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Abstract: In recent years, the increasing environmental problems, especially the issue of global
warming, have motivated demand for a cleaner, more sustainable, and economically viable energy
source. In this context, wind energy plays a significant role due to the small negative impact it has on
the environment, which makes it among the most widespread potential sustainable renewable fuel
nowadays. However, wind turbine control systems are important factors in determining the efficiency
and cost-effectiveness of a wind turbine (WT) system for wind applications. As wind turbines become
more flexible and larger, it is difficult to develop a control algorithm that guarantees both efficiency
and reliability as these are conflicting objectives. This paper reviews various control strategies
for the three main control systems of WT, which are pitch, torque, and yaw control, in different
operational regions considering multi-objective control techniques. The different control algorithms
are generally categorized as classical, modern (soft computing) and artificial intelligence (AI) for
each WT control system. Modern and soft computing techniques have been showing remarkable
improvement in system performance with minimal cost and faster response. For pitch and yaw
systems, soft computing control algorithms like fuzzy logic control (FLC), sliding mode control
(SMC), and maximum power point tracking (MPPT) showed superior performance and enhanced
the WT power performance by up to 5% for small-scale WTs and up to 2% for multi-megawatt WTs.
For torque control systems, direct torque control (DTC) and MPPT AI-based techniques were suitable
for reducing generator torque fluctuations and estimating the torque coefficient for different wind
speed regions. Classical control techniques such as PI/PID resulted in poor dynamic response for
large-scale WTs. However, to improve classical control techniques, AI algorithms could be used
to tune the controller’s parameters to enhance its response, as a WT is a highly non-linear system.
A graphical abstract is presented at the end of the paper showing the pros/cons of each control
system category regarding each WT control system.

Keywords: pitch control; renewable energy; torque control; wind turbine; yaw control

1. Introduction

Recently, non-renewable energy sources have increasingly been causing environmen-
tal pollution, which is one of the most serious challenges worldwide. Over 70% of the
energy used in industry is from non-renewable sources that have a serious impact on
the environment and living organisms including humans [1]. These factors contribute to
renewable energy development. Wind is one of the renewable energy sources that provide
a solution to the environmental pollution problem as it has a much smaller pollution impact
on the environment than non-renewable energy sources such as burning fossil fuels. It can

Energies 2023, 16, 6394. https://doi.org/10.3390/en16176394 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en16176394
https://doi.org/10.3390/en16176394
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0001-7478-4416
https://orcid.org/0000-0001-9037-1152
https://orcid.org/0000-0003-1053-6100
https://orcid.org/0000-0003-0595-8691
https://orcid.org/0000-0001-6364-3298
https://doi.org/10.3390/en16176394
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en16176394?type=check_update&version=1


Energies 2023, 16, 6394 2 of 32

be considered a competitive alternative to other conventional sources of electricity genera-
tion [2]. Wind energy has been attracting more attention in the world as it is a clean and
sustainable energy source that is capable of keeping pace with the world’s ever-growing
power needs.

Wind energy is leading the renewable energy market with installations that keep
growing each year; 2021 was the second-best year ever for the global wind industry as
it showed a year-over-year (YOY) growth of 12%, according to the Global Wind Energy
Report of 2022. Almost 94 GW of wind power was installed, resulting in a global cumulative
wind power capacity of up to 837 GW, with an increase of 153% compared to 2020 [3].
However, more installations are needed in order to reach the net zero target, the balance
between greenhouse gas emissions produced vs. those taken out from the atmosphere
by 2050.

Harvesting energy coming from the flowing air and converting it to electricity is
performed conventionally through the utilization of a WT system [4]. WT converts the
kinetic energy in the wind into mechanical energy by means of a rotor shaft connected to a
generator that converts mechanical energy into electricity. The mechanical output power
and torque of the WT depend on several factors such as wind speed, rotor swept area and
the geometry of the turbine, blade pitch angle, turbine rotational speed, and turbine size.
Equation (1) represents the output power of the WT.

Pm =
1
2

ρAVw
3Cp(λ, β), (1)

where Pm is the WT’s mechanical power, ρ is the air density, Vw is the wind velocity in
meters per second, and A is rotor area in meters. The power coefficient of the rotor or
rotor efficiency (Cp) in the equation can be defined as the ratio between the actual obtained
power and the maximum power available in the wind. The maximum value of the power
coefficient derived based on 1D momentum theory is called the Betz limit. Cp varies with
the TSR of the turbine (λ), which is the ratio between the blade tip speed and wind speed,
and the pitch angle of the blades (β) and it is unique to each WT type. An example of a
basic numerical model to show the relationship between various variables that affect the
power coefficient of a wind turbine is shown in Equations (2)–(4) [5,6].

Cp(λ, β) = 0.5176
(

116
1
λi

− 0.4β − 5
)

e
21
λi + 0.0068λ (2)

1
λi

=
1

λ + 0.08β
− 0.035

β3 + 1
(3)

λ =
ωrR
Vw

(4)

where β is the blade pitch angle, ωr is the rotational speed of the rotor in radians per second,
and R is the rotor’s radius in meters.

WTs are non-linear complex systems with flexible structures that are subjected to the
wind that can vary dramatically in strength and direction, which in sequence effects the
efficient harvesting of wind power. Modern horizontal axis wind turbines (HAWT) come
in different sizes but generally, all types consist of several main components shown in
Figure 1, which are: (1) the tower, the wind turbine’s supporting structure made of tubular
steel; (2) the blade, a long fiberglass piece which catches the wind at the top of the wind
turbine to turn the turbine; (3) the hub, a cast structure into which the blades are fitted and
that is connected to the turbine’s main shaft; (4) the nacelle, which is a cover that houses
the gearbox and generator connecting the rotor and tower.
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Figure 1. Wind turbine components.

However, low wind speeds result in low output power, while high wind speeds
may cause the failure of most of the WT’s mechanical components [7]. Moreover, WTs are
connected to a varying electrical grid with unpredictable voltage, frequency, and power flow
fluctuations, hence the amount of power that can be executed from the wind, output power
efficiency, cost, reliability, and availability strongly depend on the applied control strategy.

As WTs are becoming larger and more flexible, designing innovative control strategies
to ensure the quality and stability of the power systems, besides decreasing wind energy
cost by increasing the capture efficacy, becomes an explicit goal [8,9]. In addition, there
are other main control objectives that need to be considered while designing a WT control
system, such as energy capture maximization, mechanical load, and fatigue attenuation,
providing damping, reliability, and availability that directly affect the cost and competitive-
ness of wind power technology [10,11]. Control can also be applied on the scale of wind
farms to maximize power output through wake mitigation or other techniques [12]. There
are many review articles that also consider WT size and design, different operating regions
and different platforms (onshore and offshore) [13–15]. However, the scope of this work is
control performed on the wind turbine components.

In a WT system, three types of controllers dominate, namely pitch angle control, torque
control, and yaw alignment control. However, a study on the number of failures of turbines
in a year has shown that the pitch control system is the first most common mechanical
component contributing to an overall failure rate, followed by the yaw control system and
then the torque control system [16,17].

Based on a WT’s power curve, shown in Figure 2, there are four main regions enclosed
in two main areas. The actual power supplied to the WT grid is responsible for dividing
the curve into two main areas, which are the above- and below-rated power areas. The
main objective of the below-rated power area, where the wind speed is below the rated
wind speed, is to maximize power capture, while in the above-rated power area, where the
wind speed exceeds the rated wind speed, the objective is to maintain power at its rated
value to avoid power fluctuations.
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Figure 2. Power curve of a variable speed wind turbine.

Typically, the power curve of a utility-scale WT is divided to four operating regions
depending on the wind speed value. In region 1, as the wind speed is less than the cut-
in wind speed value (vcut−in = 3–4 m/s), there is not sufficient torque exerted on the
turbine rotor to make it rotate with enough rotational speed to produce power. In region 2,
also known as the transition region, the wind speed is between the cut-in speed and the
rated speed value (vrated = 11–13 m/s). The objective is to obtain maximum aerodynamic
efficiency through a torque controller that controls the generator’s synchronous speed so
that the power produced grows rapidly reaching the rated/maximum power. In region 3,
the rated power is maintained at a constant until the wind speed reaches the cut-off speed
value (vcut−off = 25–30 m/s), in this region the pitch angle control is needed to limit the
incoming power or apply a braking mode to prevent WT structure fatigue by controlling
the blade’s angle, which affects the rotor’s rotational speed (i.e., increasing the blade’s
angle results in decreasing the rotational speed). Region 4, also known as the extended
mode region, is where the wind speed exceeds the cut-off speed, so the rotor speed has
to be controlled so as not to fatigue the WT’s components [18]. However, yaw control is
applicable in all 4 regions, as it considers the wind direction change, so it is also applied to
keep constant rated power output as it does not depend on the wind speed.

In this paper, state-of-the-art control techniques for wind turbine rotors adopted by
researchers are viewed and categorized according to the three types of controllers for WTs:
pitch control, yaw control, and torque control.

2. Pitch Control Technique

Pitch control is a system that operates and controls the pitch angle (β) of a WT blade by
changing the aerodynamic forces on the blade at high wind speeds to limit rotor speed. The
pitch control system, shown in Figure 3, is a closed loop control system that consists of the
main controller that calculates the required pitch angle (βc) considering a set of conditions,
transfers it to the pitch actuator system, which is made up either of gears and electric
motors a or power supply system with hydraulic cylinders, and a wind speed sensor to
give a feedback signal for the current wind conditions (ωr). In the low wind speed region,
the maximum power extraction mode is adapted, and the pitch angle is kept at its optimum
operation, while in the high wind speed region, the rotor speed is accelerated so the pitch
angle is adjusted to control the rotor speed to keep it within the controllable limit in order
to produce stable power as well as keep the wind turbine in a safe operating environment.
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Figure 3. Pitch control system.

Figure 4 shows the forces and wind effect on the blade’s airfoil. There are two meth-
ods to achieve zero rotor speed acceleration, which are pitch-to-feather, controlling the
aerodynamic power captured by the blade (Pcaptured), and pitch-to-stall, controlling the
output power of the generator (Pelectrical). The pitch-to-feather method is a common way to
reduce the aerodynamic power resulting from very high wind speeds [18].

Energies 2023, 16, x FOR PEER REVIEW 5 of 32 
 

 

 

Figure 3. Pitch control system. 

 

Figure 4. Airfoil pitch angle. 

In [19], slow and fast pitching control rates at high wind speeds were investigated. 

The simulation results showed that if the pitch angle control is performed instantaneously, 

the speed can be kept constant by adjusting the difference between the captured power 

(Pcaptured) and electrical power (Pelectrical) to zero. Most large WTs use proportional–integral–

differentiation (PID) or proportional–integral (PI) control for pitch angle control and 

power regulation. PID controllers are mostly used in industry to control a system, as they 

are feasible and easy to implement. They use closed-loop control feedback to keep the 

actual system’s output as close to the setpoint output as possible. To use PI/PID control-

lers, the parameters should be found, adjusted, and tuned according to the system’s be-

havior. 

R. Karthik et al. implemented several methods for tuning a PID controller’s parame-

ters, these are KP, KI, and KD, to study their impact on the system [20]. The performance 

of each method is represented in terms of the time domain performance index term and 

the parameters of interest are delay time (Td), peak time (Tp), rise time (Tr), settling time 

(Ts), peak overshoot (Mp in %), and steady-state error (ess). Evaluating the response effi-

cacy of each method was based on giving/producing the lower values for the mentioned 

parameters. Simulation results showed that among all the PID parameters tuning meth-

ods, the Zeigler–Nicholas method gives better performance in terms of time delay, settling 

Pitch 

Controller

Pitch 

Actuator

Optimal Rotor 

Speed (ωd) +

Speed 

Sensor

_
ωc βc β Actual Rotor 

Speed (ωr)

Wind 

Speed

ωr

 

 

 

 

 

  

  

                

            

            

            

                    

             

                       

Figure 4. Airfoil pitch angle.

In [19], slow and fast pitching control rates at high wind speeds were investigated. The
simulation results showed that if the pitch angle control is performed instantaneously, the speed
can be kept constant by adjusting the difference between the captured power (Pcaptured) and
electrical power (Pelectrical) to zero. Most large WTs use proportional–integral–differentiation
(PID) or proportional–integral (PI) control for pitch angle control and power regulation.
PID controllers are mostly used in industry to control a system, as they are feasible and easy
to implement. They use closed-loop control feedback to keep the actual system’s output as
close to the setpoint output as possible. To use PI/PID controllers, the parameters should
be found, adjusted, and tuned according to the system’s behavior.

R. Karthik et al. implemented several methods for tuning a PID controller’s parameters,
these are KP, KI, and KD, to study their impact on the system [20]. The performance of
each method is represented in terms of the time domain performance index term and the
parameters of interest are delay time (Td), peak time (Tp), rise time (Tr), settling time (Ts),
peak overshoot (Mp in %), and steady-state error (ess). Evaluating the response efficacy
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of each method was based on giving/producing the lower values for the mentioned
parameters. Simulation results showed that among all the PID parameters tuning methods,
the Zeigler–Nicholas method gives better performance in terms of time delay, settling time,
and peak overshoot compared to the other methods, hence is the use of this method is
recommended for tuning the PID controller’s parameters in WT application.

Clemens Jauch et al. designed a PID pitch angle controller for a fixed speed active-stall
WT, which has only a pitch system to control the output power, by deriving the transfer
function (TF) of the WT system from its step response using the root locus method [21].
The TF of the WT was of a very high order due to the system’s non-linearities so it has been
defined as sets of 2nd-order TFs. Steady-state error was avoided by adding an integrator to
the system. A pole was added at the origin of the s-plane to deform the locus, preventing
the root locus from crossing the previously found point for the dynamic response, so the
WT’s performance became significantly better despite the limitations of the pitch system.

Richie Gao and Zhiwei Gao designed an effective PI pitch controller to overcome
the effect of delays caused by hydraulic pressure-driven units that affect the pitch control
systems [22]. In order to estimate the PI controller parameters, a direct search optimization
technique was applied to assume no delays in the WT. The input and output of the con-
trolled system are used to design a delay estimator to estimate the disturbances caused by
the delay, then subtract this estimated delay from the WT’s output to give compensated
output used for feedback loop control, to remove the effect of the delays. The applied
controller showed reliable improvement of the WT control system without the need for
prior knowledge of the system delays.

Since PID parameters are unknown and calculated by numerous complex techniques,
Atif Iqbal et al. have proposed a developed particle swarm optimization (PSO) algorithm
with fminsearch in order to provide optimal parameters for the PID pitch controller to
stabilize the WT’s power output [23]. The developed PSO algorithm showed improvement
in the system’s stabilization in different aspects from rising time to settling time. By
comparing the proposed algorithm to conventional PSO, the simulation results indicated
a higher output power and a limit on the rotor speed, along with mechanical torque.
Also, Sachin Goyal et al. developed a neuro-fuzzy (NF) tuned PID pitch controller for an
individual pitch controller–variable speed wind turbine (IPC–VSWT) to quickly maintain
the output power in line with wind speed fluctuations [24]. Comparison between untuned
PID and NF-tuned PID showed a performance improvement for the proposed algorithm
regarding overshoot percentage and settling time by 15% and 37%, respectively, compared
to untuned PID.

There are recent optimization methods that have been used for PI/PID controller
parameter tuning. Shi-Jie Jiang et al. proposed a recent Archimedes optimization algorithm
(AOA) based on the Taguchi parallel method (TPAOA), which has few parameters to
solve, is easy to implement, and has an easy-to-understand interface for PID parameter
tuning [25]. Using the parallel mechanism and Taguchi orthogonal solved the drawbacks
of the optimization algorithm and showed competitive optimization results compared to
other algorithms represented in the CEC2017 test suite and also smoothed the WT’s output
power by reducing the impact of wind speed fluctuations on the system.

In [26], the firefly algorithm (FA) for PID pitch control parameter tuning was proposed.
The FA was improved by applying a hybrid parallel compact technique that helps in finding
better solutions with minimum errors and saves more operation memory. The parallel
compact firefly algorithm (PCFA) was compared to the original FA and the results showed
the superiority of the PCFA in smoothing the output power in a shorter calculation time and
using less operation memory. Also, in [27] the grey wolf optimization (GWO) algorithm for
the PI-MPPT controller gains tuning was proposed by considering integral time-multiplied
square error (ITSE) minimizing, which is developed from SCIG power error regarding
region 3. The GWO algorithm provided optimal performance for PI tuning compared to
the genetic algorithm (GA) and PSO algorithms.
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Soft computing techniques are algorithms that deal with imprecision, approximation,
and uncertainty as they can provide an approximate solution for complex and non-linear
systems with non-exact models effectively. The maximum power point tracking (MPPT)
technique is considered to be a soft computing method as it deals with a non-exact system
model and it relies on achieving the best control action that investigate the best performance,
so choosing the appropriate MPPT algorithm is an important factor for system performance
enhancement [28].

Fuzzy logic control (FLC) is a soft computing technique and mathematical based
system that converts and analyzes analog data in terms of logical variables by assigning a
specific output according to the state of the input, so it can deal with complex nonlinear
control situations. FLC is easier, cheaper, and more robust than a PID controller in that it
can cover a wide range of operation points for a dynamic system. Tan Luong Van et al.
presented an FLC Sugeno-type application to improve the wind energy captured by a
2-MW wind turbine at rated wind speed for a variable speed variable pitch (VSVP) WT [29].
The controller is implemented by taking the generator output power and generator speed
instead of wind speed as inputs to the controller, while the output is the reference pitch
angle βref. In the partial-load region, Pref is determined by the MPPT control strategy,
while in the full-load region, Pref is set to Prated, the FLC finds βref by determining inputs,
setting up rules, and converts the results into output signals. Experiments and simulation
showed that FLC gives 5.097%, 2.043%, and 3.065% higher output power than that of PI
controllers with and without gain scheduling, and PID controllers, respectively, and also
could maintain output power and speed at high wind speeds.

FLC showed an improved performance also for small WTs, M.A.M. Prats et al. pre-
sented a computational fuzzy pitch controller model for 600 kW VSVP wind turbines to
improve the captured energy at low, rated, and high wind speeds and compared its perfor-
mance to the PI linear controller [30]. The simulation results at rated wind speed showed a
1.9% increase in energy capture with the fuzzy controller compared to the PI controller and
better speed and blade pitch control was observed compared to the conventional linear
controller. These results declare an improved transition between power limitation in the
full-load region and power optimization in the partial-load region. F. Scherillo et al. also
designed a fuzzy logic-based pitch control for a 60 kW mini wind turbine and investigated
its performance for different turbulence and wind intensities [31]. The simulation showed
good results in terms of rotor speed and power production variability compared to the PID
controller based on the Ziegler–Nichols rule.

For FLC optimization, Zafer Civelek proposed an advanced intelligent genetic algo-
rithm (AIGA) with new features that enhance the algorithm’s performance such as the
addition of an acceptable error concept (AEC) [32]. In order to adjust the coefficient of
normalization, denormalization, and FLC values, the conversion from decimal to binary
and from binary to decimal is determined based on this acceptable error. For better perfor-
mance, the selection of crossover which enables the production of new individuals from
two individuals with high fitness values and also affects the time that the GA reaches the
goal was 90%. Benchmark functions are used for performance analysis and comparison
between GA, IGA, and AIGA and the results showed that AIGA reaches the desired results
in iterations equal to 75 while the GA and IGA iterations number is 1000, and also reaches
1000 optimum results for all of the test functions, which will helps to increase the WT’s
output power stability.

FLC can provide an alternative approach to tune and adjust PID controller parameters
by utilizing a set of if–then rules to overcome the problem of PI/PID controller and handle
the dynamically changing operating points of the WT system and also increase the power
system stability of the WT. Minh Quan Duong et al. have presented a hybrid controller
of PI and FLC techniques in order to smooth wind power fluctuations and drop output
power at high wind speeds [33]. The conventional PI controller’s purpose was to linearize
the model by regulating the output according to a relative error between mechanical power
(Pmech) and nominal power (Pnom), where the ε = (Pmech − Pnom)/Pnom and its parameter
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gain are chosen based on Ziegler–Nicholas equations. In order to improve the generator’s
disturbance and damping characteristics, a fuzzy logic technique was proposed. The power
error was represented by three linguistic variables, negative (N), zero (Z), and positive
(P), and for the output, nine memberships were used. After the fuzzy sets are defined,
the control strategy is defined by a set of if–then rules. The simulation results showed an
improvement in power quality rather than using a PI controller only.

Lin Pan and Xudong Wang also proposed a repetitive control combined with a Takagi–
Sugeno fuzzy PID pitch controller in order to stabilize the output power [34]. However,
in [35] a comparison between three control schemes for the WT pitch control system was
proposed, which are PID, fuzzy, and fuzzy–PID regarding generator power, torsional
torque, and generator speed in the above-rated wind speed region. The PID controller had
a higher deviation in the three comparison aspects, while fuzzy and fuzzy–PID showed
remarkable power fluctuation reduction and also a reduction in torsional torque. However,
fuzzy–PID gave the best results in improving the system’s performance.

Asif Rashid and Deng Ying developed logical fuzzy control inference (FCI) which is a
non-linear method that uses if–then fuzzy rules set along with “OR” or “AND” connec-
tors [36]. This control model automatically adjusts the β angle to measure rotor speed so as
to increase power production. So, by applying the FCI control method based on Mamdani
rules with a PI(D) controller which controls the variation in rotor speed by correcting the
error between the output and the desired input, a promising result of maximizing captured
power and economically efficient energy performance have been achieved.

In [37], a novel approach for pitch control based on an adaptive neuro-fuzzy inference
system for obtaining effective wind velocity with no need for a sensor and sliding mode
observer to estimate the aerodynamic torque was proposed. This approach aimed to control
output power and rotor speed optimally in the over-rate wind speed region which increases
the life of the WT. Simulations for fore–aft tip displacement showed a decrease in its STD
value by 50%.

Since modern WT control systems depend mainly on their actuators, there are some
constraints that should be considered like actuator limitations, system constraints due to
system non-linearities, and the intermittency of integrating wind power into the electric
grid. It is important to recognize that both the generator torque and the blade pitch angle
have limitations in absolute values and change rates, but the limitation of blade pitch
actuators is the more critical one of these. The prediction control technique can analyze
current and historical data to make a prediction about the future output knowing the
system’s input and constraints. Several forecasting techniques considering different time
scales were reviewed and discussed in [38] showing the major challenges associated with
wind power prediction and the different mechanisms to determine the best available. Since
wind turbine operation has a periodic nature, the direct inclusion of the constraints in the
control algorithm for individual pitch control shows a non-continuity optimization problem,
so Vlaho Petrovic et al. proposed a constraints inclusion method by transforming wind
turbine constraints into a d-q coordinate system to ensure the continuity of the constraints
in the system model [39].

Ahmed Lasheen and Abdel Latif Elshafei designed a model predictive control (MPC)
algorithm that depends on the system model for predicting the future output over a selected
horizon. The MPC algorithm was designed based on a Takagi-Sugeno fuzzy model for its
ability to control multivariable systems subjected to constraints [40]. Linearized models
have been produced by the open-source software FAST at determined operating points
depending on wind speed variation, each produced model represents a fuzzy rule, so in
order to reduce the number of fuzzy rules to ease calculations, the gap metric concept
was applied resulting in a total of six linearized models at wind speed range from 12 to
22 m/s with 2 m/s step. A fuzzy MPC algorithm was also used in [41] to reduce the blades’
flip-wise deflections and regulate the output power of the WT in region 3, considering the
generator fluctuations. Compared to the gain scheduled PI (GSPI) baseline controller, FMPC
showed better performance regarding less settling time and overshoot, less computational
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time, and mechanical load reduction. The overall fuzzy model, after blending all rules, is a
time-varying linear model that can predict the future output and states by applying MPC
to it.

Another prediction algorithm is the feedforward technique which considers solutions
for improving the situation in the future rather than considering positive or negative feed-
back. P. Venkaiah and Bikash K. Sarkar proposed a fuzzy feedforward PID pitch controller
developed through an electrohydraulic pitch actuation system which has merits of high
power-to-weight ratio, self-lubricating, etc. [42]. The feedforward technique estimates
the output of the WT system from the PID control algorithm, which minimizes the error
between the desired and current state of the system without waiting for the PID response.

In [43], a hybrid artificial intelligence and advanced control technique for the VSWT
pitch control system is introduced. Wind speed prediction based on support vector re-
gression (SVR) was developed and the predicted wind speed is used as an input for a
novel feedforward mechanism designed to develop a non-linear relationship between pitch
angle and wind speed. Also, they implemented an uncertainty and disturbance estimator
(UDE) based feedback controller to build an external disturbance model to deal with it and
provide system stability.

Mohamed Abdelkarim et al. proposed a partial offline quasi-min-max fuzzy model-
predictive pitch controller considering WT nonlinearities, unstructured model dynamics,
pitch angle constraints, and wind speed variations [44]. Fuzzy modeling combined with the
MPC algorithm together can achieve optimal system operation by taking into account the
pitch angle constraints and WT non-linearities. The quasi-min-max technique incorporated
with the fuzzy model guarantees the system’s closed-loop stability by transforming the
stability and pitch angle constraints into linear matrix inequality (LMI) problems as it is the
optimal tool to solve multi-constrained system problems. In partial offline strategy, offline
design is followed by online synthesis, in the offline design, sets of data including pitch
angle constraints are computed and the online synthesis includes a simplified optimization
problem solved to ensure the stability of the WT closed loop system. Controller validation
using FAST simulator showed the effectiveness of the proposed controller over the conven-
tional scheduled PI controller in terms of electrical power, generator speed, and mechanical
load reduction, and also reduces the computational burden problem through the partial
offline strategy.

H.M. Hassan et al. also proposed an LMI technique to design a robust collective
pitch controller (CPC) for large WTs [45]. Due to the uncertainties of the WT model, the
controller design constraints have included the H∞ problem for better speed regulation,
the H2 problem for optimizing control action with performance, H∞/H2 trade-off criteria
to overcome these problems, and also pole clustering to improve transient response by
specifying regions representing system’s eigenvalue limits. The CPC controller was first
designed based on a single operating point model but it showed drawbacks because it
did not meet the designed constraints at all operating points, so a poly-topic model has
been considered to overcome these drawbacks by selecting different operating points
(six wind speeds). The CPC has been integrated with IPC to cancel the mechanical loads.
A performance comparison between the proposed controller and classical collective pitch
controller has shown six-fold improvement in speed regulation and a four-fold reduction
in fatigue loads but it exerts control effort slightly more than the PI controller, within the
permissible limits, which is necessary for mitigating fatigue loads.

Reducing the loading effect on WTs while achieving maximal power output at the
same time is an important objective in order to increase the lifetime of the equipment and
extract the maximum power. Atif Iqbal et al. designed a fuzzy-based model predictive
controller to control pitch angle in region 3 to minimize the load effect and maximize the
extracted power [46]. The fuzzy model is designed based on Mamdani’s method by using
49 rules. The MPC has mainly 2 inputs which are rotor speed and output power, while
the output variable is feeding to the actuator. The MPC uses output power to predict
the system’s behavior. From the simulation and by comparing the proposed method
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and the conventional PI controller, the proposed controller could reduce the rotor speed
and so the mechanical torque as well as extracting maximal power. In comparison to
conventional linear controllers, fuzzy controllers provide nonlinear control actions, rely
less heavily on mathematical models, and are also better able to reject noise, disturbances,
and parameter variations.

Also, for load reduction, Sungsu Park and Yoonsu Nam proposed a separate set of
individual and collective pitch control algorithms using a linear–quadratic regulator (LQR)
with augmented rotor speed integration (LQRI) to cancel the steady-state error, and the
Kalman filter was also designed in order to estimate system states and wind speeds [47].
Although the centralized pitch controller has the advantage of handling multi-control
objectives, separate individual and collective pitch controllers are better for controlling
rotor speed and bending moments on the blade since the individual pitch controller is
considered as secondary controller that acts as on-off mechanism. The proposed pitch
controller consists of three control loops: generation torque control, which is kept constant
at above-rated speed; collective pitch control that controls rotor speed and improves trade-
offs between rotor speed regulation and load reduction; and an individual pitch controller,
which is designed as an additional loop around the system to reduce the fluctuating loads
on the blades. The simulation showed very good rotor speed regulation and a noticeable
reduction in blade bending moments.

Due to the drawbacks of a non-linear MPC (NMPC) based on a conventional structure,
which includes complicated implementation and a heavy computational burden, Dongran
Song et al. proposed a novel NMPC that uses a discrete prediction model with large
time steps, which reduces the number of time discrete points so the solution set becomes
numerable and implementation complexity and computational burden are decreased [48].
An iterative algorithm is performed after solution sets are defined from the previewed
wind speeds to search the optimal sequence of generator torque and set the first element of
it as a controller output. Simulation has been conducted on two models of WT, 1.5 MW
and 5 MW wind turbines, and compared with the base controller. The results showed that
the proposed NMPC increased the energy extraction efficiency by about 1% for the 1.5 MW
WT and 1.28–1.95% for the 5 MW WT.

Controlling each blade’s angle individually is a challenge in variable speed variable
pitch wind turbines at the full region, so Mahmood Mirzaei et al. proposed a linear
MPC that takes the future values of wind speed measured by LIDAR as a scheduling
variable [49]. In order to avoid the complex optimization problem of an MPC, the system
has been linearized around an equilibrium point. Two controllers are implemented, the
first is a collective pitch controller and the second is an individual pitch controller, which
reduces fatigue loads on the blades by adjusting the pitch angle. For the LIDAR uncertainty,
the extended Kalman filter algorithm has been used to estimate the effective wind speed on
the rotor and then compare it against the filtered information that comes from the LIDAR.

Since the linear model at a specific operating point is not suitable for representing a
non-linear WT model leading to plant–model mismatch producing a reference tracking
error, which results in errors between the predicted and measured output is a problem
that faces predictive controllers. D. Q. Dang et al. proposed an offset predictive controller
(OF-PC) for speed control of VSWTs to obtain the zero-offset predictive result by estimating
the mismatch between measured and predicted outputs so as to guarantee maximum
power [50]. The generator torque can be considered as a control input in order to regulate
generator speed to track the optimal speed trajectory, while the rotor speed is the state
variable. From simulation and comparison between the proposed and conventional PC
controller, in a 240 s simulation, OF-PC showed the highest efficiency of 99.50% with respect
to ideal optimal power and also maintained the tip speed ratio at its optimal value which
is seven.

Finite control set model predictive control (FCS-MPC) is a discrete model used to
predict system behavior for every admissible control set and the one that minimizes the
predefined function is finally selected. Dongran Song et al. developed an MPC method by
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using a finite control set for pitch angle control [51], the wind turbine’s nonlinear model
was linearized by a non-standard extended Kalman filter then a discrete-time linear model
of the system is used to predict the future value of the state variable for possible control
sets. Two quality functions (QF) have been defined to represent the control system’s multi-
objectives by making variables follow a reference. The results showed faster action of the
pitch actuator and optimal tracking for rotor speed under MPC than under a conventional
control system.

Demanded power point tracking (DPPT) control algorithms are integrated into conven-
tional generator torque and blade pitch controllers with a mode switch by Kwansu Kim et al. [52].
Both algorithms use power demanded from higher-level wind farm controllers as reference
power to track it. The first algorithm is torque-based control represented as KNU1, it
uses two modes switches, one is to turn on DPPT by torque control only when the power
demand is lower than the available/measured power and the generator speed is lower
than the rated speed. The other mode switch is to turn on the collective pitch controller
when the power demand is lower than that measured but the generator speed is higher
than the rated speed. The second algorithm is pitch-based control represented by a KNU2
and it uses only one mode switch which turns on and off both DPPT control and collective
pitch control at the same time in the cases of region 3 winds. Simulation tests showed that
KNU1 has faster control ability but keeps a high tip speed ratio (TSR), which increases the
torque coefficient that may increase the wake effect, while KNU2 showed advantages with
respect to load.

Another technique that is used today in electric drive system speed control is sliding
mode control (SMC), which can provide a fast dynamic response and the ability to deal with
the system’s external disturbances and parameter variation while reducing mechanical and
drive train loads. The SMC technique switches the desired control action smoothly to attain
the preferable performance regarding the system’s parameters and signals. A sliding sur-
face is created to switch the signal smoothly within its limits hence decrease the chattering
signals resulting in better system performance [53]. L. Colombo et al. proposed an SMC to
regulate rotor speed to its rated speed which corresponds to the rated aerodynamic power
of the WT by tracking the rated power [54]. The designed controller considers several un-
certainties in the WT model and is based on a unique pitch controller. For controlling speed
in region 3, the pitch angle is used as a control input so that the output speed follows the
desired speed by considering a pre-defined table containing the aerodynamic power-rated
values and the corresponding rated angular speeds. In order to evaluate the proposed
controller’s performance, a comparison was made between it and PI control. The absolute
tracking error value with respect to rated power has been computed for both controllers
and the proposed controller has shown an 11% improvement in reducing the error.

Mehrnoosh and Mohammad Hossein also presented SMC for pitch angle using the
PSO-SVM method to calculate its coefficients [55]. However, in [56], a hybrid control
algorithm of sliding mode and PI controllers along with an observer which reduces the
change in power coefficient parameter errors was proposed. This hybrid algorithm could
remove wind speed controller parameters from the designed control algorithm so that
the uncertainties and disturbances caused by wind speed change are eliminated. They
also discussed the robustness of the proposed algorithm regarding the uncertainties of
the WT structure. The simulations declared that the proposed controller algorithm’s root
mean square (RMS) error has been improved by 65% compared to the sliding mode control
algorithm alone proposed in [55].

Increasing WT size causes interaction between the tower and drive train aerodynamics
which results in introducing right half-plane zeros (RHPZ) in the dynamics that link
blade pitch angle and generator speed, limiting the control system’s ability to regulate the
generator speed through pitch control. So, William E. Leithead and Sergio Dominguez
proposed a coordinated controller design (CCD) to overcome this limitation [57]. The
controller structure considers one aspect which is the accommodation of aerodynamic
non-linearity. The CCD is based on parallel path modification, using both generator and
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blade pitch, which enables RHPZ to be counteracted and decouple the tower fatigue loads
from the generator speed control. In addition, a PI controller is combined in order to
achieve the same bandwidth as the conventional controller and make it easily tuned for
different WT systems.

Due to WT system uncertainties that cannot be avoided in the mathematical model,
the WT’s behavior cannot be exactly presented, meanwhile the pitch control system re-
quires accurate information about the system’s mathematical model or complex equations
analysis. Artificial intelligence (AI) control can be a solution for such a problem as it only
needs a system’s input and output data without the need for a dynamic model, it only
depends on artificial networks which are the computing systems that use the obtained
dataset to calculate the considered output. As mentioned before, a PI/PID controller’s
gains are difficult to tune precisely in such a complex system like a WT system, so com-
bining artificial intelligence algorithms with a PI/PID controller in order to adjust the
controller’s parameters has been proposed in [58–60]. Jing Du and Bo Wang implemented
a back-propagation neural network (BP-NN) PI controller in order to adjust PI controller
parameters through self-learning by the network system [58]. Each neuron in BP neural
network has a weight that is adjusted online by taking rated speed, measured speed, and
speed difference as inputs to the network system. Simulation analysis using Simpack
software was manipulated to compare between PI control with gain-scheduling and a BP
neural network PI strategy which showed its improved control effects on maintaining the
stability of output power at rated wind speeds since the standard deviation of PI with
gain-scheduling was 2.207 while that of a BP neural network PI control was 1.92.

Iman Poultangari et al. also proposed the radial basis function (RBF) neural network
to obtain optimal PI gains to construct a CPC [59]. The RBF neural network must be trained
with an optimal training dataset to give optimal PI gains. The PSO algorithm was used
to obtain the optimal dataset by using some constant speeds above-rated speed to obtain
an optimal pair of PI gains for each wind speed value. The constant wind speeds are used
as inputs and their corresponding optimal gains as outputs for training the RBF neural
network. The proposed method does not need knowledge about the non-linearities and
uncertainties of the system. The results showed a favorable performance for the proposed
method rather than the conventional PI controller in terms of keeping both generator
speed and torque within their rated value with fewer variations and also less usage of
pitch actuation.

Wei Jie et al. developed a predictive model for the important parameter variables to
control a WT based on analyzing input and output data of wind farms [61]. The model is
based on using an extreme learning machine (ELM) algorithm to target the output which
reduces the information loss in the transmission process and uses it as reference data
for pitch control, which is based on the RBF, while deep LEM (DLEM) has been used to
simplify the higher order non-linear mode. The simulation showed a reduction in model
computational complexity and computing resource consumption.

Yarong Zou et al. proposed the linear active disturbance rejection control (LADRC)-
PI optimization algorithm based on the extremum seeking (ES) algorithm in order to
improve disturbance rejection and track the optimal and extreme value working state [62].
The LADRC control design was first evaluated for three different WTs, 50 kW, 275 kW,
and 1.5 MW, and they all gave a consistent response. Compared to the traditional PI
and PID controllers, the proposed LADRC-ES algorithm showed better setpoint tracking
performance and the rise time was reduced to half.

Also, Chengzhen Jia et al. proposed an intelligent adaptive pitch control approach
combining feedforward RBF-NN and a finite impulse response (FIR) filter based on LiDAR
measurements and LADRC controller variable bandwidth to reduce disturbances and
mechanical load, and hence result in system performance enhancement [63]. The hybrid
control algorithm can adaptively adjust the control coefficients according to wind speed
fluctuations measured 50 m in front of the WT’s blade by a LiDAR sensor. Simulation
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results showed a remarkable reduction in generator speed fluctuations by 40.8% and blade
root load moment by 13.1% compared to a PI controller.

Peng Chen et al. proposed an adaptive dynamic program (ADP) based on reinforce-
ment learning using the system’s data [64]. The ADP can guarantee rotor speed stability
around the rated value by controlling/changing pitch angle in the full-load area to indi-
rectly improve the efficiency of wind energy and achieve real-time online learning. The
variation in pitch angle to reduce the consumed energy of the pitch actuator is relatively
gradual. The controller is based on the Markov decision process (MDP) framework. The
simulation results showed better performance than other traditional controllers but it also
has some problems which need to be solved by improving the training of neural networks
to increase the success rate and speed up learning.

Ahmet Serdar Yilmaz and Zafer Özer have proposed two types of neural networks as
pitch angle controllers, multi perceptron with backpropagation (MLP) and RBF [65]. The
RBF algorithm was used as a second/alternative controller to MLP. Both neural networks
were trained online at variable speeds in a short period of time. MLP-NN has two inputs
and one output with five neurons in the hidden layer while RBF-NN has three inputs and
one output with 10 neurons in the hidden layer. Both of them have a non-linear activation
function in the hidden layer and a linear activation function in the output layer. From the
simulation, the RBF-based controller gave better results as it has a smaller settling time.

Different control algorithms were used for the WT pitch control system, considering the
system’s nonlinearity. Classical control systems showed simplicity and adaptive response
for pitch control, but they showed difficulty in measuring the wind speed precisely while
modern and soft computing control techniques showed rapid response and ability to solve
the system’s nonlinearity and complexity but also needed rules updating with the change
in the system’s parameters variations. Artificial intelligence algorithms have the ability to
automatically train and update their variables so they showed a smooth transition between
the operating regions, which decreases pitch actuation usage.

3. Torque Control Technique

At the below-rated wind speed region, the objective is to optimize the maximum
output power at this low wind speed by controlling the generator’s synchronous speed.
Here the control deals with the WT’s electrical subsystem or, one might say, the electronic
converter connected to the generator. This operation considers maximizing aerodynamic
efficiency by changing the generator’s electrical torque to achieve the optimum tip speed
ratio (defined as a function of rotor radius and rotor and wind speeds) between the rotor
and wind speeds to achieve the maximum aerodynamic power coefficient while keeping
the pitch angle fixed. The change in electrical/generator torque (Tg) against mechanical
torque I produces acceleration torque, making the rotor speed follow the wind speed
changes and keep the tip speed ratio at its optimum value [18].

The torque control system, shown in Figure 5, is associated with rotor speed control
either in the below-rated wind speed region by increasing the generator synchronous
speed while keeping the pitch angle constant or the above-rated wind speed region by
maintaining the generator torque at its rated value while varying the pitch control and this
can be called multivariable control that aims to continuously regulate the rotor speed along
with the electrical power in order to avoid the drawbacks of using the pitch angle as the
only control input signal while keeping the generator torque at its rated value [66]. In the
previous section, various pitch control techniques were reviewed, so in this section, some
of the torque control techniques are presented.
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Adel Merabet et al. proposed a multivariable control strategy that operates in both
below- and above-rated wind speeds. Regarding the torque control, it was designed based
on the zero speed-tracking error technique in order to follow wind speed trajectory, which
is represented by a WT’s rotational speed reference that was carried out from a wind speed
measurement, allowing the turbine to operate at the optimum tip speed ratio and, as a
result, achieve maximum power extraction in the below-rated wind speed region while
keeping pitch angle constant [67]. Turbine torque was considered to be an unknown, and it
was estimated by a torque estimator to guarantee the control’s robustness, then PI torque
control was designed to control the d-q components of generator current and so control
its speed. Simulation results showed the robustness of the proposed multivariable control
strategy and that it overcame the drawbacks of using the pitch angle only as a control input.

Boubekeur and Houria proposed a nonlinear dynamic feedback torque control ap-
proach considering no wind speed measurement aims to maximize the power extracted
from the wind in the below-rated wind speed region and reducing the mechanical loads [68].
Simulation results showed a 10% improvement in WT efficiency using the dynamic state
feedback with estimator compared to an indirect speed controller, and a reduction of
1.18 kNm of the low-speed shaft torsional torque standard deviation. They also proposed
the combined control strategy’s principle between the fast nonlinear dynamic state feed-
back torque control strategy, but without considering WT dynamics, and a slow linear PID
pitch controller in order to minimize the actuator control loads [69]. Simulation using FAST
showed that the nonlinearity in torque control alone could realize improved electric power
regulation, the standard deviation of the electric power was 1 kW while it was 45 kW for
PID torque control, but it could not maintain the rotor speed at its nominal value so the
slow PID pitch angle controller was incorporated to regulate the rotor speed. Compared to
a monovariable controller, the proposed strategy showed great performance in regulating
rotor speed fluctuations and electrical power regulation.

Direct torque control (DTC) is a technique based on controlling generator torque and
flux directly by selecting a voltage vector and there are three modes of operation which are
sub, super, and synchronous generator speed. The synchronous speed mode particularly
was adopted in a few studies [70,71] while the three modes have been considered separately
in [72,73]. Zhe Zhang et al. proposed a sensorless MPPT space vector modulation-based
direct torque control (SVM-DTC) with a quasi-sliding-mode-observer (QSMO) operated
with low sampling frequency to estimate rotor position and flux linkage of the permanent
magnet synchronous generator (PMSG) since the accuracy of such control depends strongly
on the exact rotor speed information [70]. Optimal torque that relies on optimal shaft speed
is then obtained for DTC and so MPPT control is achieved without measuring wind speed.
In [71], the DTC technique was also proposed to optimize captured wind energy to extract
maximum power using the MPPT algorithm by operating particularly on synchronous
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mode, while in [72] the wind randomness was considered by operating in the three modes
of operation, sub, super, and synchronous speed, separately and the results showed the
effectiveness of the control in the three operation modes.

Huo Dongdong applied DTC based on two methods for controlling WT generator
torque, which are SVM and matrix converter methods and compared them with respect
to different criteria like complexity, dynamic response, and switching frequency [74]. The
simulation showed the superiority of SVM, especially in switching frequency and reducing
torque ripples. For power performance enhancement, Eial Awwad proposed a 12-section
polygonal DTC of 30◦ and compared it to the conventional 60◦ 6-section DTC for a PMSG
machine side converter and grid side converter to solve the drawbacks of conventional
DTC such as inaccurate switching frequency and high torque ripples [75]. The simulation
showed satisfactory dynamic performance with torque and flux ripple reduction resulting
in enhanced output characteristics.

Optimal torque control (OTC) is a control method that allows the generator to operate
at the optimal speed so that the MPPT strategy can be applied to track the maximum power
production regarding delivering only active power into the grid [76]. K. Palanimuthu
compared the performance of PMSGs and permanent magnet vernier generators (PMVG)
in wind turbine systems using MPPT control [77]. Both traditional and improved OTCs
were employed to analyze and validate both generators’ dynamic performance under
various wind conditions.

Robust adaptive control was proposed by Srikanth Bashetty et al. for torque and
pitch control in order to maximize the power extraction at different wind speeds operating
regions by maintaining the rotor angular speed at its optimum value through switching
between torque and pitch control depending on the wind speed [78]. The inputs of the
system’s transfer function are the thrust force on the rotor blades applied by the wind,
aerodynamic torque exerted on WT’s rotor (whose coefficients are a function of pitch angle),
and electrical torque applied by the generator. The reference model has the nominal rotor
speed as the input reference and angular speed as the output from the model and an input
for the controller so that the controller can track the optimal angular speed by varying
the generator torque according to the error value between them. The simulation results
verified that the rotor speed was maintained to track to the optimal speed value at all
regions, which means this adaptive controller can be applied for any uncertainties giving
efficient rotor angular speed tracking performance.

Btissam Majout proposed a novel smooth continuous switching control for SMC in
order to solve the problem of the chattering phenomenon that causes extreme fluctuations
for the WECS [79]. The proposed approach was compared to the conventional SMC by
simulation under random wind speed fluctuations and the results showed the effectiveness
and robustness of the proposed algorithm regarding the system’s stability and output
current ripple control. In [80,81] an integral SMC (ISMC) was proposed which has the
benefits of providing robust performance regardless of the system’s uncertainty and adapts
the power supply dependently during critical partial load. The simulations declared
the robustness of the proposed ISMC according to better energy extraction and dynamic
response as it has the ability of fast error convergence.

M. Abdelrahem et al. proposed a predictive torque control with no weighting factor
based on calculating the d-axis reference current directly from the reference torque, obtain-
ing the q-axis current to be the second controller variable to regulate the power change
between the DFIG stator and the grid. The voltage vector reference is then computed
based on those current references [82]. According to the location of the reference voltage
vector, the cost function is evaluated to achieve the best switching action and then the new
cost function is presented by voltage error so no weighting factor is needed, hence the
computational load is significantly reduced compared to classical predictive control.

Another approach for controlling rotor speed to maximize the captured wind energy
at different wind speed operating regions is by employing wind speed estimation. Wind
speed information could be provided by using sensors like LiDAR [49,73]. Fanzhong Meng
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et al. proposed an ES control algorithm based on LiDAR information to track the optimal
power coefficient value, hence increasing and optimizing power production [83]. However,
wind speed measuring using a wind sensor such as LiDAR or mostly using a mechanical
anemometer greatly increases the system’s cost regarding installation and maintenance
costs and reduce the system’s performance. So, replacing the wind speed instrument with
an effective wind estimator based on a soft computing technique would provide sufficient
wind information needed for the controller algorithm and also solve the cost and system
performance problem [84].

Various soft computing techniques have been used for wind speed estimation such
as the fuzzy logic model in [85] used for estimating the wind speed based on fuzzy rules
deduced from the WT’s typical power curve, which represents the behavior of the rela-
tionship between the extracted power, rotor speed, and wind speed. An artificial neural
network model like in [86], an estimation algorithm based on unknown input disturbance
and extreme learning machine (UIDOB-ELM) is presented, as is a support vector machine
in [87,88], which is suitable for problems defined by a small sample, nonlinearity, local
minima, and has high generalization and deep neural networks (DNNs) which showed
a robustness performance in a real time domain despite the system’s uncertainties and
actuator faults [89].

FLC also showed its effectiveness in updating the weight coefficient automatically by
setting heuristic rules based on training and experience regarding different wind speeds
and generator torque ripples. An adaptive fuzzy PI speed controller was proposed for
producing optimal power [90,91]. The simulations showed reduction in torque fluctuations
and enhancement in power production at different wind speeds with no steady state error
under disturbance. Also, as in [48], the authors designed a basic fuzzy regulator to adjust
the control NMPC weight coefficient and employed an improved multi-objective marine
predator algorithm (IMMPA) to optimize fuzzy regulator membership functions for the
generator’s torque fluctuation control and hence power production enhancement [92]. The
simulation showed a 1.77% increase in power production and a reduction in the generator’s
toque fluctuations by 0.126% compared to the fixed weight coefficient.

Hybrid techniques such as the NF algorithm and particle swarm optimization based on
support vector regression have shown high accuracy in effective wind speed estimation and
WT variable adjustment [93–95]. In [96], a multi–adaptive neuro-fuzzy inference system
(ANFIS), combining a neural network and fuzzy inference controller, was proposed in
order to reduce power output and generator speed oscillations by adapting both generator
torque and pitch angle simultaneously. The proposed ANFIS controller was compared to
PI and MPC controllers by simulations at the same wind conditions and the results showed
that the drive-train torsional torque, generator torque and output power perfectly track
1 pu without any overshoots or undershoots at the start time. Hence the WT’s power was
improved, and the lifetime of the mechanical parts increased.

Amir Farrokh et al. presented a nonlinear control based on linear input–output
feedback for a fed-doubly induction generator using two layers of ANN [97]. This control
technique showed perfect tracking performance for torque and rotor flux instead of rotor
and stator resistance uncertainties. Also in [98], nonlinear MLP mapping to estimate
the effective wind speed was used to design an extended optimal torque controller for
tracking the calculated optimal torque command, the accuracy of the proposed method was
improved by 2–7% compared to an unknown input disturbance observer and the extreme
learning machine (UIDOB-ELM) estimator.

Similar to a pitch control system, torque control considers the change in wind torque
due to wind speed change, so that controlling the generator torque can take the WT dynamic
system to the optimal operating point. Classic and modern control techniques showed
low losses and high efficiency, but had poor dynamic response and difficulty in calculating
the torque estimator. On the other hand, AI and soft computing techniques showed high
tracking efficiency for the optimal speed value so they can transition smoothly between
operating regions with no need for exact wind measurements.
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4. Yaw Control Technique

Natural wind has a direction randomicity characteristic, i.e., it continuously changes
direction from time to time. Nonetheless, wind turbines have been designed to most
efficiently generate power when the wind is perpendicular to the rotor plane since, when
the nacelle is not aligned with the wind direction, yaw misalignment occurs causing
potential loss of energy, which is a function of the rotor area projection on the perpendicular
plane of the wind speed [18] so the yaw control system (YCS) is activated whenever the
nacelle of the WT is not aligned with the incident wind direction. It gives a signal to the yaw
mechanism, which consists of electrical motors, gears, and bearings to rotate the nacelle
about the tower’s vertical axis so that the angle between the nacelle axis and the incidental
wind, called the yaw angle (ψ), is almost zero [99], as shown in Figure 6. So, in order to
enhance the utilization of wind energy, the yaw control system is designed to ensure that
the WT is constantly facing the wind incident by following the wind direction to maximize
the rotor effective area and so the captured power. In addition to maximizing captured
power, the yaw control system has other objectives, which are to unsnap tangled cable
when necessary and avoid any oscillatory behavior or dangerous gyroscopic effect [18].
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There are two types of yaw misalignments, which are yaw motion error (YME), the
deviation between the mean value of the measured yaw angle (µ) and zero, and zero-point
shifting error (ZPSE), when the zero point of wind vane sensor is not aligned with the
rotor shaft due to poor installation or after long-term use [100]. Directing the WT’s nacelle
windward can be carried out by two techniques, one uses the wind force to direct the
nacelle, which is called passive yaw and is mostly used for small WTs. The other is to use
electric motors to adjust the nacelle windward according to automatic signals from wind
direction sensors, it avoids frequent rotation and reduces mechanism wear and it is used for
medium and large WTs due to larger applied torque and it is called active yaw [101,102].

In order to improve yaw alignment, the yaw error angle must be measured precisely,
either by measurements instrument, analytic methods, or soft computing measurement, to
be calibrated in order to reach the minimum yaw error. An advanced measurement instru-
ment such as LiDAR for estimating the yaw error to be corrected was applied in [103–106].
The proposed control algorithms depend on correcting the yaw angle by analyzing empiri-
cal data and developing a correction scheme through comparison between measurements
from the nacelle wind vane to that of a met-mast wind vane using LiDAR. In [103], the
updated controller aims to correct the yaw error depending on rotor speed, so the data
extracted from the original and updated systems were limited to a 30–35 RPM rotor speed.
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The results declared that the yaw correction has an obvious effect on decreasing the mean
yaw error and increasing the power captured below the rated domain by 1–5%. Similarly,
a LiDAR-assisted yaw control system that measures the yaw error and builds a 3D table
based on recorded power segments and yaw azimuth on SCADA was proposed in [107].
This method could automatically correct the yaw angle error based on different power and
yaw azimuth intervals.

With regard to analytical methods, Solomin et al. proposed an analytic solution for
reducing periodical yawing error, called differential error of yawing, caused by deviation
of the flowing wind [108]. Experimental data for the vane’s angle fluctuation were collected
to build a yaw error compensator model by using regression analysis. Several simulation
experiments showed that using a compensator could reduce yaw differential error and
increase power production by 3.37%. Also, Peng Guo et al. studied wind direction fluctu-
ations in terms of fluctuation period T and amplitude A [109]. Weibull distribution was
applied to fit marginal probability density of these wind direction fluctuation measurements
and a mixed copula was employed to connect these marginal distributions for extracting
indicators that can accurately determine the wind direction fluctuation characteristics and
hence help in the optimization of yaw control system parameters. Moreover, a combina-
tion between a feedforward neural network [110] and K-nearest neighbor (KNN) [111]
with the Weibull distribution results in better wind measurement forecasting and accurate
description of wind direction change.

Chenzhi Qu et al. proposed a data-driven calibration method to determine the value
and direction of yaw misalignment by using historical data for six 2 MW WTs [112]. The
consistency of this method was verified by comparing the proposed calibration method
with the same flow direction and acceptable deviation as LiDAR measurements.

Feifei Bu et al. designed a yaw control system using a digital signal processor (DSP)
controller to improve wind turbine rapidity and accuracy and it was developed based
on micro-stepping control to overcome problems of out-of-step and low frequency oscil-
lations [113]. A wind sensor was attached to a conductive plastic potentiometer, which
generate resistance output voltage transformed to voltage from 0 to 3.3 V to represent angle
from 0 to 360◦. The wind turbine turns in the shortest path in order to reach the optimal
acceptable accuracy of the system. However, great real-time performance and fast data
processing and automatic wind direction tracking have been achieved.

Since the yaw system is a non-linear system that has time-varying parameters and
it is too complex to be mathematically modelled, classical control techniques will not
give the expected output results. From many years, a yaw classical PD controller and
fuzzy self-adaptive controller were used separately to make comparisons between their
performances [114]. The comparisons showed the effectiveness of a fuzzy controller in
following the wind direction changes and so improving wind energy efficacy while the PD
controller parameters’ tuning as a wind condition dependent process showed less sufficient
results compared to the fuzzy logic controller.

Liu Wenzhou et al. also proposed a PID controller combined with a fuzzy adaptive yaw
controller and complete wind wheel position adjustment to track the wind direction. The
simulation results showed the effectiveness of the fuzzy self-adaptive control to calibrate
the PID gains online to give better real-time wind direction tracking [115]. Fuzzy control
has also been used as a fatigue-oriented yaw control strategy to optimize the yaw speed at
each stage of yaw operation [116]. Due to the long run operation of the yaw system, the
yaw bearing is exposed to the accumulation of fatigue loads, so this proposed yaw control
strategy could reduce the fatigue load on the yaw bearing in different yawing scenarios.

Stefanos Theodoropoulos et al. have developed a fuzzy controller by considering
FIS based on the Takagi–Sugeno model [117]. The inputs to the controller are yaw zero,
yaw error change, and wind velocity while the output is a constant or linear signal to the
motor’s driver, which then converts it into synchronized pulses for the motor. MATlab has
been used to simulate the model’s output power at each specified yaw error angle and wind
velocity. The simulation results declare that the advanced fuzzy controller has the ability
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to retain the nominal output power despite the increase of yaw error angle, taking into
consideration both the direction and velocity of the wind. In ref. [118], Ramaswamy Bharani
et al. designed a simple, low cost, and accurate yaw positioning fuzzy logic controller
equipped with a wind turbine sensor and an angle position sensor on the tower top in
order to track the maximum wind velocity. The accuracy of the controller of ±1.5◦ has been
validated using a real-time dataset.

Prediction of wind direction over a specific time horizon to be used as an input for a
yawing control system could be the proper solution as it allows the WT to begin yawing
earlier than it would, which reduces structural load mitigation as well as maximizing
power production extraction efficiency. Martin Spencer et al. proposed two yaw controllers,
one was created by modifying the feedback yaw controller considering wind direction
prediction, and the other was based on MPC [119]. The baseline controller was similar to
that used for the Dutch offshore wind energy converter (DOWEC) 6 MW WT, which was
used to determine the yawing rate of NREL 5 MW and it was modified to use the wind
direction average over a future period of time instead of a past one. Online optimization
was carried out by qpOASES (a general-purpose quadratic program solver) for a preview
time of 60 s. Since the optimization is based on the yaw rate, the output will always be
continuously varying, which will cause increases in yaw actuation, so this problem is
solved by modifying the MPC controller to activate the yaw drive at discrete intervals with
specific conditions and the results reveal an 8% increase in power capture during extreme
direction change and 0.5% increase during turbulent wind and also several fatigue loads
were reduced.

In [120,121], a stochastic model predictive yaw control (SMPYC) technique was pre-
sented, based on intelligent scenario generation (ISG) to generate characterized scenarios for
wind direction prediction, and then the yaw action is optimized by the proposed SMPYC.
Compared to the conventional MPYC, the power captured efficiency was improved by
0.26–0.43%.

In [122], Nikola Hure et al. described the design of an optimal yaw control system
based on very-short-term wind direction predictions that resulted in maximizing the power
production by 0.6% and minimizing structural loads by taking actuator limits into consider-
ation using the model predictive control paradigm discussed in [123]. The aforementioned
objectives can lead to optimal power production performance and a long lifetime to obtain
maximum profit. Also, in light of period-term wind prediction, Chen et al. proposed a
LiDAR-assisted long-short term-neural network (LSTM-NN) yaw control strategy to solve
the accurate measurement data lag in the yaw control system [124]. The predicted wind
speed data are used to plan for the number of yaw actuations in both medium- and low-
speed regions to achieve power enhancement without increasing yaw duty. The results
showed an improvement in power production by 3.5% and a reduction in yaw actuations
by 3.9%. Likewise, a two-level economic model predictive control (TL-EMPC) yaw strat-
egy based on real wind measurements using LiDAR was presented [125]. This strategy
considered the power loss during the yawing process, fatigue of WT parts, and a limited
load of the yaw actuator so as to obtain the best yaw speed at different wind speeds. The
simulations declared a 1.8% increase in average power.

Dongran Song et al. presented two methods for wind direction prediction based
on time series models, the first one used an auto-regressive integrated moving average
(ARIMA) model, while the second was a hybrid ARIMA method-based Kalman filter
(ARIMA-KF) [126]. The prediction and statistical results of the ARIMA-KF model showed
effectiveness in providing good forecast results compared to the ARIMA model and so
it is better applicable to optimal yaw control in WTs. Then, they developed and tested
a novel yaw control structure that consists of a wind direction predictive model based
on a hybrid ARIMA-KF model and two novel yaw control methods aiming to decrease
yaw error, yaw action time, and yaw action count [127]. The ARIMA model was initially
defined by choosing three sampling periods (10 s, 30 s, 60 s) and then letting the model start
training by model identification, parameter estimation, and diagnostic checking. While the
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two yaw control methods included one using the predicted wind direction as the tracking
reference, and the other was based on model predictive control (MPC) using a finite control
set in order to decrease yaw error by tracking the predicted wind direction and avoid
yaw actuator over-usage. The simulation results showed the capability of the two yaw
controllers to increase the extracted wind power by reducing the yaw error and the effect
of the MPC to minimize the yaw actuation.

Another prediction algorithm was presented in [128,129] by Dongran Song et al. It was
developed by MPC using a multi-step prediction horizon and finite control set that includes
the yaw actuator variables and yaw system’s hardware constraints, the optimal solution
was then effectively found by using the exhaustive search (ES) method that depends on
suggesting each and every variable in the control set domain, selecting the ones that satisfy
the system’s constraints and then finding the optimal variable that optimizes the control
objective. Three MPC controllers with one-step, three-step, and six-step prediction were
developed and simulated on MATlab software and the results showed the effectiveness and
superiority of the proposed multi-step prediction algorithm in tracking the wind direction.
And in [130], Dongran Song proposed a novel adaptive MPC (AMPC) for the yaw system
to determine the best control horizon and yaw rate that results in the minimum value of
the system’s QF. The simulation results based on real-time data showed an improvement in
the predictive control-based yaw system performance with different wind direction data.

Dongran Song et al. also developed two control systems in order to optimize the
power extraction efficiency (PEE) from wind. The first one is a direct measurement-based
conventional logic control (control system 1), and the second is a soft measurement-based
advanced model predictive control (control system 2) [131]. The main objectives of the
YCS are minimization of the power reduction factor and minimization yaw actuator usage
so a multi objective pareto swarm optimization (MOPSO) algorithm is proposed to solve
the two-objective issue. The results of the simulation and analysis of the two YCSs were
compared to each other and they declared that at actuator usage > 4.9%, the PEE of control
system 2 is higher than that of control system 1. Nevertheless, as the actuator usage
decreases, the PEE of the two control systems becomes worse but that of control system
2 decreases faster.

In contrast to the yaw control techniques that consider following the direction of
the wind to aim the WT’s rotor windward to maximize the power extracted, an inverse
approach was adopted that calculates the maximum power point then tracks it rather than
dealing with the wind direction. Felix Alberto et al. developed an active yaw control
algorithm based on the hill climbing control (HCC) algorithm that takes the maximum
generated power as an indication to determine maximum wind speed direction without
using a vane [102]. HCC is an artificial intelligence method used to search maximum
point of function by manipulating the control variables. In this model, it takes the change
in output power as a continuous reference. The simulation was carried out on Matlab
considering three cases which are constant wind intensity, constant wind direction, and
both variations. The motor was turned on whenever there was change in output power
due to a change in wind intensity and/or direction, immediately after the motor was
turned on, the generated power does not change making the motor turn off again. While
Haiguo Piao and Zhixin Wang proposed a vane-hill climbing (V-HC) algorithm which is
applicable for large WT systems to ease the process of wind direction tracking for the HCC
algorithm [132].

In [133–135], MPPT control combined with a full power converter system and fast
alignment of the nacelle to the wind direction was developed. This technique is based on
aligning the rotor to the wind direction through estimating the error between the optimum
wind turbine rotational speed, calculated from the tip speed ratio and the real wind turbine
rotational speed, while it is not dependent on wind direction methods so as to decrease
inaccuracies that may be caused due to vortex flow downstream of the blades.

Bo Jing et al. applied a new simulation method that simulates the output power at
different yaw states and a detailed analysis of the effect of yaw misalignment on WT power
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generation. MPC control can be applied to calibrate yaw misalignment, specially of the
ZPSE type that have a more serious impact on WT performance, so as to achieve maximum
power extraction. The proposed method succeeds in detecting and calibrating ZPSE online
without the need of additional detection equipment [100]. In [136], an identification and
compensation scheme for yaw control strategy based on the SCADA system of data mining
approach was proposed. The SCADA data are divided into portions in terms of yaw error
and the power curve is set for each portion by an outlier detection algorithm to detect
the best system performance and automatically compensate the yaw misalignment. This
approach showed cost reduction compared to traditional calibration methods as there is no
need for additional hardware.

Yan et al. have analyzed and optimized the yaw error through the three important
links of a yaw control system, namely wind measurement, restart control strategy, and yaw
execution [137]. Based on the wind measurement study, using laser radar wind instead
of mechanical crosswind instruments showed a 2.04% increase in power production and
effectively reduced the yaw error. For the restart strategy, the delay threshold and yaw
error angle could be adjusted by different wind speed segments and for the execution
strategy, variable universe fuzzy control has been used for yaw error optimization. This
optimization method showed effectiveness in improving wind turbine power generation.

Regarding WT system performance enhancement, machine learning algorithms as
advanced control strategies that adjust themselves to perform way better while exposed
to more data can provide additional features for wind turbine control systems and also
consider the system’s constraints. Nida et al. developed SVR as a yaw error estimation
approach [138]. This method is a kind of machine learning technique that forms a number
of learning methods from 2 variables which are variance and relaxation parameters (σ, c).
SVR is applied to sets of data and root mean square error (RMSE) is calculated. The method
with the least RMSE is conserved by saving the optimal σ and c, which are then used in
SVR regression to obtain support vectors.

An advanced yaw control strategy using an artificial neural network (ANN) based
reinforcement learning (RL) algorithm was designed by Aitor et al. and verified in a simu-
lation environment to minimize the mechanical moment on yaw bearing while maximizing
power gain [139]. Such an algorithm considers self-learning during the operation in real
environment conditions and multivariable states and actions in addition to the external
mechanical loads. The algorithm builds matrix functions for each wind scenario, which
are then analyzed with FAST to obtain multi-possible states and actions. The PSO and
Pareto optimal dront (PSO-PoF) algorithm is then executed to find the optimal actions that
satisfy the compromise between power gain and mechanical loads due to yaw rotation. The
results have declared a reduction in mechanical moment compared to the system presented
in [140] while the value of the power gain has been kept similar.

An enhanced ANN has been implemented to generate a predicted wind direction input
signal for the WT yaw control system [141]. A set of 12 different weather-measured variables
that come from the meteorological station were used in order to enrich the predictive
factors of neural networks, strengthen the neural network’s validation, and increase its
prediction efficiency by analyzing the different correlation between each variable and the
wind direction to establish the weight of their impact on the final prediction behavior of the
system. Also, in [142] the authors applied the ANN method to a WT prototype for wind
direction prediction regarding some input parameters such as humidity, wind speed, and
pressure, and the tests results could reach the lowest mean absolute error of 0.482.

Yanga et al. proposed a wind direction prediction algorithm based on non-linear
autoregression (NAR) combined with an Elman neural network (ENN) in order to reduce
the wind direction determination error as it includes a feedback property hidden from the
input layer [143]. The NAR algorithm represents a good nonlinear mapping technique that
allows computing ‘n’ times of nodes before and after the present value and has an excellent
ability of dynamic tracking and rich state recording of information. The simulations showed
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an improvement in yaw tracking accuracy at the same time power production increases
by 6%.

Moreover, David and Diego compared 18 different ANN architectures and used two
optimization algorithms, which were Levenberg–Marquardt and gradient descent, in order
to predict the flow wind direction and use it as input reference [144]. The comparison based
on RMSE showed that for the gradient descent algorithm, the best architecture was [7 5 1]
with 0.0013 RMSE and for Levenberg–Marquardt, the best architecture was [7 5 3 1] with
1.63 × 10−7 RMSE.

Wind farms face a challenge regarding yaw systematic error due to wake interaction
between the wind turbines situated in a wind farm, which causes high extreme loads on
the downstream rows and affects the power coefficient. The estimation of the WT system’s
power coefficient and the wake length has great role in the wind energy conversion system
and wind farm design [145,146]. Large eddy simulation (LES) combined with actuator line
method (ALM) were used to simulate the flow field in the wind farm and around each
turbine, then the proper orthogonal decomposition (POD) method was used to analyze
the energy in each flow plane. This method showed effective prediction for the power
coefficient with a maximum error of 1.7%.

In [147,148], a cluster identification method was presented in order to determine
which turbines in a wind farm are coupled together through wake effects that affect the
yaw misalignment. The identification method was based on SCADA data and results from
large eddy simulations of wind flow over the wind farm. This method showed effective
results in identifying turbine clusters and controlling their yaw angle in order to optimize
their performance but only in cases where they are communicated with each other.

D. Astolfi et al. proposed the principal component regression (PCR) algorithm for WT
yaw control system optimization based on preliminary analysis of real operating data [149].
The study was conducted on a 2 MW WT in a wind farm composed of 9 WTs in southern
Italy. The measurements that have been validated for the wind farm are rotor and generator
speeds, nacelle position and power output, and wind direction, so the yaw error could be
estimated and calibrated. This method provided a 1% increase in annual energy production.
They also proposed a yaw error correction technique for a wind farm by detecting and
correcting systematic yaw error for misaligned WTs [150]. This operation was based on
data analysis first then employing data analysis for the whole wind farm and taking the
other WTs as input reference data for a multivariate kernel regression for assisting in power
performance improvement. This technique enhanced the power production by 1.5% at
4◦ yaw error correction.

Yet, the traditional yaw system relies on a gear coupling mechanism and multi-motor
driving, which has many drawbacks such as high mechanical part friction, periodic lu-
brication and maintenance, a complicated structure, high failure rate and poor yaw ac-
curacy [151,152]. So, in the light of enhancing yaw control performance and in order to
decrease the yaw power, Xiaogung chu et al. proposed a novel maglev wind yaw system
(MWYS) using a hybrid magnet with two groups of suspension windings instead of the
traditional gear-driven yaw mechanism of HAWTs [153]. In order to decrease the power
difference between the two suspension groups, which affect the suspension stability, the sus-
pension winding turn optimization was carried out by GA and the simulation showed that
the optimized model could keep the air gap stable and also decrease the power difference
up to 140 W compared to the non-optimized model [154].

Regarding the maglev system’s control algorithms, single PID control showed many
defects for stabilizing the position error due to the complicated relationship between
field current, electromagnetic force, and the air gap between the two windings of magnet.
The PID controller showed a slow response, low accuracy, and also ignored the effect of
unknown variables so it could not provide systematic modeling [155,156]. PID has a simple
structure and is easy to implement, so for further improvement of the maglev system,
dynamic tracking, and anti-interference performance, Nannan Wang et al. proposed an
MPC control method together with a PID controller to stabilize the MYS suspension at
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equilibrium point [157]. Based on the state space equation, the MPC controller was designed
as the outer loop controller and the PID as the inner loop controller then the simulations
were carried out to compare the proposed MPC controller and the classical PID control.
They showed that the proposed MPC controller has rapid response, high accuracy, and
stability compared to the classical PID controller. In [158], they proposed FCS-MPC as
the outer loop control with state feedback control with PID (SFC-PID) as the inner loop in
order to improve the dynamic response and the anti-disturbance ability of the MYS. The
experimental studies and comparative simulation showed the feasibility and sustainability
of the proposed control.

Euan MacMahon et al. established a novel yawing technique for the multi-rotor
system (MRS) by designing a yaw controller that operates by manipulating the thrust of
the rotors [159]. The controller is separated into two sections, the first section, which is
called aggregate controller, estimates the total change in power required to reduce the
yaw error to zero by reducing the thrust on rotors. The second section, the dispatch
controller, distributes the total change in power between the rotor and power conversion
(RPC) systems and determines the rotation direction depending on whether the yaw angle
is positive or negative. The control system consists of double control loops, the outer loop
acts to reduce the yaw error while the inner loop acts to reduce the yaw angle. The yaw
error at 8 m/s, 11 m/s, and 15 m/s over a 2 h period was 1.2◦, 4.5◦, and 1.5◦, respectively,
while the acceptable yaw error was set to be +/−5◦. But the energy lost at 8 m/s, 11 m/s,
and 15 m/s over a 1 h period were 0.84%, 1.5%, and 4.49%, respectively, as a percentage of
the energy obtained with zero yaw error.

I. Guenoune et al. proposed a new concept for controlling twin-rotor wind turbines
in order to face the wind direction by tracking the maximum power point and based on
a sliding mode approach, which means no yaw actuation is needed [160]. This control
structure depends mainly on forcing the system trajectories to converge to a domain named
sliding surface by controlling three variables: the angular velocity of both wind turbines
to reach maximum power coefficient by keeping their tip speed ratios at their optimal
values; direct current by forcing them to zero in order to avoid ripples of electromagnetic
torque; and finally pitch angle in order to create a difference between drag forces resulting
in appearing of yawing torque that forces the rotation motion.

Several algorithms have been used in the yaw control system to direct the rotor–
nacelle assembly toward the wind direction, concerning load and actuation usage reduction.
Conventional control techniques provide feedback techniques, but expensive sensors are
needed. They also showed poor response and did not give the expected output results.
Soft computing control manages to cancel the disturbances while tracking the set point and
also providing a multivariable control technique, but it is sensitive to extreme changes in
weather conditions and needs several tuning parameters. Artificial intelligence techniques
showed a robust response and can operate in a wide operation range without the need
for exact system models, but it takes a long time and a large amount of wind data for the
training and optimization process.

5. Discussion and Main Trends

In this paper, various control techniques for WT’s three main control systems, pitch,
torque, and yaw control, have been reviewed and discussed considering the system’s power
production performance. However, this literature review presented a brief background
about each of the three control systems and their operational wind speed regions. Pitch and
torque control systems are related to the variation of wind speed, and they are responsible
for controlling the rotor’s rotational speed in order to maintain power production such
that pitch control limits the power at high wind speeds while torque control maximizes
the power at low wind speeds. Yaw control systems depend on the wind direction, so they
keep the turbine facing into the wind continuously to harvest maximum energy.

The different control techniques reviewed in this paper can be generally categorized
into three main control types, which are classical, modern, and AI control techniques.
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However, classical controllers can be well-designed and adjusted but when the system
encounters multiple challenges from the operating environment, the classical controller has
a low robustness performance. For example, the PI controller may cause a large overshoot
while the PID controller’s performance is reduced with changes in WT’s operating points
since the design of the controller is based on a nonlinear WT model that is linearized
at specific operating points by small signal analysis. Also, small sampling time results
in a severe fluctuation of the PID controller output, resulting in a shorter actuator life.
A classical controller can provide better results for each of the pitch and torque control
systems if it is tuned and optimized by AI techniques in order to enhance its performance.

Modern and soft computing controllers are based on artificial techniques that provide
efficient, quick, and predictive responses in order to overcome a WT system’s uncertainties.
One of the most common algorithms used in these techniques is FLC algorithm, as it
considers all the system’s uncertainties and produces a result that is not only true nor false,
it gives possible values between true or false like a human brain. It is also a multi-input
multi-output algorithm that takes all available data, categorizes them into a set of rules,
solving them and takes the best possible decision according to the system’s input. It can
solve complex non-linear systems with no need for exact system modeling and it is cheap,
but it is completely dependent on human knowledge, which means that the rules set need
to be regularly updated by a human, they cannot be updated automatically according to
any change in the WT system and it also takes a lot of tests for validation. Such types of
controller are recommended for the three types of WT control systems, as they can cover a
wide range of operating points for a dynamic system.

Artificial intelligence and hybrid techniques, such as maximum power point tracking,
model prediction, and neural network controller algorithms, consider multiple inputs
and outputs including the system’s constraints and uncertainties. They can predict the
upcoming wind conditions and disturbances and decide the upcoming action before it
should be taken, so as to decrease the usage of the actuation system and enhance the power
extraction efficiency. They can also provide a smooth transition between the operating
regions. These algorithms need detailed system modeling with all the possible variables
to be trained and tested but with any change in the system, the algorithm automatically
updates itself based on the trained model, so it can simulate human brain. These types
of controllers solve the drawbacks of classical controllers and also improve the dynamic
performance of a WT system.

However, the performance of a WT system depends mainly on the current wind
conditions, as well the upcoming wind conditions, which can change suddenly causing
fatigue for the WT’s structure and power loss. So, taking fast action and transitioning from
one operating region to another smoothly are very important criteria for implementing a
controller for a WT’s different control systems. For the yaw control system, AI algorithms
showed improved results for their ability to train and test huge sizes of datasets so they
can predict the upcoming wind direction and take the control decision before it should
be taken, which also reduces the yaw actuation time and increases the lifetime of the
mechanical components. Pitch and torque control systems are dependent on wind speed
and on each other, both of them are controlling the rotor’s rotational speed to improve
power production. Modern controllers like FLC and classical AI based controllers alike,
showed enhancement in power production by up to 5% for small-scale WTs and up to 2%
for multi-megawatt WTs when used for pitch control systems and also showed better and
faster response times with minimal system overshoot. Also, for the torque control system,
adaptive fuzzy PI, FLC-PSO and NN-FLC showed effectiveness in reducing the generator’s
torque ripples and optimizing the rotor’s rotational speed and improved power production
by up to 2% compared to classical controllers.

In summary, for each of the WT’s control systems, there are a number of reviewed
papers with different control techniques, which are mostly applied on large-scale WTs.
Figure 7 shows a statistical chart of the reviewed papers for each control system, and it
can be noticed that modern techniques are widely used in WT control over the years as
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they can solve the drawbacks of conventional techniques and can perform as robustly as AI
techniques but with lower costs. Table 1 summarizes the reviewed papers and references
the number of each control type for each WT control system.
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Table 1. Research Studies for Each Control Strategy Per System.

Control
System Control Technique References

Pitch

Classical [13–15,18,19,39]

Modern [20–23,25–28,31–33,36–38,40–45,47,48,53]

AI [16,17,24,29,34,35,46,49–52,54–56]

Torque
Classical [60]

Modern [58,59,62,63,66–73,75,76,80,81]

AI [61,64,65,74,77–79,82–88]

Yaw

Classical [135–138,143–146,149]

Modern [90–99,102–113,115,120,122–125,127,147,148,150]

AI [100,101,114,116–119,121,126,128–134,139,140,144]

This article illustrates the finding that with careful control technique design, WT power
performance can be enhanced, considerably reducing the mechanical loads and actuation
usage, which are important parts of the system’s objectives. Additional sensors also can
increase the controller robustness by helping it achieve its objective efficiently so that such
controllers can be applied to commercial turbines to a limited extent. It is believed that this
review article can serve as a comprehensive reference for future research on WT systems
and wind energy production. Figure 8 summarizes the different control techniques used
for each of the WT’s control systems and their pros and cons.
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