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Abstract: The European Union (EU) has agreed to gradually include shipping in the EU emissions
trading scheme (EU ETS), which makes shipping companies vulnerable to carbon price fluctuations.
The aim of this paper is to investigate the effectiveness of carbon and petroleum futures contracts in
managing carbon and bunker risks. We examine the effectiveness of alternative hedging methods,
including both static and dynamic approaches, to estimate optimal hedge ratios under single and
composite cross-hedge settings. Our results show that carbon future contracts are important for
hedging the carbon emission allowances price risk, and Brent oil futures are the most effective
instrument for out-of-sample hedging of bunker prices. In addition, the hedging effectiveness
indicates that conventional methods outperform the sophisticated models in terms of variance
reduction. Our study offers new insights into how the carbon and bunker markets relate to a
combination hedging in reducing the joint price risk, which can be used to promote risk management
in the market.
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1. Introduction

Shipping accounts for almost 3% of the total global greenhouse gas (GHG) emissions
annually [1], and it is estimated to increase in the coming years as seaborne trade keeps
growing and remains highly reliant on fossil fuels without notable improvements in energy
efficiency or sufficient implementation of emission reduction measures. Shipping emissions
are expected to increase by between 90–130% of 2008 emissions by 2050 for a range of
plausible scenarios [1]. To combat the rapid growth in GHG emissions, several initiatives
and regulations have been proposed and implemented at a global and regional level to
tackle the rapid growth in GHG emissions.

The International Maritime Organization (IMO), the regulatory body for international
shipping, has been devoted to limiting and reducing carbon emissions from the shipping
sector since the early 2000s [2]. IMO has undertaken technical studies of the issue and
served as a forum for the negotiation of the technical standards, resulting in a number
of regulations and policies covering a broad range of important factors that affect the
footprint of each ship, including fuel quality, engine efficiency and hull designs. The IMO
has decided on several instruments to improve ships’ fuel efficiency: the Energy Efficiency
Design Index (EEDI), Energy Efficiency Existing Ship Index (EEXI) and Carbon Intensity
Indicator (CII)) and market-based instruments are under discussion to be implemented in
the coming years [1]). Despite the efforts undertaken, the progress in IMO is unsatisfactory,
as GHG emissions from shipping are not decreasing, and therefore, regional initiatives
have been recently adopted in the EU.

Along with the global initiatives undertaken by the IMO, in July 2021, the European
Commission (EC) proposed a basket of measures, namely the “Fit for 55” legislative package
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that aims to include maritime transport in the EU climate efforts. The package supports
the EU commitment to the ‘European Green Deal’ target for a 55% reduction in the EU’s
GHG emissions by 2030 compared to 1990 and for climate neutrality in Europe by 2050 [3].
The inclusion of shipping into the EU Emissions Trading Scheme (EU ETS) is one of these
proposals, and together with four other proposals, it seeks to steer the EU maritime sector
towards decarbonization. This basket of measures also contains the ‘FuelEU Maritime’
initiative aiming to increase demand and the deployment of renewable alternative transport
fuels (‘FuelEU Maritime Regulation’) and remove the current taxation exemption regarding
fuel used by ships (‘Energy Taxation Directive’). The EU ETS commenced its operations in
2005 and is regarded as one of the earliest and most significant carbon markets [4] with the
largest trading volume in the world [5].

The scope of EU ETS was first referred to about 12,000 stationary installations, covering
approximately 40% of the European CO2 emissions [6]. In 2012, the aviation sector was
added to the EU ETS [7]. Critical implications of the inclusion of the shipping sector into the
EU ETS were deduced from previous inclusion of aviation in the EU ETS, proposals from the
EU institutions (Parliament, Commission and Council) and input from market practitioners
in the shipping industry [8]. From 2024, the EU ETS would apply to (i) vessels of 5000 gross
tonnage (GT) and above, regardless of flag, reflecting the current application of the EU
Monitoring, Reporting and Verification Regulation 2015/757 (MRV Regulation—The MRV
database was established by the EU MRV [9] for the monitoring, reporting and verification
of CO2 emissions within the European Economic Area (EEA) from maritime transport;
(ii) 100% of the emissions from intra-EU maritime voyages, 50% of emissions from all
inbound and outbound voyages between the EU and non-EU ports, and 100% of emissions
from ships at berth in EU ports; (iii) only carbon dioxide (CO2) emissions. However,
methane (CH4) and nitrous oxide (N2O) emissions are to be included only as of 2026.

The EU ETS is considered an efficient Market-Based Measure (MBM) to combat climate
change. The so-called market-based measures (MBMs) apply the “polluter pays principle”,
in which the polluter bears the costs of its emissions. These measures can range from bunker
levies and trading emissions to environmental taxes, inter alia, and provide incentives
for the polluter to reduce emissions [10]. It sets a maximum quantity of GHG that can be
emitted and issues a limited number of tradable allowances not exceeding the level of the
cap. Shipping companies are then allowed to buy or sell emission allowances on the market.
The acquisition of emission allowances gives the right to its holder to emit the equivalent
of one metric ton of CO2 into the atmosphere. The integration of maritime transport in the
EU ETS makes it more expensive for shipping companies to emit CO2 and ensure that they
take account of the costs of emissions when making commercial decisions. Over the long
run, shipping companies will seek to minimize costs by investing in low-carbon technology
alternative energy and adopting the most cost-effective abatement solutions because the
cost of transition is very high [11]. However, in the short run, shipping companies have
acknowledged the importance of managing carbon price risk and trying to mitigate it by
engaging the appropriate hedging strategies.

For the purpose of carbon emission risk management, a shipowner can set up a long
hedging position by buying carbon futures contracts. The Shipowner has a short carbon
position, as it represents the amount of CO2 emitted by the ship and the associated carbon
emission cost, and he is worried that carbon prices may increase over the next scheduled
voyage and thus reduce the profit from the voyage. To manage their exposure to carbon
price fluctuations, a shipowner can buy carbon futures contracts. The hedging strategy
should take into account the relationship between carbon spot and futures prices, the
duration of the voyage and the expected amount of carbon emissions. Fuel consumption
and, therefore, the emitted CO2 by a ship depends on the distance traveled, vessel size, hull
design and weather conditions, inter alia [12–15].

The shipping industry expects a significant cost increase from the inclusion of shipping
in the EU ETS; however, the economic impact will largely vary depending on the price of
emission allowances, the geographical scope of the system, the ship type and the energy
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efficiency of ships and operations [16]. The volatility of carbon prices affects shipping
companies’ emission decisions, as when the carbon price decreases, a company’s cost
of purchasing additional allowances decreases, and the company can emit more carbon
emissions in exchange for more economic benefits. In contrast, when the carbon price
increases, a company will choose to reduce the freight volume and reduce carbon emissions
if the marginal cost of purchasing additional allowances overreaches the marginal benefit
generated by transporting cargo [17]. Empirical evidence indicates that carbon prices at a
high enough level of around USD 120/ton carbon can accelerate the intake of abatement
operational and technological improvements in the shipping fleet [1]. Moreover, the impact
of EU ETS is not expected to be the same across the different shipping sub-sectors. For
example, Roll-on/Roll-off (RoRo) and Roll-On/Roll-Off/Passenger (RoPax) vessels would
be penalized due to their high fuel consumption per transport work in comparison to
oil tankers and bulkers [18]. Concerns regarding the stability of the shipping sector have
also been raised due to the carbon price volatility and the increased risk of administrative,
technical and operational challenges from the inclusion of shipping into the EU ETS [19].

The motivation for this study stems from the fact that the extension of EU ETS to the
shipping industry is currently one of the most thought-provoking issues among industry
practitioners and academics. With the aim of improving risk management in the carbon
and bunker markets, we initially examine the performance of a single instrument hedging
strategy on carbon allowances prices, and subsequently, we provide new insights into how
carbon and bunker prices relate to a combination hedging. The underlying assets in the
carbon markets are very different from those in the other financial markets, and they are
still not well understood.

Unlike conventional financial instruments, which pay interest, dividends or other
payments, carbon allowances do not provide interim cash flows; instead, holders can
simply collect the value from the resale price, which is determined by demand and supply
forces [20,21]. Ref. [22] focused on the complex interaction among policy targets, market
rules and dynamic technology costs to investigate price dynamics and risk factors in the
carbon emissions markets. Ref. [23] examined the carbon emissions within the nexus of
trade dynamics, energy consumption and economic growth. They conclude that trade
liberalization is a key determinant of environmental quality, which significantly contributes
to CO2 emissions, energy consumption, and economic growth. Despite the novel features
and rapid growth of carbon emission markets, our study contributes to the limited number
of studies in the literature that focus on risk management and optimal hedging in the
carbon emission markets. Previous studies on carbon markets by [24–26] focused more on
the dynamics between carbon spot and futures markets and examined the effectiveness of
alternative hedging methods.

Most research in shipping risk management uses single instruments or cross-hedging
strategies to hedge either freight risk or bunker risk. However, to the best of our knowledge,
there exists no research that estimates the composite instrument hedge for optimal futures
hedging of carbon and bunker risks. In contrast, there is a significant number of studies
in the literature on different aspects of shipping freight derivatives, hedging strategies
and hedging performance [27–29]. Ref. [30] examined cross-hedging techniques using
petroleum futures contracts for hedging bunker risk. In a related study, Ref. [31] investi-
gated the dynamics of the relationship between oil futures and the hedging effectiveness of
future contracts among different fuel derivatives.

In this paper, we develop hedging strategies by considering the interactions between
carbon spot and futures prices from the European Union Allowances (EUA) markets; we
apply four econometric models to estimate optimal hedge ratios (OHR) and assess their
performance using hedging effectiveness (HE) measures. Furthermore, we examine the
issue of carbon risk hedging for ship emissions related to freight voyages departing from
non-European ports and arriving at European ports. For the purpose of our analysis, we
have chosen specific shipping market segments that serve some of the most active European-
related seaborne trade. We estimate the fuel consumption and corresponding CO2 emissions
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of benchmark vessels operating in these trading routes to obtain an estimation of carbon
allowance cost. Then, we address the hedging problem associated with price fluctuations
in carbon and bunker markets.

Because of the urgency of regulations of carbon emissions not only in the US and
the EU but also in other parts of the world, this paper makes several contributions to the
literature on hedging applications for carbon risk management that are both practical and
academically significant, specifically in shipping businesses. First, as far as the author is
aware, it is the first to explore an optimal hedging strategy that can be used to manage
the exposure of a shipping company to both the CO2 and fuel price risks. Second, these
findings suggest that, despite the peculiarity of the carbon market, the methods, techniques,
ideas, and concepts employed in finance may still be used in the analysis of such markets,
with some changes. Third, it is a beneficial instrument for financial risk management in the
shipping sector, providing a comprehensive approach to shipping firms’ operational and
financial departments.

The remainder of the article is organized as follows. Section 2 presents a brief review
of the literature on carbon markets, with a focus on risk management and the challenge
of implementing a Carbon ETS in the shipping sector. The methodology is developed in
Sections 3 and 4. Section 3 outlines the methodology of minimum variance hedge strategies,
the econometric models for estimating the OHR and the measurements for assessing the
hedging performance. Section 4 provides the details of a case study for carbon emissions
and bunker risk management in shipping. Section 5 describes the data and its descriptive
statistics. Section 6 discusses the results from the various hedging models and the hedging
effectiveness is evaluated. Finally, Section 7 concludes the paper.

2. Literature Review

The Kyoto Protocol was signed in 1997 by members of the United Nations Frame-
work Convention on Climate Change, making Carbon Emissions Trading (CET) rights
the property of an emergent financial asset [32]. Since then, international carbon markets
have played a key role in reducing GHG emissions. Emission trading programs have
been launched with the UN Certified Emissions Reduction (CER), the Chicago Climate
Exchange (CCX), the EU Emissions Trading System (EU ETS), the Japan Voluntary Emis-
sions Trading System (JVETS) and the China Certified Emissions Reduction (CCER) are
all part of the market [33]. So far, the EU ETS is the most established and mature carbon
trading market [32], covering around 50% of emissions from more than thirty countries in
Europe [34]. The EU ETS is considered one of the most important policies at the EU level
and the backbone of the EU’s climate policy to achieve compliance with the Kyoto Protocol.

Although the carbon markets have gained eminence for carbon-releasing companies,
international investors and policy-makers, the studies dealing with hedging techniques and
optimal hedging ratios in carbon risk management are limited in the literature. Ref. [24]
documented the high correlation between carbon spot and futures markets, strong infor-
mation spillover between these markets and the potential benefits for the investors who
would decide to invest in both carbon spot and futures markets to hedge risk. Ref. [25]
examined the hedging performance in the European carbon markets and their results indi-
cate that the static hedge ratios generated from the simple ordinary least squares provide
the greatest variance reduction in most cases against the most advanced approaches. In
addition, Ref. [26] documented significant gains in using Markov regime-switching models
for generating optimal hedging in carbon emission markets than single regime hedging
models. Refs. [35,36] investigated the carbon market extensively, focusing on financing,
pricing, and risk hedging measures. Ref. [37] used the multivariate GARCH and OLS
models, as well as the naive approach, to calculate the optimal hedging ratios (OHR) for the
European Climate Exchange. When adjustment costs are not included, their results show
that dynamic hedging produces higher returns (in terms of lowering portfolio variation)
than static hedging. Overall, the lack of studies on the calculation of hedge ratios for carbon
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assets, as well as the novelty of the carbon market, give strong impetus for us to investigate
OHR and carbon risk hedging techniques.

Until recently, the risk management of shipping companies was focused on managing
two primary risks related to bunker risk and freight rates risk. These two risk areas are
relatively familiar, and many shipping companies already have methods, procedures, and
tools in place to track, monitor, report, and hedge against them [27–31]. The inclusion of
shipping into the EU ETS has entered a new major risk for shipping companies, and that
is carbon risk. Carbon risk is becoming increasingly prevalent as the emission trading
schemes are coming into effect globally and the shipping industry is being incorporated into
them. It is therefore increasingly important for shipping companies to accurately estimate
fuel consumption, adjust fleet operation; for example, slow steaming, and consistently
evaluate vessel emissions in order to achieve emission reduction in the short term and
develop effective risk management strategies [16].

The literature has only a few studies on maritime ETS. Ref. [38] thoroughly examined
and analyzed all prospective MBMs (including the maritime ETS) presented to the IMO.
Ref. [39] assessed the impact of adopting an open maritime ETS on a variety of fronts,
including global trade patterns, net-exporting nations, and market concentration in the
maritime sector. Ref. [40] analyzed the prospect of including the shipping sector in the
present EU ETS and contrasted this idea with alternatives such as a bunker charge system
and the Maritime Sector Crediting Mechanism. Ref. [41] investigated the effects of a cap-
and-trade system on shipping lines and European ports. This study discovered significant
and diverse impacts in several settings. To analyze the organizational and operational
effects of the maritime ETS on shipping enterprises, [42] undertook a case study involv-
ing ship operators, showing that shipping companies are optimistic about the potential
performance of maritime ETS. Ref. [43] examined the economic and legal implications of
adding shipping in the present EU ETS. They contended that such an endeavor would be
impossible to accomplish a cost-effective emission reduction while still complying with
existing international legislation. Ref. [44] conducted a qualitative study on the geograph-
ical extent of maritime ETS. Ref. [45] investigated the dynamic reliance and information
spillovers between the carbon financing market and shipping using wavelet analysis and
the spillover index methodologies.

Most research on carbon markets has mainly focused on the interactions of car-
bon markets with financial and energy markets. The dynamic linkages and spillover
effects of the carbon market with energy markets, including coal, oil, natural gas and
electricity, have been investigated through various techniques, for example, multivariate
GARCH models [46–48]; the wavelet approach [49,50]; Granger causality tests [51]; and
network modeling [52]. Moreover, the interactions between the carbon markets and non-
energy financial assets have been investigated, including the currency market [53], stock
market [54,55] and bond market [49,56].

In addition to the above studies, the existing literature also examines the drivers of
carbon allowance prices. The price of EUAs is governed by basic demand and supply,
just like the price of any other tradable asset. However, carbon pricing determinants are
distinct. The price can be decided by fuel costs, weather, and economic growth on the
demand side, but it is set by regulatory authorities on the supply side, which is a unique
aspect of the market [57]. Refs. [58–62] all corroborated the relationship between energy
and EUA pricing. Using the Granger causality technique, Ref. [63] discovered evidence
that power costs are connected to CO2 pricing. Ref. [64] studied the equilibrium link
between carbon futures prices and fundamentals such as energy spreads for electricity
generation, the EuroStoxx 50, the Eurostat index of industrial production, the oil price,
and a temperature index using cointegration techniques. Furthermore, the relationship
between CO2 emissions and macroeconomic factors is among the most researched themes of
environmental economics. Ref. [65] examines the macroeconomic determinants of European
carbon allowances prices. Ref. [66] examined the short-run and long-run linkages between
exchange rate, CO2 emissions and GDP. They showed that currency devaluation has an
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expansionary effect that enhances economic growth at the cost of high energy consumption
and CO2 emissions. The relationship between environmental degradation and economic
growth has gathered considerable attention from researchers [67–69]. Their empirical
findings indicate that developed countries pursue policies, such as carbon taxation and
carbon pricing, to mitigate environmental degradation, while developing countries seem to
ignore these serious problems, following less stringent environmental policies.

3. Methodology

The inclusion of shipping into the EU ETS introduces uncertainty and increases the cost
of maritime transport, especially for shipping companies that are engaged in EU voyages
and voyages, which include port calls in European ports. We assume that a shipping
company is vulnerable to fluctuations in carbon prices and wishes to lock in the costs of
future purchases of carbon allowances. Therefore, it aims to hedge against a possible rise in
the price of CO2 by using futures contracts, which are highly correlated with the spot market.
A common approach to hedging strategies is based on the minimum-variance hedge ratio,
i.e., the hedge ratio that minimizes the variance of the hedged portfolio [26,70–72]. In this
context, the shipping company decides on the optimal number of futures contracts that
minimize the risk of the combined portfolio of the CO2 spot and futures. Specifically, the
OHR reflects the number of long positions in carbon allowances futures contracts that a
shipping company should optimally hold for each unit of carbon allowances that will be
purchased in the future.

We initially consider the case of the single hedging strategy for the CO2 price risk.
Afterward, we focus on a general portfolio model to demonstrate how an optimal hedging
strategy can be used to manage the exposure of the shipping company to both the CO2 and
fuel price risks. In the presence of multiple price risks, it is essential to the development
of hedging strategies that use multiple futures contracts and manage correlated risks.
Following an examination of hedging approaches on different sources of risk, we focus
on the impact of carbon and fuel price risks in this research because a single hedging
instrument cannot entirely remove all uncertainty associated with these costs. Our interest
here is to consider composite cross-hedging strategies in which we assess the performance
of future instruments for jointly addressing the carbon allowances and bunker prices
hedging problem.

It is useful to distinguish two board categories of models that are used in estimating
the OHR: (a) static hedge ratio and (b) dynamic hedge ratio. In this article, we employ four
econometric models for the joint distribution of spot and futures returns and thus estimate
the covariance matrix to ultimately determine the hedge ratios. The Ordinary Least Square
(OLS) model and the Error Correction model (ECM), an “augmented” variant of OLS,
are used to estimate a static hedge ratio. In addition, two models are used to estimate
dynamic hedge ratios: the Asymmetric Dynamic Conditional Correlation (ADCC) [73]
and the Student’s t-copula [74,75] models, which are able to support a variety of dynamic
dependence structures between spot and futures returns [76].

The methodology section includes two parts. First, the novel methodology for calcu-
lating CO2 emission costs and the relationship between ship fuel consumption and CO2
emissions is presented. Second, the methodology for estimating hedge ratios is presented,
beginning with a single-hedge ratio that investigates only the risk reduction associated with
exposure to CO2 price risk and progressing to a multi-hedge framework that exploits the
dependence between future instruments in both bunker and carbon markets for managing
the risks associated with bunker and carbon allowances. Our hedging strategies are built on
static and dynamic settings with respect to the relationship between spot and future prices,
using conventional and recently developed models in order to detect how the dynamic
correlations influence the optimal hedging results.
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3.1. CO2 Emission Cost

The total amount of CO2 emitted by a ship is proportional to its fuel consumption
at sea and within ports at berth. Fuel consumption highly depends on a ship’s sailing
speed, where it is widely recognized that the fuel consumption per time unit of a ship is a
cubic function of speed [77]. Except for the speed, fuel consumption and therefore, the CO2
emissions depend on the distance traveled, vessel size, hull design and weather conditions,
inter alia [12–15]. In this article, we have chosen the following approximation for the CO2
emissions calculation of a round voyage:

ECO2 = εu·Dij·
[

Vu
S,l,ij·

dij

sl
+ BuTP

]
+ εu·Diq·

[
Vu

S,b,jq·
djq

sb

]
where εu is the emission factor, which indicates the amount of CO2 emission for every
metric ton of fuel u consumed by the ship. The emission factors of the most consuming
fuel types are listed in Table 1. The international shipping fleet mainly consumes Heavy
Fuel Oil (HFO) and Marine Diesel Oil (MDO). The alternative fuel of Liquified Natural Gas
(LNG) has the advantage of a lower emission factor, along with other attractive features,
such as the lack of sulfur and the production of more energy per unit weight than fossil
fuels. However, the main disadvantage of LNG as a fuel for vessels is the release of
methane, which is many times more potent than CO2 [78,79]. Vu

S,l,ij and Vu
S,b,jq are the fuel

consumptions of the vessel, expressed in tons per day for specific sailing speed, when
sailing on laden voyage between ports i and j, and ballast voyage between ports j and q,
respectively. dij and djq denote the sailing distance between ports i, j and j, q in nautical
miles. sl and sb express the operational speed of the vessel, measured in nautical miles
per hour (knots), when it is laden with cargo and ballast on the return leg of the voyage,
respectively. Fuel consumption in ports is calculated by multiplying the estimated daily
consumption in tons, Bu, of fuel u and the time in days that the ship is at berth, TP. Dij and
Diq are dummy variables that take the values of 1 or 0.5 whether the port calls of the round
voyage are between two EU ports or one of them is outside of the EU, respectively. This
provision is in line with the EU proposal to include the emissions from ships in the EU ETS,
in which emissions between EU ports count for 100% and emissions from non-EU ports to
EU ports count for 50%.

Table 1. Emission factors per marine fuel.

Fuel Type Emission Factor (MT CO2/MT Fuel Consumption)

Heavy fuel oil (HFO) 3.114
Marine diesel oil (MDO) 3.206

Liquified Natural Gas (LNG) 2.750
Source: [2] (p. 74).

Then, the CO2 emissions cost of a round voyage, CCO2 , could be estimated as the
product of unit price of CO2 emissions, Ps

CO2
, and the ECO2 emission volume:

CCO2 = Ps
CO2
·ECO2

where Ps
CO2

is the spot price of one tonne of CO2 allowance trading in the secondary market.

3.2. Optimal Hedge Ratio (OHR) Estimation
3.2.1. Single Instrument Optimal Hedge Ratio

We assume that the objective of a shipping company is to eliminate its exposure to
carbon allowance price risk and, therefore, it uses a single instrument to hedge; thus,
the OHR λ, can be defined solely on the minimum variance of payoff from the hedged
position [80] by taking imperfect correlations into account. To determine optimal hedging,
let st,CO2 and ft,CO2 denote the spot and futures one-period logarithmic returns at time t
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respectively, and let λt,CO2 be the hedge ratio, defined as the number of future positions
held at time t. The return of the hedged portfolio:

rt = sCO2,t − λCO2,t fCO2,t

where rt is the return on holding the portfolio between t − 1 and t. The variance of the
returns of the hedged portfolio, conditional on the information set available at time t − 1,
is given by:

var(rt) = var
(
sCO2,t

)
+ λ2

CO2,tvar
(

fCO2,t
)
− 2λCO2,tcov

(
sCO2,t, fCO2,t

)
where var

(
sCO2,t

)
, var

(
fCO2,t

)
and cov

(
sCO2,t, fCO2,t

)
are the conditional variance and co-

variance of spot and future returns, respectively. The OHR is defined as the value of
λt, which minimizes the conditional variance of hedged portfolio returns on the given
information set, as follows:

λ* =
cov
(
sCO2,t, fCO2,t

)
var
(

fCO2,t
)

3.2.2. Composite Instrument Optimal Hedge Ratio

In composite hedging, we wish to hedge the risk due to the typically wide fluctuation
in carbon allowance and fuel prices. When using two future contracts to hedge both the
carbon allowance and bunker price risk, the return of the portfolio rt is given by:

rt = sCO2,t + sB,t − λCO2,t fCO2,t − λB,t fB,t

where sB,t and fB,t are the spot bunker fuel and petroleum futures price one-period loga-
rithmic returns at time t, respectively. λt,CO2 and λB,t are the hedge ratios at time t, defined
as the optimal futures position per unit of the spot asset at time t. The variance of rt may be
written as:

var(rt) = var
(
sCO2,t

)
+ var(sB,t) + λ2

CO2,tvar
(

fCO2,t
)
+ λ2

B,tvar( fB,t)− 2cov
(
sCO2,t, sB,t

)
−2λCO2,tcov

(
sCO2,t, fCO2,t

)
− 2λCO2,tcov

(
sB,t, fCO2,t

)
− 2λB,tcov

(
sCO2,t, fB,t

)
−2λB,tcov(sB,t, fB,t) + 2λCO2,tλB,tcov

(
fCO2,t, fB,t

)
where var(sB,t) and var( fB,t) represent the conditional variances of spot bunker fuel returns
and petroleum futures returns, respectively. Minimizing the above equation with respect to
λCO2,t and λB,t, the optimal number of future contracts or the OHR in the portfolio can be
obtained by minimizing the portfolio’s conditional variance. To investigate which of the
petroleum futures contracts are the best hedging instruments for bunkers, the OHR and
the HE assessments are performed for the different pairs of Rotterdam bunker prices and
petroleum futures contract prices.

3.3. Hedging Models
3.3.1. Ordinary Least Square (OLS) Model

The simplest approach to obtain the OHR involves regressing percentage changes
in spot prices on percentage changes in futures prices using OLS. In this setting, the
slope coefficients of OLS model are widely utilized to generate the time-invariant hedge
ratios [81]. We can write the regression equation in the following way:

st = α0 + b ft + et

where the estimate of the minimum variance hedge ratio λ is given by b. When applying
more than one instrument, the regression equation can be written as:

st = α0 +
n

∑
i=1

bi ft + et
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where the values of bi,t are the hedge ratios corresponding to the related future contracts.

3.3.2. Error Correction Model (ECM)

The Error Correction (ECM) model is used in response to the downsides of using
the OLS hedge ratio that ignores short-run dynamics and the cointegrating relationship
between spot and futures prices. The empirical literature advocates that the ECM model
is a better alternative to the classical OLS model and may lead to the estimation of more
accurate hedge ratios [70,72,82]. The ECM model can be defined as:

st = α + b ft + γut−1 +
n

∑
i=1

ϕsi st−i +
m

∑
j=1

ϕ fi
ft−j + et

where ut is error correction term ut obtained from the cointegration regression given by:

ln(St) = α + ψln(Ft) + ut

The estimate of b denotes the OHR, while the lag orders of i and j can be determined
by using the Akaike information criterion (AIC).

3.3.3. Asymmetric Dynamic Conditional Correlation (ADCC) Model

The ADCC model is a popular and widely used model from the family of multivariate
GARCH-type models. The model allows a two-stage estimation procedure, which simplifies
the estimation of conditional variances and correlations. In the first stage, a univariate
GARCH model is estimated for each of the variables. In the second stage, the standardized
residuals are introduced as inputs to estimate dynamic correlations. The DCC model
captures the dynamics of time-varying conditional correlations, with the covariance matrix,
Ht, specified as:

Ht = DtRtDt

where Dt = diag
{√

hi,t
}

is an m × m diagonal matrix with the square roots of the condi-
tional variances in the diagonal; and Rt ≡

{
ρij
}

t is the time-varying conditional correlations
matrix. An appealing property is that the ADCC model allows for a time-varying correla-
tion structure parameterization. The first-order univariate GARCH process is indicated in
the following equation:

hi,t = ωi + αi·ε2
i,t−1 + βi·hi,t−1

where i = 1, 2, . . ., m, indicates the i-th equation in the vector autoregressive (VAR) model
and hi,t is the conditional variance of the error term, εi,t, of the i-th equation, obtained
from the first stage of the estimation procedure. In the second stage, the vector of the
standardized residuals is employed to develop the ADCC correlation specification:

Qt = (1− θ1 − θ2)Q− gΞ + θ1ηt−1η′t−1 + θ2Qt−1 + gξt−1ξ ′t−1

and
Rt = Q*−1

t QtQ*−1
t

where Q = E[ξtξ
′
t], the unconditional covariance of the standardized residuals, is

obtained from the first stage of the estimation process and Q∗t = (diag(Qt))
−1/2 =

diag
(
1/
√q11,t, . . . , 1/

√
qmm,t

)
is a diagonal matrix composed of the square root of the

diagonal elements of Qt. θ1 and θ2 are scalar parameters, ηt

(
ηt = D−1

t

)
is the standardized

residual matrix and Qt is the covariance matrix of ηt. The parameters θ1 and θ2 capture
the effects of past shocks and past dynamic conditional correlations on current dynamic
conditional correlations. The parameter g introduces the asymmetric effects into the model;
ξt = I[ηt < 0] ◦ ηt. I[·] is a function indicator that takes the values 1 if the residuals are
negative and 0 otherwise; ◦ denotes the Hadamard product and Ξ = E[ξtξ

′
t] is the sample
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covariance matrix of ξt. A positive value of g implies that past unanticipated bad news
(ηit < 0) has a greater impact on future covariance than good news (ηit > 0).

3.3.4. Student’s t-Copula (t-Copula) Model

Copula theory is a relatively new and fast-growing field of research in financial
applications. Copula functions have become popular and offer a much greater degree
of flexibility to researchers in capturing linear, non-linear and tail dependences of the
joint distribution between two or more random variables [83–85]. One of the advantages
of copula models over the ADCC model, which is constructed under the assumption of
multivariate normality, is that copula models can flexibly model the dependence structure
of the two variables through a copula function.

Using the copula method, one can construct a multivariate distribution by specifying
first standard uniform marginal distributions and then choosing a copula function that can
capture the dependence structure between the variables. Let X ≡ (x1, . . . , xn) be a vector
of n univariate variables. If H is denoting the joint n-dimensional distribution function
and F1, . . ., Fn the respective continuous margins of x1, . . . , xn, Sklar’s theorem states that a
function C called copula exists, which joins F1, . . ., Fn as follows:

H(x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)) = tp

(
t−1(u1), . . . , t−1(u1)

)
Equivalently, we can say that given any collection of marginal Fk and any copula C,

we can use Sklar’s theorem to recover the joint distribution from the uniform marginal
distributions, u = (u1, . . . , un) ∈ [0, 1]n, as follows:

C(u1, . . . , un) =
(

F−1
1 (u1), . . . , F−1

n (un)
)

where F−1
1 is the generalized inverse of Fk.

In this paper, we use Student’s t-copula (t-copula) to study the dynamic dependence
structure and capture the extreme co-movement and tail dependence. The t-copula is
given by:

C(u1, . . . u2) = tp

(
t−1(u1), . . . , t−1(u1)

)

=
∫ t−1(u1)

−∞
. . .
∫ t−1(u1)

−∞

1

Γ
( v

2
)
(vπ)

n
2 |ρ|

1
2

(
1 +

1
v

zT p−1z
)− v+n

2
dz1, . . . , dzn

The dynamics of u1, . . ., un are modeled by a GARCH(1,1) process.

3.4. Hedging Performance

For the evaluation of out-of-sample performance of hedging strategies, we split the
whole sample into two subsamples and a fixed-length rolling window approach is adopted.
The first period is from 3 January 2014, to 28 December 2018 (261 weekly data), which
is used to estimate the model parameters. The second period is from 4 January 2019, to
30 June 2023 (235 weekly data), which is used to make a forecast of the optimal hedge
for each week and evaluate out-of-sample hedging performance. We first employ weekly
returns of five years (261 weekly sets of data) to take an initial estimation of each model’s
parameters and to obtain the first one-step-ahead forecast of the hedge ratio; then, a window
of fixed size rolls over one week ahead, estimating the models and forecasting the hedge
ratios again until the end-date. The effectiveness of the hedge ratio for each model is
assessed based on two criteria popular in the literature: (a) variance reduction hedging
effectiveness [86] and (b) the Diebold–Mariano test [87].
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3.4.1. Variance Reduction Hedging Effectiveness (HE)

One of the most widely used criteria for evaluating the hedging effectiveness is the
variance reduction hedging effectiveness derived by [86]. Using the HE measurement, the
relative performance of different models is evaluated based on the variance of the hedged
portfolio returns relative to holding a spot position (unhedged portfolio). Following [86],
we evaluate the HE of each model as follows:

HE =
var(ru

t )− var
(

rh
t

)
var(ru

t )
= 1−

var
(

rh
t

)
var(ru

t )

where var
(

rh
t

)
and var(ru

t ) are defined as the variance of the hedged portfolio and un-
hedged portfolio, respectively. HE measures the percentage reduction of variance in the
hedged portfolio against the unhedged portfolio, whereas a HE of 1 implies a perfect hedge,
and a HE of 0 implies no risk reduction.

3.4.2. Diebold–Mariano (DM) Test

Our analysis also uses the Diebold–Mariano test [87] to compare the forecasting
performance of the competing models. The statistical significance of apparent predictive
superiority of a model over others relies on the loss function, dt, which is defined as follows:

dt = [l(em,t)− l(en,t)]

where l(·) is a function of the forecast errors, em,t and en,t, of models m and n, respectively.
In the case of hedging, it is assumed that the function l(·) takes the form (st − λt ft)

2 for
any given hedging model. The null hypothesis, H0, assumes that the expected losses for
two hedging models are equal; that is, E(dt) = 0.

4. A Case Study: CO2 Emissions and Bunker Risk Management in Shipping

In this section, we provide a case study where we look at estimating the bunker fuel
cost and carbon allowance cost for selected vessel types and voyages and explore the
emissions and bunker risk management in shipping. We consider the cases of voyages
charter in which the shipowners agree to transport a specified amount of cargo from a
designated loading port to a designated discharging port. Under a voyage charter contract,
the shipowner is responsible for all expenses incurred during the voyage, including the
bunker fuel cost and the carbon allowance cost. In our analysis, we use inputs from the
operation of three types of vessels: the Very Large Crude Carrier (VLCC), the Suezmax
and Capesize. The first two vessels deliver the largest crude oil volumes in the liquid bulk
markets, while the Capesize is employed mainly in the transportation of coal and iron
ore. We utilize information provided by Clarksons (for details, please refer to Clarksons’
documentation, titled: “Sources & Methods for the Shipping Intelligence Weekly”) about
the vessels with respect to their fuel consumption and speed in laden and ballast status.
The vessels specifications and voyage information are shown in Table 2.

The fronthaul voyage of the VLCC from the departing port of Ras Tanura (Saudi Arabia)
to the arrival port of Rotterdam (Netherlands), sailing on an average speed of 12.5 knots lasts
approximately 39.5 days. For this voyage, the vessel consumes approximately 2647 tonnes
of HSFO. The CO2 emissions for this amount of fuel oil are equal to 8244 tonnes. Given
that 50% of emissions apply to ships arriving at an EU/EEA port from a non-EU/EEA port,
the emissions under the EU ETS to be considered are 4122 tonnes of CO2. Therefore, the
EU ETS compliance cost for this voyage is estimated to be 359,297€, assuming the spot
price of EUR 87.17 per tonne of CO2 from the EEX, as of 30 June 2023. The VLCC consumes
about 67 tons of fuel daily for a price of EUR 433.5/ton, which represents a fuel cost of USD
1,147,492. The backhaul voyage of the same vessel from the port of Rotterdam to the port
of Ras Tanura via the Suez Canal lasts 16.3 days, which translates to the consumption of
2647 tonnes of HSFO and 1296 tonnes of CO2, calculated under the EU ETS requirement for
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considering 50% of the emitted CO2 of ships departing from an EU/EEA port and heading
to a non-EU/EEA port. The EU ETS compliance cost for backhaul voyage is estimated to
EUR 112,932. The fuel cost of the backhaul voyage is estimated to EUR 360,671.

Table 2. Vessel specifications and voyage assumptions used in the case study.

Voyage 1 Voyage 2 Voyage 3

Vessel specifications

Vessel type VLCC Suezmax Capesize
Dwt 318,000 157,000 180,000

Speed (knots) Laden 12.5 12.5 12
Ballast 12 12 13

Consumption at
sea (tons/day)

Laden 67 45 43
Ballast 51 35 43

Voyage assumptions (at sea)

Trading route Ras Tanura–
Rotterdam

Houston–
Rotterdam

Tubarao–
Rotterdam

Voyage distance
(miles)

Laden 11,289 5041 11,289
Ballast 4475 5041 4475

Sea time (days) 55.9 36.0 38.1

Voyage assumptions (in ports)

Port time (days) 4 4 6.5
Consumption in
port (tons/day) 5 5 5

Notes: This table presents the specifications of three vessel types selected for the case study application of hedging
strategies and the respective details on the voyages, which we assume that the shipowners agree to transport
cargoes from designated non-EU loading ports to designated EU discharging ports. Data are from Clarksons’
documentation, titled “Sources & Methods for the Shipping Intelligence Weekly”.

Using the vessel’s specifications and the assumption for the other two voyages as
presented in Table 2, we conclude that the EU ETS compliance cost for a Suezmax vessel,
which is fixed for the round voyage between the port of Houston (USA) and port of
Rotterdam (Netherlands), is EUR 195,063.

The last scenario in our case study includes a Capesize vessel that operates between
the iron-ore-producing Brazil (the port of Tubarao) and Northern Europe (the port of
Rotterdam in the Netherlands), where the steel mills are established. The total carbon
allowance cost of the round voyage is estimated to EUR 205,614.

In what follows, we develop the hedging strategies using the alternative econometric
model for repeated round voyages over the sample period, assuming that the shipowner’s
objective is to reduce the risk associated with CO2 allowance prices and bunker fuel prices
for multiple voyages over the period from 4 January 2019, to 30 June 2023. To illustrate
this process, as presented in Table 3, we consider that the shipowner fixes a voyage charter
contract for his vessel on 4 January 2019, for a shipment that will take place one month
later. The shipowner wants to be protected against an increase in CO2 allowance price and
bunker fuel price in February and has decided to take a long-hedged risk management
strategy on CO2 and petroleum futures contracts.

In practice, we use the hedge ratio provided by the econometric models in order
to define the size of the futures position relative to the exposure in the CO2 allowance
and bunker fuel markets. Then, the one-month-ahead results of hedging effectiveness are
assessed through the variance reduction hedging effectiveness and Diebold–Mariano tests.
With the completion of this voyage and the evaluation of the different hedging strategies,
it follows a period of 15 days before the shipowner fixes the next voyage. The process is
repeated until the end-of-sample period.
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Table 3. Algorithm for hedging the CO2 and bunker fuel prices risk of repeated round voyages.

Algorithm Description

Hedging instruments data input (at time t):
CO2 future price, petroleum futures prices

At time t, the shipowner fixes a voyage charter contract for a
shipment at time t + n. To hedge his exposure to the CO2 and
bunker cost, he decides to buy the forward CO2 and petroleum
hedging instruments contracts in order to lock his CO2
allowance and bunker prices.

Hedge ratios (at time t):
Econometric model estimations for the hedge ratios

The number of future contracts for hedging CO2 and bunker
cost for both the fronthaul and backhaul voyages are
determined using the results of the hedge ratios that the
econometric models have estimated using the market return
data over the period from t − 361 to t (estimation window).

Hedging effectiveness assessment (at time t + n):
Estimation of the variance reduction hedging effectiveness and
Diebold–Mariano tests

The out-of-sample hedging effectiveness is assessed at time t + n,
comparing the variance of hedged portfolio across the different
econometric models, as well as the reduction in the variance of
the hedged portfolio relative to the unhedged portfolio.

Voyage completion and idle time before a new voyage will
be fixed

The vessel has returned to the loading ports and is waiting a
period of 7 days before a new voyage will be fixed for a
shipment that will take place 1 month later.

Notes: This table outlines the main estimation steps of the algorithm, which has been developed to implement the
hedging strategy for the carbon allowance cost and bunker fuel cost of selected voyages between non-EU ports
and EU ports subject to EU ETS.

5. Data

Our dataset comprises time series of weekly spot and futures prices for EUAs, span-
ning from 3 January 2008 to 30 June 2023, with 496 observations. In line with the Phases
set by policymakers, our study expands into two periods, which are referred to as EU ETS
Phase III (2013–2020) and the recent EU ETS Phase IV (2021–2028) (Commencing operation
in January 2005, three phases were set out in the EU-ETS: Phase I (2005–2007), Phase II
(2008–2012) and Phase III (2013–2020)). We do not include the data from the Phase I and
II periods since the EUA are substantially different from the Phase III and IV, and due to
regulatory and trade mechanism changes [88]. The spot prices of the carbon allowances are
drawn from the European Energy Exchange (EEX), and the carbon futures prices are from
the Intercontinental Exchange (ICE). The carbon prices from both exchanges are highly
correlated; however, the volume traded on the ICE is significantly higher than the EEX [89].
Although ICE offers futures contracts on EUAs for different maturities, we have used the
future contract of one month to mitigate liquidity concerns.

In addition to the EUA market futures and spot prices, we utilize the marine bunker
prices of heavy-sulfur fuel oil (HFLSO), represented by HSFO 380 prices ($/ton) at the port
of Rotterdam, and several energy futures to examine the hedging effectiveness of bunker
cost. The potential hedging instruments for the bunker fuel price risk considered in this
study are the future contracts of Brent crude oil (Brent), West Texas Intermediate (WTI)
($/barrel), natural gas (NGas) ($/MMBtu) and refined oil futures such as heating oil (Heat)
($/gallon) and the New York harbor RBOB regular gasoline (RBOB) ($/gallon). Brent is
traded at the ICE in London, while all other contracts are traded at the New York Mercantile
Exchange in New York (NYMEX). All data used in the empirical analysis, except for the
HSFO prices derived from Clarksons Shipping Intelligence Network (SIN), were collected
through the Refinitiv Eikon platform. Before proceeding to the empirical analysis, all data
expressed in the US Dollar have been converted to Euro using the USD/Euro exchange
rates series from the European Central Bank. Figure 1 shows the time series plots of the raw
data. Table 4 reports the key descriptive statistics on the log returns. It includes the mean,
standard deviation, maximum, minimum, skewness and kurtosis values, the Jarque and
Bera statistic [90] and the Phillips–Perron unit root test [91] for stationarity of the series.
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Figure 1. Weekly time series plots of spot-futures carbon emission allowance prices, spot bunker fuel
prices and petroleum futures prices.

Over the time period studied, the mean value of the return series presented is positive
only for the carbon allowance markets. Volatility, as evidenced by the standard deviation
ranging from 5.46% to 7.42%, is found to be quite similar over all markets. The sample
skewness for all series and most carbon and RBOB markets series is negative, indicating
that negative shocks are more common than positive ones in these markets. For all datasets,
the excess kurtosis value is high, ranging from 4.341 to 12.538, indicating that the return
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distributions are leptokurtic, with substantially heavier tails than the normal distribu-
tion. The findings of non-zero skewness and high kurtosis support that return series are
non-normally distributed and are corroborated by their high and significant Jarque–Bera
statistic [90]. The Phillips–Perron test [91] is used to test the null hypothesis of a unit root
against the alternative hypothesis of stationarity. The tests result in high negative values,
such that return series reject the null hypothesis at the 1% significant level, indicating that
return series are stationary.

Table 4. Descriptive Statistics.

CO2 Spot CO2 Futures HSFO Brent WTI Heating NGas RBOB

Panel A. Price level
Mean 28.209 28.434 361.23 67.662 62.924 2.0763 3.3316 1.9470
S.D. 28.139 28.518 120.37 21.334 20.486 0.7356 1.4260 0.6293
Max 97.580 99.800 688.75 122.01 120.67 4.7817 9.3360 4.2522
Min 4.0800 4.0800 112.00 21.440 16.940 0.6467 1.4950 0.5737
Skewness 1.1423 1.1589 0.4339 0.5608 0.6427 0.9967 1.8929 0.8355
Kurtosis 2.8638 2.9123 2.7912 2.6660 2.8307 3.8228 6.8166 3.7266
J-B 108.24 * 111.18 * 16.466 * 28.305 * 34.735 * 96.111 * 597.25 * 68.617 *
PP test 0.8219 0.8629 −0.9284 −1.0760 −0.9488 −0.9001 −1.1540 −0.6248

Panel B: Logarithmic returns
Mean 0.0059 0.0059 −4.413 × 10−4 −7.184 × 10−4 −5.763 × 10−4 −3.694 × 10−4 −8.699 × 10−4 −1.131 × 10−5

S.D. 0.0653 0.0654 0.0580 0.0546 0.0578 0.0557 0.0742 0.0611
Max 0.2427 0.2356 0.2513 0.3135 0.2758 0.2816 0.2184 0.2703
Min −0.3495 −0.3510 −0.3473 −0.2907 −0.3469 −0.3912 −0.2860 −0.4348
Skewness −0.7165 −0.7236 −0.5316 −0.2276 −0.4483 −0.5424 −0.4760 −0.9383
Kurtosis 6.9247 6.8112 8.8219 8.6431 8.3365 10.4583 4.3414 12.5385
J-B 360.04 * 342.77 * 722.38 * 661.07 * 603.95 * 1.171 × 103 * 55.801 * 1.949 × 103 *
PP test −22.491 * −22.541 * −20.263 * −20.603 * −19.035 * −22.693 * −22.529 * −20.404 *

Notes: This table provides summary statistics and unit root tests for spot and futures returns of carbon emission
allowances, bunker and petroleum prices. J-B stands for the Jarque and Bera test [90] for Normality, and PP test
is the Phillips–Perron unit root test [91]. * Denotes the rejection of the null hypothesis at a 1% significance level.
CO2 Spot is the European Union allowances spot prices; CO2 Futures is the European Union allowances futures
prices; Brent is the European crude oil North Sea Brent futures; WTI is the West Texas Intermediate crude oil
futures; Heat is the heating oil (No 2) futures; NGas is natural gas futures; and RBOB is the New York harbor
RBOB gasoline.

6. Estimation Results
6.1. Single Hedging Strategy Performance

In this section, we address the issue of carbon allowance risk hedging by considering
the volatility interactions between carbon spot and future markets. The question we are
therefore interested in is whether the carbon allowances spot prices can be effectively
hedged by the carbon futures contracts traded on the Intercontinental Exchange. In order
to address this question, we use four econometric models, the OLS, ECM, ADCC and
t-copula, to estimate the joint distribution of spot and futures returns and thus estimate
the covariance matrix that ultimately determines the hedge ratios. The second issue raised
by estimating the OHR through the competing models is whether the most advanced
approaches (ADCC and t-copula models) outperform the conventional models. To formally
compare the out-of-sample performance of each type of hedge, portfolios implied by the
computed hedge ratios each week are constructed and the variance of the returns of these
portfolios over the sample period are calculated. Moreover, the variance reduction hedge
effectiveness, proposed by [86] and the Diebold–Mariano test [87], are also considered in
our assessment analysis. The results of the out-of-sample hedging performance for spot
CO2 allowance for the period 4 January 2019, to 30 June 2023, are presented in Table 5. All
models achieved significant variance reduction in the out-of-sample periods. The variance
values for the unhedged portfolios and hedged portfolios of the competing models indicate
that the best-performing model is the traditional OLS model, with a variance reduction
of 99.4%. The next best-performing models are the ECM and t-copula models, which
statistically outperform the ADCC model. Although the ADCC shows the lowest variance
reduction compared to the other models, in absolute terms, the variance reduction of the
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hedged portfolio using the ADCC is at the level of 98.2% compared to the variance of the
unhedged portfolio. The high correlation between the spot and future carbon allowance
markets explains the high degree of hedging effectiveness achieved through the use of both
static and dynamic models in this study. In Table 5, we also assess the models providing a
pairwise comparison of the predictive accuracy using the standard Diebold–Mariano test.
The OLS and ECM hedge strategies outperform the other strategies generated by the ADCC
and t-copula models. The results of Diebold–Mariano tests reject the null hypothesis that
the expected losses of the models are equal. Given the higher score produced by the HE
test, we conclude that the OLS and ECM hedge strategies provide superior gains compared
to those obtained from the dynamic model.

Table 5. Out-of-sample single hedging performance of spot carbon allowances.

Variance HE DM

ECM ADCC t-Copula

Unhedged 0.4453
OLS 0.0024 99.471 −0.1598 −2.6402 *** −4.3980 ***
EC 0.0024 99.470 −2.6392 *** −4.4023 ***

ADCC 0.0079 98.233 2.0795 **
t-copula 0.0035 99.212

Notes: This table provides the out-of-sample hedging performance of four different models in the carbon
allowance market. The out-of-sample period stems from 4 January 2019, to 30 June 2023. Variance of the unhedged
and hedged portfolios corresponds to logarithmic returns variance multiplied by 100. Percentage hedging
effectiveness for variance reduction (HE) is also presented. We also report the results of the Diebold–Mariano
(DM) test; significance at 1% and 5% levels are denoted by *** and **, respectively. OLS denotes the ordinary least
square model; ECM is the error correction model; ADCC denotes the asymmetric conditional correlation model;
and t-copula is the Student’s t-copula model.

Interestingly, our study does not support the superiority of more sophisticated models,
as the conventional OLS is ranked as the best-performing model [70,92]. The GARCH-type
strategies, as represented by the ADCC and t-copula models, produce higher variance than
the OLS and ECM strategies. As noted in the literature, some of the potential explana-
tions for the low hedging effectiveness of the GARCH-type models are [70,72,93]: (i) they
have more parameters to estimate and hence higher estimation errors than other models;
(ii) model misspecification could also be a potential factor that makes the GARCH-type
models perform worse than other models the more parameters; (iii) Allowing for time
variation across the variance-covariance matrix of returns, the dynamic models seems to
induce greater variance while forming hedged portfolios, and the OHR are more sensitive
to the size and sign of the change in prices. It is obvious that the OLS model is more
stable and not as volatile as its dynamic counterparts, which is especially useful in hedging
strategies where there is a strong correlation between spot and future prices.

6.2. Composite Hedging Strategy Performance

In the face of shipping inclusion into EU ETS, it becomes interesting to manage
carbon and bunker risks simultaneously with an optimal hedging model. To gain a better
understanding of the risk management associated with these two risks, we have developed
a composite hedging strategy that uses more than one hedging instrument to offset the
risk of two spot positions in carbon allowance and bunker markets. The existence of
active carbon futures markets and the high correlation between spot and futures carbon
allowances price returns shown in the previous section make the task of hedging easier.
In contrast, the fact that there is not a functioning futures market for bunker fuel raises
the question, of which futures contract should be used to hedge the bunker risk. In the
composite hedge, we evaluate alternative petroleum future contracts (Brent, WTI, heating
oil natural gas and RBOB) to hedge the bunker risk. Thus, the present study addresses the
possibility of combining carbon and petroleum future contracts to a combination hedging
in reducing the joint price risk under study.
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For each one of the four econometric models, a forecast was made of the optimal
hedge for each week from 4 January 2019 to 30 June 2023. This analysis yields a total of
235 out-of-sample hedge results. Summary statistics of the out-of-sample hedge ratios are
presented in Table 6. As can be seen, the hedge ratios vary from model to model. However,
the calculated hedge ratios for the two conventional models, OLS and ECM, are very close
to each other in all the pairs of hedged instruments used in the study. This is not surprising,
given that they share model static regression model fundamentals, our previous findings
in the case of single hedging strategies and the empirical results of other studies in the
literature [26,72].

Table 6. Summary statistics of optimal carbon and petroleum hedge ratios.

Panel A. Carbon and Brent

OLS ECM ADCC t-copula
Carbon Brent Carbon Brent Carbon Brent Carbon Brent

Mean 1.0444 0.5667 1.0218 0.5400 1.2152 0.1503 1.0037 0.1616
Variance 0.0021 0.0037 0.0006 0.0021 0.1294 0.0054 0.0023 0.0158
Max 1.1274 0.7044 1.0794 0.6523 2.4910 0.3695 1.1817 0.6858
Min 0.9588 0.4883 0.9684 0.4767 0.4519 0.0008 0.8076 0.0009

Panel B. Carbon and WTI

OLS ECM ADCC t-copula
Carbon WTI Carbon WTI Carbon WTI Carbon WTI

Mean 1.0625 0.4579 1.0432 0.4105 1.2355 0.1399 1.0309 0.1324
Variance 0.0024 0.0069 0.0012 0.0058 0.1303 0.0046 0.0021 0.0078
Max 1.1428 0.6347 1.0966 0.5721 2.5015 0.3998 1.2110 0.5320
Min 0.9687 0.3720 0.9675 0.3439 0.4709 0.0108 0.8201 0.0023

Panel C. Carbon and Heat

OLS ECM ADCC t-copula
Carbon Heat Carbon Heat Carbon Heat Carbon Heat

Mean 1.0677 0.6272 1.0466 0.6340 1.2370 0.1469 1.0271 0.1394
Variance 0.0035 0.0139 0.0021 0.0086 0.1274 0.0067 0.0023 0.0188
Max 1.1709 0.7976 1.1325 0.7632 2.4789 0.5692 1.1998 1.1705
Min 0.9635 0.3878 0.9599 0.4433 0.4675 0.0000 0.8174 0.0003

Panel D. Carbon and NGas

OLS ECM ADCC t-copula
Carbon NGas Carbon NGas Carbon NGas Carbon NGas

Mean 1.1125 0.1081 1.1120 0.1234 1.2816 0.1349 1.0911 0.0832
Variance 0.0034 0.0008 0.0023 0.0008 0.1387 0.0068 0.0032 0.0091
Max 1.1956 0.1676 1.1786 0.1839 2.6309 0.7448 1.3121 0.7164
Min 0.9932 0.0570 1.0082 0.0662 0.5130 0.0000 0.8452 0.0002

Panel D. Carbon and RBOB

OLS ECM ADCC t-copula
Carbon RBOB Carbon RBOB Carbon RBOB Carbon RBOB

Mean 1.0338 0.4318 1.0126 0.4193 1.2230 0.1235 1.0143 0.1009
Variance 0.0012 0.0006 0.0006 0.0005 0.1306 0.0049 0.0013 0.0054
Max 1.1007 0.4954 1.0560 0.4918 2.4758 0.4515 1.1520 0.3363
Min 0.9690 0.3924 0.9578 0.3765 0.4649 0.000 0.8174 0.0002

Notes: This table documents descriptive statistics of OHR of composite hedging strategies using possible combi-
nations of each pair of carbon futures and petroleum futures. Brent is the European crude oil North Sea Brent
futures; WTI is the West Texas Intermediate crude oil futures; Heat is the heating oil (No 2) futures; NGas is
natural gas futures; and RBOB is the New York harbor RBOB gasoline. OLS denotes the ordinary least square
model; ECM is the error correction model; ADCC denotes the asymmetric conditional correlation model; and
t-copula is the Student’s t-copula model.

Moreover, the results show that the average hedge ratios generated from the con-
ventional methods (OLS and ECM) compared to more sophisticated models (ADCC and
t-copula), indeed, differ. For example, average hedge ratios for all petroleum futures
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contracts generated via the ADCC and t-copula methodologies are less than the corre-
sponding hedge ratios generated via either the OLS or ECM methods. This implies that
the shipowner would purchase fewer futures contracts for hedging the fluctuation risk
in bunker prices than would be recommended under the OLS and ECM methodologies.
However, the variance estimates of the hedge ratios based on the ADCC and t-copula
methods are considerably higher than the conventional methods, indicating potentially
more expensive hedging strategies because the recommended hedge ratios are constantly
changing. In all instances, the OHR have the intuitively correct sign, indicating a long
position on future contracts.

It follows the out-of-sample performance of composite hedging strategies in Table 7. A
close look at the out-of-sample variances for the unhedged and hedged portfolios does not
indicate gains from adopting dynamic hedging strategies. The hedged portfolios generated
from the ECM and OLS models have the lowest variance among all the hedging strategies.
This indicates that the class of constant models outperforms the time-varying hedging
models in terms of variance reduction (see Table 7, Panel A). All models have produced
significant variance reduction over the unhedged portfolio across the out-of-sample period,
as measured by the hedge effectiveness index (see Table 7; Panel B). The minimum re-
duction is 54.0% in the composite hedging strategy produced by the ADCC model for
carbon + RBOB future contracts, while the largest reduction is 71.1% based on the ECM
model for the carbon + Brent future contracts. In particular, the ECM model provides an
out-of-sample variance improvement over the unhedged portfolio of around 61.9–71.1%,
depending on the selected petroleum future contract for hedging the bunker risk. Next, we
provide a pairwise comparison of the predictive accuracy using the Diebold–Mariano test.
The results are presented in Table 7, Panel C. The composite hedging strategy is dominated
by the OLS and ECM models in almost all petroleum futures contracts used as hedging
instruments. Interestingly, we observe that t-copula models’ performance in the case of
composite hedging strategy shows substantial improvement over the respective t-copula
models used under the single hedging strategies. In contrast, the lowest effectiveness is
achieved once ADCC is considered.

A comparison of the composite hedging strategies performance for the pairs of carbon
futures and the petroleum futures suggests that the pair carbon + Brent works effec-
tively for hedging the carbon and bunker risks among all other pairs, followed by the
carbon + Heating oil and carbon + RBOB gasoline futures when considering the results
of the OLS and ECM models. In contrast, carbon + natural gas futures are not gener-
ally effective in managing the carbon-bunker price risk exposures. Moving to the ADCC
and t-copula hedging strategies, the carbon + Brent remains the greatest hedging tool
(HE = 55.9% and HE = 63.9% for the ADCC and t-copula, respectively). However, the
results are mixed across all other pairs of carbon + petroleum futures. Our results are
in line with other studies in the literature, which show that Brent is the best hedging
tool in comparison to all other petroleum hedging instruments for hedging the bunker
risk. For out-of-sample variance reductions using Brent future contracts, [30] reported a
percentage variance reduction of up to 43.14% and [93] showed that the variance reduction
is almost 51.5%.

Overall, we conclude that the development of composite hedging strategies using
carbon and petroleum futures contracts can reduce risk and achieve hedged portfolios with
minimal variance. In these composite hedging strategies, we reassure the empirical findings
of other studies in the literature, which highlight the benefits of Brent futures contracts
in hedging the bunker risk. A high degree of HE can be achieved using a spot-future
carbon pair in which a significant reduction in risk is reached either in the single hedging
strategies for carbon allowance risk or the composite hedging strategies for both carbon
allowance and bunker risk. The HE measured by variance reduction and the DM test
reveals that complex dynamic hedging strategies, such as the ADCC and t-copula model,
do not provide benefits compared to the conventional static approaches, such as the OLS
and ECM methods.
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Table 7. Out-of-sample composite hedging performance of spot carbon allowances and bunkers.

Panel A. Variance

Unhedged OLS EC ADCC t-Copula

Carbon + Brent 1.0148 0.2996 0.2926 0.4465 0.3659
Carbon + WTI 0.3348 0.3286 0.4568 0.3640
Carbon + Heating 0.3254 0.3355 0.4523 0.3615
Carbon + NGas 0.3869 0.3857 0.5127 0.3814
Carbon + RBOB 0.3127 0.3135 0.4665 0.3693

Panel B. Hedge effectiveness (HE)

OLS EC ADCC t-copula
Carbon + Brent 70.4736 71.1625 55.9997 63.9394
Carbon + WTI 67.0082 67.6192 54.9862 64.1319
Carbon + Heating 67.9312 66.9398 55.4290 64.3771
Carbon + NGas 61.8748 61.9937 49.4722 62.4104
Carbon + RBOB 69.1805 69.1105 54.0301 63.6047

Panel C. DM test

EC ADCC t-copula

Carbon + Brent
OLS 0.6671 −2.3418 *** −1.1966
EC −2.7273 *** −1.5238 *

ADCC 1.9243 **

Carbon + WTI
OLS 0.8218 −2.3587 *** −0.6912
EC −2.7029 *** −0.9839

ADCC 2.3083 **

Carbon + Heating
OLS −3.0267 *** −2.2895 ** −0.9196
EC −2.1343 ** −0.6753

ADCC 2.3150 **

Carbon + NGas
OLS 0.6592 −3.2964 *** 0.8039
EC −3.2308 *** 0.6533

ADCC 3.2325 ***

Carbon + RBOB
OLS −0.2938 −3.0501 *** −1.4213
EC −3.0709 *** −1.4392

ADCC 2.2526 **

Notes: This table details the out-of-sample hedging performance for four competing models in different composite
hedging contexts. Variance of the unhedged and hedged portfolios corresponds to logarithmic returns variance
multiplied by 100. Percentage hedging effectiveness for variance reduction (HE) is also presented. We also report
the results of the Diebold–Mariano (DM) test; significance at 1%, 5% and 10% levels are denoted by ***, ** and *,
respectively. Brent is the European crude oil North Sea Brent futures; WTI is the West Texas Intermediate crude oil
futures; Heat is the heating oil (No 2) futures; NGas is natural gas futures; and RBOB is the New York harbor
RBOB gasoline. OLS denotes the ordinary least square model; ECM is the error correction model; ADCC denotes
the asymmetric conditional correlation model; and t-copula is the Student’s t-copula model.

6.3. Case Study on Carbon and Bunker Risk Hedging in Shipping

In this section, we investigate the potential economic benefits realized from imple-
menting hedging strategies for the management of risk arising from fluctuations in carbon
allowances prices and bunker prices. To illustrate this, we consider a couple of different
vessel types and voyage routes, which include port calls in European ports to investigate
the bunker consumption cost and CO2 emissions cost associated with the inclusion of the
international shipping sector to EU ETS, and hedging strategies that can eliminate the
uncertainty associated with these costs. To illustrate how shipowners can benefit from the
hedging strategies, we first calculate cost changes for each one of the repeated voyages
between the current hypothetical voyage costs (carbon and bunker costs) using the current
carbon allowance prices and bunker prices when voyage agreement between shipowner
and charterer is signed and the actual voyage costs of carbon and bunker, used by the
vessel in performing the voyage. The cost changes are calculated for both the scenarios
of unhedged voyage costs and hedged voyage costs. Table 8 displays the out-of-sample
hedging performance for repeated round voyages of the three vessel types under study. We
calculate the Variance of cost changes and the variance reduction in cost changes achieved
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through hedging, as measured by the HE index. Moreover, we provide summary statistics
of the carbon and bunker costs and the total cost for the repeated voyages. To save space,
we only report the results of two models, OLS and t-copula, and two composite hedging
strategies using the carbon-Brent and carbon-heat pairs.

Table 8. Hedging risk of voyage carbon emissions and bunker costs.

Panel A. VLCC—Voyage: Ras Tanura–Rotterdam

Carbon Bunker Total

Unhedged
voyages

Variance 2.2175 2.43314 2.1542
Mean 271,208 1,179,158 1,450,367
Max 496,913 2,067,189 2,532,195
Min 110,551 710,369 851,310
Total 4,339,333 18,866,532 23,205,866

OLS t-copula
Carbon Bunker Total Carbon Bunker Total

Hedged
voyages
(Carbon + Brent)

Variance 0.2603 1.3513 0.9999 0.3939 2.2920 1.5813
HE 88.260 44.462 53.580 82.236 5.7976 26.592

Mean 265,797 1,162,924 1,428,721 255,484 1,173,514 1,428,998
Min 508,345 2,200,648 2,666,039 499,873 2,087,008 2,537,307
Max 110,837 630,828 741,665 102,207 706,124 808,330
Total 4,252,751 18,606,786 22,859,537 4,087,739 18,776,223 22,863,962

Hedged
voyages
(Carbon + Heat)

Variance 0.4308 1.2293 0.9381 0.4176 2.2305 1.5637
HE 80.572 49.476 56.452 81.164 8.3268 27.409

Mean 272,977 1,169,663 1,442,640 261,770 1,174,997 1,436,767
Min 533,848 2,104,226 2,591,232 515,962 2,069,378 2,535,162
Max 113,449 626,033 739,482 108,031 705,680 813,711
Total 4,367,633 18,714,604 23,082,237 4,188,314 18,799,950 22,988,265

Panel B. Suezmax—Voyage: Houston–Rotterdam

Carbon Bunker Total
Unhedged
voyages Variance 1.7432 0.8898 0.6700

Mean 115,967 513,349 629,317
Max 209,397 902,939 1,090,775
Min 47,495 210,995 260,340
Total 2,435,313 10,780,337 13,215,650

OLS t-copula
Carbon Bunker Carbon Bunker Carbon Bunker

Hedged
voyages
(Carbon+ Brent)

Variance 0.2579 0.6244 0.4785 0.3248 0.8442 0.5790

HE 85.200 29.829 28.588 81.364 5.1347 13.5785
Mean 114,507 507,677 622,184 109,786 512,509 622,295
Min 220,527 935,925 1,097,048 209,484 914,616 1,080,941
Max 45,908 237,436 286,932 45,609 212,027 261,164
Total 2,404,649 10,661,211 13,065,860 2,305,499 10,762,691 13,068,190

Hedged
voyages
(Carbon + Heat)

Variance 0.4235 0.9722 0.7206 0.3224 0.7758 0.5279

HE 75.7020 0.000 0.000 81.5032 12.8159 21.215
Mean 117,565 504,046 621,610 112,096 513,183 625,279
Min 229,205 947,781 1,111,963 212,113 917,521 1,095,771
Max 46,094 223,326 273,580 46,259 226,961 277,405
Total 2,468,857 10,584,962 13,053,819 2,354,016 10,776,838 13,130,854
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Table 8. Cont.

Panel C. Capesize—Voyage: Tubarao–Rotterdam

Carbon Bunker Total
Unhedged
voyages Variance 1.7432 0.8898 0.6700

Mean 115,967 513,349 629,317
Max 209,397 902,939 1,090,775
Min 47,495 210,995 260,340
Total 2,435,313 10,780,337 13,215,650

OLS t-copula
Carbon Bunker Carbon Bunker Carbon Bunker

Hedged
voyages
(Carbon+ Brent)

Variance 0.2579 0.6244 0.4785 0.3248 0.8442 0.5790

HE 85.200 29.829 28.588 81.364 5.1347 13.5785
Mean 114,507 507,677 622,184 109,786 512,509 622,295
Min 220,527 935,925 1,097,048 209,484 914,616 1,080,941
Max 45,908 237,436 286,932 45,609 212,027 261,164
Total 2,404,649 10,661,211 13,065,860 2,305,499 10,762,691 13,068,190

Hedged
voyages
(Carbon + Heat)

Variance 0.4235 0.9722 0.7206 0.3224 0.7758 0.5279

HE 75.7020 0.000 0.000 81.5032 12.8159 21.215
Mean 117,565 504,046 621,610 112,096 513,183 625,279
Min 229,205 947,781 1,111,963 212,113 917,521 1,095,771
Max 46,094 223,326 273,580 46,259 226,961 277,405
Total 2,468,857 10,584,962 13,053,819 2,354,016 10,776,838 13,130,854

In panel A of Table 8, we present the out-of-sample hedging performance of 16 round
voyages performed by a VLCC vessel from the port of Ras Tanura (Saudi Arabia) to the
arrival port of Rotterdam (Netherlands). A comparison of the variance reductions reveals
that the out-of-sample HE is higher when the OLS model is applied, and the selected
hedging instruments are carbon-Brent. For instance, in the case of the carbon-Brent pair, the
variance reduction is 88.2% for the carbon cost, assuming use of the OLS model, whereas
the same hedging model and hedging instruments yield a variance reduction of 44.4% for
the bunker cost. Although the purpose of a hedging strategy implementation is to remove
all uncertainty associated with carbon and bunker risk, the results also indicate small
economic gains by means of total cost reduction for the hedged positions compared to the
unhedged positions. Specifically, the total unhedged voyage cost for 16 round voyages of
the VLCC vessel is EUR 23.20 million, while the total hedged voyage costs using the pairs
carbon-Brent and carbon-heat hedging instruments are EUR 22.86 million and EUR 23.08
million. In percentage terms, the cost reductions achieved through the hedging strategies
using the OLS model are 1.49% and 0.53%, respectively.

In panels B and C of Table 8, we present the results of out-of-sample hedging perfor-
mance of 21 round voyages for the vessels of Suezmax (from the port of Houston (US) to
the port of Rotterdam (Netherlands)) and Capisize (from the port of Tubarao (Brazil) to
arrival port of Rotterdam (Netherlands)), respectively. The findings of HE from the hedg-
ing strategies applied to these voyages are similar to hedging effectiveness and variance
reduction in voyage costs of the VLCC vessel. Results confirm the robustness of the OLS
hedging strategy compared to the more complex t-copula hedging strategy.

7. Conclusions

In this article, we have investigated the hedging effectiveness of carbon and petroleum
futures contracts in managing the risk of carbon and bunker prices, respectively, providing
some useful insights and implications in the shipping industry. The study is both important
and timely after the formal adoption of a new EU maritime regulation [94] in July 2023 for
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the integration of maritime transport into EU ETS. To be specific, shipping companies
would be required to surrender CO2 allowances to cover their emissions from voyages
between ports within the EU, as well as emissions from all inbound and outbound voyages
between the EU and non-EU ports. Therefore, the inclusion of shipping into the EU ETS
introduces a new major risk in the shipping industry, that is, carbon risk, and makes the
development of carbon risk management a high priority for shipping companies.

Our study evaluates the performance of hedging strategies in the carbon and bunker
markets using alternative econometric models to estimate the OHR. Out-of-sample com-
parisons of the hedging effectiveness of strategies based on two traditional models, such
as the OLS and ECM, and two sophisticated approaches, ADCC and t-copula models,
deepen our understanding of the hedge activities, models’ performance, and effectiveness
of futures contracts as hedging instruments. We initially examine the performance of a
single instrument hedging strategy on carbon allowance prices. It follows the develop-
ment of a composite cross-hedge-setting in which the composite instrument based on the
carbon futures contracts and petroleum futures contracts are used for hedging both risk
exposure in carbon and bunker markets. Our empirical analysis also includes a case study
with the estimation of bunker fuel cost and carbon allowance cost, as well as the practical
implementation of hedging strategies for indicative three cargo ship voyages.

Our findings are summarized as follows. First, the results show that the carbon fu-
tures contract is a highly efficient hedging instrument for managing the carbon price risk.
Our empirical findings indicate that the uncertainty regarding the carbon allowance price
changes can be reduced by more than 95%. Second, we investigate whether hedging strate-
gies relying on more sophisticated and complex models generate better hedging strategies
than the conventional models in terms of variance reduction hedging effectiveness. The
out-of-sample evaluation, based on the variance reduction of hedged portfolios generated
via the four competing models, indicates the superior performance of the simplest models.
The results show the significant advantage of using the standard OLS and ECM models over
the ADCC and t-copula models for hedging the carbon risk under the single instrument
hedging strategy and both carbon and bunker risk under the composite hedging strategy.
Third, Brent futures contracts significantly dominate other petroleum contracts for hedging
the bunker price risk. Fourth, we conclude that the spot-future carbon pair is able to offer
a high degree of hedging effectiveness to either single instrument hedging strategies for
managing only the carbon allowance risk or composite hedging strategies for managing
both carbon allowance and bunker risk. Fifth, our article undertakes a case study to provide
a practical application of the proposed hedging strategies for managing the carbon and
bunker risk of selected voyages and standard vessel types. Our results indicate a variance
reduction of estimated voyage costs and economic gains by means of cost reduction for the
hedged positions compared to the unhedged positions.

There are some limitations to our study. First, we examine the effectiveness of hedging
strategies on bunker risk using spot prices of Rotterdam-delivered bunker fuel. The inclusion
of bunker fuel prices from other important bunker hubs (i.e., ports of Houston and Singapore)
might provide more empirical findings; however, it would have lengthened the paper further.
Second, we focus only on the hedging of bunker risk using bunker prices of heavy-sulfur fuel
oil (HFLSO), represented by HSFO 380 prices, which is the cheaper and most commonly used
fuel by vessels. However, low-heavy fuel oil and alternative fuels, such as LNG, can also be an
option. Another limitation of our study is that we use information about benchmark vessels
and selected trading routes for the purpose of estimating fuel consumption and corresponding
CO2 emissions in our case study. Despite the stated limitations, our paper contributes to the
recent emerging literature that examines the risk management of carbon allowance risk in the
shipping industry, and these limitations can be considered as a direction for future research.

The empirical findings of our research are of general interest to market participants and
academics in the shipping industry, as well as investors with an interest in risk management
around the carbon markets. We propose a hedging framework for managing carbon
allowances price risk that can strengthen and expand the scope of existing risk management
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of shipping companies, which focuses on managing the bunker and freight rates risk.
A nice feature of our work is that we present the carbon emissions cost calculation in
connection with the bunker fuel consumption and develop our hedging methodology using
a composite hedging strategy that involves both the carbon and bunker risk, with the latter
being a familiar risk to practitioners in the shipping industry. Moreover, the success of the
proposed methods for the estimation of OHR and the high degree of hedging effectiveness
indicate potential economic gains by means of stabilized cash flows for shipping companies,
thanks to the uncertainty of reduced carbon and bunker fuel prices.
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Abbreviations

ADCC Asymmetric Dynamic Conditional Correlation
CCER China-certified emissions reduction
CCX Chicago climate exchange
CER Certified emissions reduction
CET Carbon emissions trading
CH4 Methane
CII Carbon intensity indicator
CO2 Carbon dioxide
DM Diebold–Mariano test
DWT Deadweight tonnage
EC European Commission
ECM Error correction model
EEA European economic area
EEDI Energy efficiency design index
EEXI Energy efficiency existing ship index
EU European Union
EU ETS EU emissions trading scheme
EUA European Union Allowances
GDP Gross domestic product
GHG Global greenhouse gas
GT Gross tonnage
HE Hedging effectiveness
HFLSO Heavy-sulfur fuel oil
HFO Heavy fuel oil
IMO International Maritime Organization
JVETS Japan voluntary emissions trading system
LNG Liquified natural gas
MBM Market-based measure
MDO Marine diesel oil
MRV Monitoring, reporting and verification
N2O Nitrous oxides
OHR Optimal hedging ratios
OLS Ordinary least square
RoPax Roll-On/Roll-Off/Passenger
RoRo Roll-on/Roll-off
t-copula Student’s t-copula
VLCC Very large crude carrier
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