfolio’s resources, and R2 relates to prioritizing alternatives
with the lowest operational risk.

Considering that the criteria have the same importance and since the evaluations of the
alternatives resulted in a convergence of preference for X7, the non-strict fuzzy preference
relation matrix for the development of the 〈X, F〉model is equal to R2. Therefore, one can
obtain the membership function of the strict fuzzy preference relation as follows:

P =

[
0 0

0.5 0

]
, (37)

and finally, the use of Equation (31) allows us to obtain the following membership function
of the fuzzy set of non-dominated alternatives:

ND =
[
0.5 1

]
, (38)

that justifies the choice of X7.

6. Conclusions

The present work reflects research results related to applying the techniques of multi-
criteria decision making under conditions of uncertainty to long-term investment planning
in the electricity sector. By analyzing the energy portfolio of the company based on the
proposed approach, it is possible to quantify the expected revenue and the financial risks in-
volved in acquiring energy assets. The measurement of portfolio revenue from investment
options utilizes the expected NPV across different scenarios, with risk quantified using the
CVaR. An evaluation of the portfolio’s revenue at risk is also conducted. To improve the
investment analysis, three further objectives have been introduced, two of which possess a
qualitative nature.
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In the given illustrative example, evaluations of investments in alternatives poten-
tially impacting the portfolio’s performance over time are conducted. The selection of an
alternative impacts the energy balance of the agent, modifying exposure in the long-term
scenarios under assessment. This, in turn, influences the values of the objective functions.
It is observed that the outcomes display sensitivity to the PLD and GSF projections sourced
from NEWAVE. A robust solution in the application example involves the incorporation of
both solar and wind plants into the existing portfolio, without committing all energy from
these plants to contract sales, thus retaining a percentage exposed to the spot price.

Employment of the proposed methodology facilitates the evaluation of alternatives be-
yond their associated costs, considering factors pertinent to the agent such as the insurance
index (InS), synergy with the resources in the portfolio, and operational risks. Utilizing
multiple scenarios enables the simultaneous consideration of different specific situations,
constituting a significant step forward in addressing issues associated with using NEWAVE
as input for the long-term decision model. The use of the objectives of the qualitative
character allows for the distinction and selection of non-dominated alternatives previously
evaluated within the 〈X, F〉 decision models. Although, in this work, the approach to
constructing robust (non-dominated) solutions in multicriteria (multiobjective) decision
making under conditions of uncertainty was applied to the problem of energy portfolio
management, it is of a universal character and can be applied to solving wide classes of
problems related to decision making in conditions of uncertainty. However, it is recog-
nized that future work would benefit from considering additional scenarios derived from
different information sources.
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