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Abstract: Solid-state energy conversion has been established as one of the most promising solutions
to address the issues related to conventional energy generation. Thermoelectric materials allow
direct energy conversion without moving parts and being deprived of greenhouse gases emission,
employing lightweight and quiet devices. Current applications, main thermoelectric material classes,
and manufacturing methods are the topics of this work; the discussion revolves around the crucial
need for highly performing materials in the mid-temperature range, and around the development of
more scalable fabrication technologies. The different manufacturing methods for thermoelectric bulk
materials and films are also discussed. Small-scale technologies are generating increasing interest in
research; the high potential of aerosol jet printing is highlighted, stressing the many advantages of
this technology. A promising approach to scale the production of miniaturized thermoelectric devices
that combines high energy ball milling and aerosol jet printing is proposed in the conclusion.
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1. Introduction

The worldwide energy and pollution crisis is forcing the industry to innovate in
sustainable directions: new ways to harvest and save energy are necessary [1–3]. Thermo-
electric generators (TEGs) and coolers (TECs) are technological solutions which can address
such issues. The operating principle of thermoelectric materials (TEMs) is based on the
Seebeck effect, discovered as a thermomagnetic effect by Seebeck in 1821, and correctly
addressed as a thermoelectric effect by Oersted in 1825 [4,5]. A thermoelectric (TE) generator
is used to convert thermal energy into electrical energy. When a temperature gradient (∆T) is
applied to the opposite ends of a TE device, power is generated according to this temperature
difference: the power generated therefore increases linearly with ∆T [6–8]. Oppositely, a
thermoelectric cooler can generate a temperature gradient between two opposite ends when
a current passes through the material from the appropriate pins of the thermoelements.
In the first case, converted heat is referred to as the Seebeck effect. In the second case, the
phenomenon is called the Peltier effect [1,2,9].

For an ideal thermoelectric generator (e.g., constant TE properties), the maximum heat-
to-power conversion efficiency (ηmax) and output power density (ωmax) can be expressed

as ηmax = TH−TC
TH
·
√

1+ZT−1√
1+ZT+ TC

TH

; where TC (K) and TH (K) are the cold-side and hot-side

temperatures, respectively. The term ZT (arb. units) indicates the TEG figure of merit (ZT)
average value. ZT is defined as ZT = S2

ρk T = S2σ
k T; here, S (µV·K−1) indicates the Seebeck

coefficient, $ (Ω·m) the electrical resistivity, σ (S·m−1) indicates the electrical conductivity,
k (W·m−1K−1) the thermal conductance and T (K) the applied temperature.

The numerator in the previous equation is known as power factor (PF, Wm−1K−2) [10].
Therefore, PF is calculated as PF = S2·σ. Bell, according to other fellow researchers,
concluded that the minimum ZT value to enable the applications of such materials in
energy harvesting is equal to 1.5 [11–13]. However, despite the non-existing ZT upper limit,
applicable TEGs have demonstrated a figure of merit value lower than 1 [14,15].
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The disruptive impact of solid-state thermoelectric generators on the world is related
to the possibility of directly converting waste heat into electrical energy; currently, research
is therefore focusing on these materials thanks to the coupling of sustainable energy produc-
tion and waste energy re-utilization. The lack of moving parts makes the devices relatively
scalable, greenhouse gas emission-free, lightweight, and quiet; furthermore, thanks to
these characteristics, thermoelectric devices are extremely reliable. Since these electricity
generators do not depend on the nature of the consumable heat, the fields of application
are quite numerous and diverse. The five main categories in which thermoelectric gen-
erators are used are: medical and wearable devices (e.g., wristband energy harvesters),
microelectronics (e.g., wireless sensor networks nodes), electronics (e.g., reutilization of
waste heat for energy harvesting), automotive (e.g., re-utilization of engine waste heat
to power up devices installed on the vehicle), and aerospace (e.g., energy generation in
extreme conditions, such as outer space) [16–20]. TEGs fit these applications because of
their reliability, which is the main concern in such cases, not efficiency. Furthermore, in high
tech applications such as aerospace and microelectronics, costs are of secondary concern,
enabling even more TE material utilization [21–24]. The last 3 years of state-of-the-art, best
performing TE materials (ZT) are summarized in Figure 1. Among the materials cited, those
showing the best performance (ZT ≥ 2.4) are GeTe, PbTe, SbSe, and Cu2Se; however, these
values did not exhibit high reproducibility, remaining laboratory results never applied in in
situ applications. The ZTmax values of similar materials of the years before 2021 are charted
in the diagram in the work of Shin et al. [24].
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created summarizing the ZT values at room temperature of the materials tested in the bibliography
of thermoelectrics in the respective years. Original image.

Recent studies about the market of TEMs revealed that in 2019, bismuth telluride
accounted for the 66% of the total thermoelectric market. This material is chosen by most
companies because today’s commercial applications are close to room temperature, where
the highest figure of merit is claimed by Bi2Te3 and its alloys (it can function up to 600 K).
Interestingly, the second material in this classification is lead telluride (PbTe) which is
used at higher temperatures than bismuth telluride (up to 900 K). Furthermore, PbTe is a
chalcogenide as well, indicating the potential of this material class.

Said studies also highlighted that the thermoelectric market is predicted to increase
from the 51.9 million USD of 2019 to the 96.2 million USD of 2027, with a compound annual
growth rate (CAGR) of 8.0% [25]. This demand derives from the increasing applications
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in industrial, automotive, healthcare, microelectronics, and aerospace. The advantages of
using these materials are related to energy saving (e.g., in many applications conventional
batteries could be substituted by these devices, for instance thermo-powered security
systems in apartments), the reuse of waste heat (e.g., the heat dispersed by a vehicle engine
can be used to power up different accessories of the car), and reducing greenhouse gases
emissions, non-renewable sources, and fossil fuel utilization [21,22,24].

Up to 2027, different growth rates have been forecast for the application fields of TEMs
(industrial, automotive, electric and electronics, healthcare, and others). Automotive and
electric and electronics are the fields where the market is growing the fastest; the value of
CAGR is around 9.7% for both, differently from the other fields where it is lower [25].

However, as can be seen from the prices summed up in Figure 1, the high production
costs of these devices could lower TEMs’ market growth. An example is in photovoltaic
energy generation; a 1000 W photovoltaic panel currently costs less than 3000 USD, whereas
a 125 W TEG (where the energy source is sun irradiation) costs 1200 USD. The use of TEMs
for such an application has wide potential because when there is no sunlight, an in-house
heat source can be used to re-charge the generator. However, the high production prices
are not enabling this solution yet [26]. For example, relatively high efficiency values were
reached using an n-type (Bi-Te-Se, PbTe) and a p-type (Bi-Te-Sb) for the TEG; however, as
summed up in Figure 1, the ZTmax/cost effectiveness is low (0.9 for Bi-Te-Sb and Bi-Te-Se
alloys and 1.2 for PbTe), slowing the unveiling on the market [24,26–28]. The main research
goal is in fact to achieve relatively high efficiency values with scalable processes, delivering
TE devices to markets where price is a main concern [25,26,29].

The achievement of high ZT values is related to high values of electrical conductivity
and low values of thermal conductivity [15,30–32].

The proposed solution to address these issues is to reduce the dimensions and features
of TE devices to the nanoscale. This way of boosting ZT was proposed in the 1990s by Hicks
and Dresselhaus [33,34], and then supported by other works [29,35,36]. As an example,
papers on Bi2Te3/Sb2Te3 superlattices demonstrated a ZT value as high as 2.4, lighting up
a spot over this approach. However, these values do not transfer in high performances,
because of the high production prices and the low industrial yield [1,9,20].

2. Commercial Thermoelectric Modules
2.1. Characteristics and Manufacturing

TE modules are devices used to exploit thermoelectric phenomena for refrigeration
or power generation. These objects consist of semiconductor couples electrically in series
and thermally in parallel while being positioned between two ceramic substrates (usually
made of alumina, Al2O3, silica, SiO2, or beryllium oxide, BeO); the thermocouples are
connected through metal contacts (commercially available products employ thick films
of copper Cu between the leg ends and the substrate, which are called ‘interconnects’).
Furthermore, an anti-diffusion layer (often nickel, Ni, in one layer or silver, Ag, and tin, Sn,
in two stacked layers) is soldered on every element to avoid the phenomenon when the
module operates at high temperatures [21,22,37]. More specifically, thermoelectric couples
are installed as alternating n- and p-doped semiconducting legs, where the electrons in the
n-type legs move like the holes in the p-type legs with heat [13,15]. Doping a semiconductor
corresponds to introducing impurities in the material to add an extra electron or a hole.
In the conventional case of silicon, p-doping means introducing in the semiconductor
3-valent dopants (e.g., boron) which can catch an outer electron, generating a hole in the
material. Oppositely, n-doping means inserting in the semiconductor 5-valent dopants
(e.g., phosphorus) which can lose an outer electron, donating an extra electron to the
material. Therefore, a p-dopant is an electron acceptor, and an n-dopant is an electron
donor [32,38,39].

A single and generic thermoelectric couple is represented in Figure 2.
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TE modules can be categorized depending on the configuration: planar, vertical, or
mixed. The nomenclature ‘planar’ and ‘vertical’ refer to the direction towards which heat
moves relative to the module basal plane.

• Planar design: thermoelectric legs are deposited in such a way that all the cold ends
are located on one side of the substrate, and the hot ends on the other one; therefore,
the temperature gradient for thermoelectric generation (∆TTEG) is applied along the
substrate surface. This configuration never reached real commercialization because it
does not fit most commercial applications. A generic thermoelectric module in planar
configuration is shown in Figure 3.

• Vertical design: in this configuration, the cold ends are located at the opposite sides of
the substrate, while the hot ends are in intermediate positions; the deposited thermo-
electric legs are shorter and larger in number. In this case, ∆TTEG is perpendicular to
the ceramic substrate. This configuration is the most commercialized one and may be
found in many appliances. A generic thermoelectric module in vertical configuration
is shown in Figure 4.

• Mixed design: this configuration is considered “mixed” because ∆TTEG is located
perpendicularly to the module basal plane (vertical design) but the temperature
gradient for thermoelectric refrigeration (∆TTE) is vertical (planar design). Today,
this configuration is commercialized for TE refrigeration; however, thanks to its good
applicability, it is currently being studied for other applications. A generic mixed
configurated TE module is represented in Figure 5 [22,23,37].

A Peltier module SP1848-27145 by Oumefar 40 mm × 40 mm is shown in Figure 6;
the device is in mixed configuration and can generate or exploit up to 423 K (150 ◦C)
temperature difference.
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No standard for thermoelectric generators dimensions exists; however, it is possible to
divide these devices in two categories depending on sizes:

• Large (or bulk) TEGs: these devices have millimetric sizes and can provide power up
to hundreds of Watts when subjected to large heat ranges. TE modules in this category
are used for industrial applications.

• Micro-TEGs: the sizes of these devices are in the range of hundreds of micrometers.
These devices work with low waste heat and generate electrical power up to a few
mW [15,22,37,40].

The choice between large or micro-TEGs depends on their utilization; a general picture
of current applications of commercial thermoelectric generators is presented in Section 2.3.

Furthermore, thermoelectric modules can be classified depending on the substrate
chemical composition:

• Silicon technology (SiO2-based substrates): these substrates are used to fabricate micro-
TEGs. The most commonly used materials in these substrates are Si-Ge and Bi-Sb-Te
alloys. Given the high temperature resistance and the diffusion shield capacity of
silicon dioxide (SiO2), these devices are used for electronics, and more specifically
integrated circuits (IC) technology [21,41,42]. The TE n- and p-legs in this case are
called n+-wells and p+-wells; often the materials are doped with implantation of
arsenic (As) and phosphorus (P) ions for the n+-wells and boron (B) ions for the
p+-wells [21,43,44].

• Alumina (Al2O3): this substrate is often used for high density multi-layered bulk TEGs.
Due to the low cost, time-effectiveness, simplicity, and good chemical and temperature
resistance, it is used in the industry at high temperatures for high electrical current
generation. These substrates can also be used for the fabrication of micro-generators
but are more practical for bulk generators [21,45,46].

• Polymers: the most common polymer used for this application is polyimide (PI),
cellulose fibers-based materials are also often used. These materials are characterized
by a low chemical and thermal resistance while demonstrating high flexibility; micro-
generators are fabricated using such substrates for near room temperature applications
such as wearable devices or health monitoring applications [21,47,48].

A consolidated industrial manufacturing method has not been defined yet; however,
the process can be summarized by an example:

• Fabrication of the thermoelectric piles (current and promising methods are discussed
in Section 4): in industrial plants, it takes place by hot extrusion of thermoelectric
materials.

• The side surfaces of the TE legs are treated to have protection over the environment:
a polymeric coating (e.g., water-based paint with fluorine rubber) is deposited by
electrodeposition.

• The TE piles are washed and cured, and then cut to fit a certain module design.
• Lithography and electrodeposition are used to deposit on the thermopiles surface:

# The metal contacts (usually a single Ni layer)
# The anti-diffusion layer (one Ni layer or two stacked Sn + Ag layers)
# Cu interconnects are often deposited to increase the electrical contact in the

circuit (it is a single thick film which does not exceed 5 µm in thickness)

• The TE modules are assembled by soldering using the applied coating in the form of a
tin alloy and gold alloy and using alumina plates as supports [49].
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2.2. Functionally Graded and Segmented Thermoelements

Every thermoelectric material performs better in a certain temperature range; for
example, Si-Ge alloys perform better at high temperatures (T > 900 K) and bismuth telluride
alloys at lower temperatures (T < 500 K). The most studied approach nowadays is to change
microstructural and compositional features of TE materials to achieve higher performances
in certain temperature ranges. However, in most applications, the material undergoes wide
temperature gradients: regardless of the chosen material, it will not perform as well in one
temperature range as it does in another [22,23]. An example is automotive: TEGs composed
of segmented thermoelements are applied on the exhaust or radiator of car engines to
transform waste heat in electrical current. This choice is due to the large temperature range
that occurs close to a vehicle engine during utilization (from 100 to 800 ◦C) [21,50,51]. The
ad-hoc structuring of thermoelectric modules (and therefore the thermoelectric elements
composing it) for a certain application has been studied for years to address the above
issue [22,23]. Two methods are discussed in current research:

• Functionally graded TE elements: during the material fabrication, a gradient of
dopants is introduced to have a different carrier concentration in the material; specifi-
cally, higher towards the hot side to favor the TEG performance. Fabrication of these
thermoelements is carried out with the Bridgman technique. This solution proved use-
ful with non-crystal structured TE materials (e.g., bismuth telluride alloys) exploiting
the double doping technique.

• Segmented elements: This solution consists of joining two different thermoelectric
materials with different carrier concentration, obtaining the same results as above.
This is done with crystal TE materials because grading is not enough to achieve this
properties gradient (e.g., skutterudites); currently, these elements are fabricated via
sintering of pressed powders [22,23].

Functionally graded and segmented thermoelements are represented in Figure 7.
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2.3. Applications of Thermoelectric Modules

Thermoelectric generators can be employed for applications requiring high reliability and
where efficiency is not a first requirement, such as micro self-powered wireless devices, health
monitoring systems, automotive engines, aerospace, and industrial electronics [9,21–23]. As
an example, a medical device monitoring the cardiac activity of an individual suffering
from heart diseases must be reliable and durable, and efficiency is not a main concern.
The categories discussed in this section are medical and wearable devices, wireless sensor
networks (WSNs), automotive, aerospace, and electronic and microelectronic devices.

2.3.1. Medical and Wearable Devices

Body heat is a sustainable heat source, and it can be used to supply thermoelectric
devices which require small quantities of thermal energy; wearable and medical devices
implanted in human bodies fit such requirement [9,21,52]. In several applications such
as sports and fitness wearable devices and wireless health monitoring systems, the hu-
man body can act as thermal source. The temperature gradient provided to the system
mainly depends on two factors: body activities and environmental conditions. However,
considering a room temperature of 23 ◦C and a body temperature of 36 ◦C, the average
temperature gradient is 13 ◦C, which must be used to provide less than 5 mW (this is for
medical devices; sports devices require even less energy).

In the field of implanted medical devices (IMDs), high reliability (fundamental for
these applications) and unnecessity of batteries (time consuming and expensive) make TE
materials the best choice [9,21,22,53–55].

Torfs et al. [53] successfully fabricated a wireless pulse oximeter [56] totally powered
by a commercial Bi2Te3-based TEG located on the wrist. The oximeter requires 89 µW to
function, and at 22 ◦C, the TEG generates 100 µW, more than enough to power the system.
The watch-like system is represented in Figure 8.
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Leonov et al. [57] fabricated a wearable Bi2Te3-based TEG characterized by an output
power of 1 µW when subjected to a 13 ◦C temperature difference. The ceramic plates of
the module were made in poly-crystalline Si, normally used for IC technology. This device
was applied on a T-shirt, therefore exploiting the heat released by the chest skin of the
individual. This application has enormous potential since the person does not have to
wear any additional item, but the power is generated from the T-shirt that they would
wear anyway during physical activity. The device fabricated by Leonov et al. is shown in
Figure 9.
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Liu et al. [58] successfully fabricated a wearable TE device for power generation
based on n-type Mg3.2Bi1.498Sb0.5Te0.002 and p-type Bi0.4Sb1.6Te3 legs. When the tempera-
ture difference was 13 ◦C (skin-room temperature gradient), the peak output power was
0.206 W·m−2. The TEG also showed good resistance to bending cycles (1000 bending cycles
with 13.4 mm bend radius), meaning that it is applicable to flexible substrates. In this case,
the power generator was applied on a polymeric matrix (polyurethane) and worn as a
wristband. Considering the radius of an adult wrist, the surface can be high enough to
enable high energy outputs.

2.3.2. Wireless Sensor Networks (WSNs)

Wireless sensor networks (WSNs) coordinate wireless communication with smart and
advanced sensor networks. Today, these systems work with disposable batteries, which
release polluting chemicals after their utilization (i.e., Pb, Cr, Cd, etc.); the achievement of
battery-free WSNs would be important for green technologies’ implementation in future
industry [9,21,59,60]. As the sensor nodes in such devices are miniaturized (microscale),
the thermocouples should be very sensitive to temperature gradients and limited in their
dimensions. Typically, WSNs in active mode require input power in the range from 10
to 100 µW, and in sleep mode from 10 to 50 µW [9,21,59,61]. WSNs are applied where
remote controlled systems are used like heat pipes, water heaters, central heating, and
air conditioning systems, thus ranging from building energy management to the industry.
Furthermore, these systems are used in the military field, where sensors are used for aircraft
security and flight tests, for example [21,61,62].

Lin et al. [61] fabricated a TE-powered WSN for the low-cost environmental sensing
in building external structures (building energy management, BEM) through energy har-
vesting and ultra-low power management. The system was designed in a window frame,
exploiting the temperature difference between the interior of the building and the external
environment. The experimental part was done using the low-power system on a chip
with wireless and Bluetooth functionalities ESP32 by Espressif Systems as a WSN node;
it consumes 0.42 mW every 2 h. The system built with a commercial TEG (the material
was not clearly identified in the paper; however, since it is a commercial grade material, it
was reasonably based on bismuth telluride) generated 1.5 mW under a 6 ◦C temperature
gradient, more than enough for powering the system.

Iezzi et al. [60] manufactured flexible TEGs applicable to commercial steel pipe insula-
tion systems to power the microcontroller for temperature measurements. The fabrication
was done by screen-printing commercial low-cost Ag and Ni inks on 125 µm thick poly-
imide substrate. The device produced an output power of 308 µW when subjected to 127 K
temperature difference, which suffices to power up a standard commercial temperature
sensing circuit. They demonstrated this point by powering up a standard RFduino system
sending temperature readings of the local environment every 30 s to a cell phone via
Bluetooth functionalities.

Lineykin et al. [63] developed a thermoelectric energy harvester to replace a 20 Ah
disposable battery for a wireless water quality sensor located in a water pipe. They built
this device directly on the pipeline surface using commercial bismuth telluride-based
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TEGs, therefore exploiting the temperature difference between pipeline wall and external
environment. The device transmitting the water measurement results via Bluetooth was
successfully powered. They demonstrated that with a temperature difference up to 2 K, the
device was generating up to 2 mW, enough to power the wireless sensor.

2.3.3. Automotive

High costs of fuel and high carbon dioxide (CO2) emissions are forcing the automotive
industry to study new solutions to improve engine performance; currently, many com-
panies (e.g., BMW, Honda, etc.) are showing great interest in thermoelectric generators
to address such issues [9,21,64]. Modern studies aim to introduce TEGs that can convert
heat coming from internal combustion, thus wasted by the engine exhaust, into electrical
energy in commercial vehicles. Depending on the car speed and class, the temperature of
the source in the engine can vary from 100 to 800 ◦C, with a thermal power up to 10 kW.
Employing this heat would be vital to increase the engine performance and to power up
additional devices in the car (navigation system, telematics, etc.), therefore being helpful
in atmospheric pollution reduction [21,65,66]. Segmented thermoelectric modules must
be used in this application: the wide temperature range experienced by the TEGs does
require different properties for the module. N- and p-type Bi2Te3 are best for the low
temperature range (<250 ◦C), whereas p-type (GeTe)85(AgSbTe2)15 alloys and n-type PbTe
alloys for the intermediate temperature range (250–500 ◦C) are the best choice; lastly, for
the high temperature range (500–700 ◦C), skutterudites (p-type CeFe3RuSb12 and n-type
CoSb3) [21,23] are used. Two different locations for the TEGs were presented: between
the radiator surface and the fins (maximum temperature difference of 80 ◦C) and on the
exhaust heat system (the heat can be higher than in the previous case, so much so that
complex-shaped TEGs may be necessary) [21,50,67,68]. When discussing this application,
the term ‘energy saving’ is mentioned, which refers to saving in fuel consumption, costs,
and CO2 emissions.

Yáñez et al. [69] applied a commercial Bi2Te3-based thermoelectric generator on the
exhaust of two different engines to demonstrate the high recovery of energy in spark-
ignited (diesel used as fuel) and compression-ignited (gasoline used as fuel) engines in Ford
ecoboost and Nissan YD22 car models, respectively. The applied temperature difference
was 50 ◦C; they also applied different modes for the engine (different rounds per minute,
rpm; torque, N·m; and different engine power, kW). However, for the gasoline engine
(1700 rpm, 60 N·m, and 10.7 kW), the TEG generated an output power of 16.6 W (potential
0.37% energy saving); for the diesel engine (1250 rpm, 80 N·m and 10.5 kW), the TEG
generated instead an output power of 41.6 W (potential 0.84% energy saving). The power
generated is enough to possibly power more than one electrical device on the car (such as a
navigator).

Orr et al. [51] mounted a TEG on the exhaust of a 3.0 L V6 Diesel Engine. The device
consisted of eight commercial Bi2Te3-based TE modules distributed on the exhaust system.
The TE device generated up to 37.85 W when the engine was running at 4000 rpm, with no
torque applied and at 50 ◦C temperature difference; they calculated that this could result in
a potential 1.57% energy saving.

2.3.4. Aerospace

TEGs for aerospace, or radioisotope thermoelectric generators (RTGs), are spread
for space crafts, satellites, and space probes. These devices use the heat transferred by
radioactive materials undergoing natural decay to generate electricity. Over the years,
different isotopes have been used (Cerium-144, Polonium-210, etc.) but the best, and still in
use, is Plutonium-238: high melting point, low gamma radiation, and high half-life (almost
90 years) make it the best choice for this application [9,21,70,71]. The devices must be
made of TE materials operating at high temperatures; usually, PbSnTe is used as p-legs and
(GeTe)85(AgSbTe2)15 (known as TAGS alloys) as n-legs. In the past, SiGe was often used as
well. Today, the costs for single RTGs fabrication are enormous (from 100 to 120 million
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USD) due to high safety protection costs and low disposal of Pu-238 (1968 USD a gram):
the improvement of the radioisotope power system is necessary [21,72–74].

In 1989, NASA launched the Galileo space craft, which was installed with the first
module, known as GPHS-RTG. The thermal source was Pu-238 and the TEG was mounted
as 18 SiGe/SiMo modules. The hot side operated at 1308 K and the cold ones at 566 K, the
device provided 245 W of electrical power [21,74–76].

About 15 years later, new generation RTGs were installed on spacecrafts. The Multi-
Mission Radioisotope TEG (MMRTG) powered by Pu-238 was mounted on the space probe
Pioneer 10 for outer space exploration. The devices consisted of 16 PbTe/TAGS modules,
where the hot legs operated at 510 ◦C and the cold ones at 121 ◦C. The system worked for
longer than it was designed for, and it was generating power for 110 W [21,73,74,76]. A
cutaway of a MMRTG is shown in Figure 10.
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Currently, new solutions are being studied. Holgate et al. [77] fabricated a MMRTG
alimented with Pu-238 and composed by 768 skutterudite-based thermocouples. The hot
sides of the system operated at 625 ◦C and the cold ones at 200 ◦C, generating up to 105 W of
electrical power; despite being composed of non-conventional materials for this application,
their power value is in the range of the other MMRTGs.

2.3.5. Electronic and Micro-Electronic Devices

When studying microelectronic devices, products such as miniaturized circuits, inte-
grated circuits, and central processing units (CPU) are discussed. Today, processors can
produce thermal power in the range from 6 to 320 W and waste heat up to 110 ◦C. In
general, this heat must be removed or used to cool down the device via thermal manage-
ment technologies to ensure a longer battery life and a better battery performance; the
lack of cooling in these utilities can lead this technology to prematurely end its life and
to malfunction [9,21,78,79]. Conventional cooling systems for electronics (rotary fans and
cooling pipes) were successful in the past, but with the advent of microelectronics and their
fast technological advancement, they have partly lost their utility. This technological break-
through has limited the number of cooling systems applicable to these technologies since
the increase in component density and heat flux generation (decrease in size of electronic
devices) [21,44,80,81].

The electronic utilities market of 2011–2012, analyzed in 2013, showed that the fabrica-
tion of small-sized laptops in those two years grew by around 10 times [21]. This evidences
that there is an urgent need to develop thermal modules that ensure the functionality of
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small electronic devices in terms of size, heat transport capability, and reliability; the main
obstacle now is the inability to achieve power densities which are enough to provide an
adequate output power to current microelectronic devices, which have areas in the order of
mm [2,21,82].

Furthermore, the compatibility between silicon technology and TEGs has not been
developed yet, limiting applications in microelectronics [79,80]. Thermal management
technologies are currently divided into four classes:

• Airside: these are the conventional cooling technologies, including rotary fans and heat
sinks. The main application of heat sinks is in laptops and located at the heat transfer
interface between the heat source and the rotary fans. More innovative solutions in
this group are piezoelectric fans and electrostatic fluid accelerators (EFAs).

• Heat transporters: these solutions were designed for higher heat flux applications.
The most common solutions are heat pipes, vapor chambers, cold plates, and liquid
and spray cooling; they are always used with rotary fans for thermal management of
laptops and computer servers.

• Active solid-state heat spreader: Thermoelectric devices are part of this group, along
with thermotunneling and thermoionic devices. Currently, used TE devices are ther-
moelectric coolers (Peltier effect usage); however, these are used for niche applications
because of their high price. In this field, TE materials are also studied as TEGs, thus
using waste heat as source for electrical energy generation: not only by powering
other components of the electronic device but also by supplying current to the cooling
fans, being active thanks to the waste heat dispersed by their own system.

• Passive thermal interface material: these solutions are used for cooling by heat transfer
and include greases (the most common one based on a silicon matrix), gels, adhesives,
and graphene. These materials have extremely lower thermal resistance than air or
commercial materials for such purposes (e.g., silver epoxy) and therefore allow for
interface cooling [21,79].

Currently, commercially available thermoelectric devices for microelectronics are inte-
grated thermoelectric micro-coolers (ITM), which are employed to stabilize the temperature
of solid-state lasers, to cool infrared detectors, and to enhance the performance of integrated
circuits. The dimensions of commercially available thermoelectric coolers vary from about
50 × 50 × 5 mm to a lower limit of around 4 × 4 × 3 mm. These devices are structured as
Peltier modules and usually are based on bismuth telluride alloys or silicon carbide (SiC)
on SiO2 substrates [15,22,23,81].

As a valid example, Huang et al. [81] developed a poly-silicon-based micro-thermo-
electric cooler based on bismuth telluride (n-type Bi2Te3 and p-type Sb2Te3) in mixed and
bridged configuration; the device is meant to be applied on ICs, and when a current of
80 mA is applied, the generated temperature gradient was of 5.6 K.

As for TEGs, there is currently little use of microelectronics: they can be applied in
niche applications where their cost is of secondary concern; therefore, large-scale scalability
has not been achieved yet. The most discussed application of TEGs in microelectronics is in
WSNs and in technologies such as laptops, smartphones, and tablets [9,21]; therefore, if we
identify ‘microelectronics’ as any field of technology where micro components are needed,
then this application range is extremely wide. The most studied technology is thin films,
since the miniaturized dimensions of the allocations for eventual micro-TEGs.

As an example, Dhawan et al. [43] fabricated a rigid microelectronic device (area < 1 mm2)
in Si0.97 Ge0.03 using standard silicon by processing (the n+-wells were fabricated through
arsenic ion, As, and phosphorus ion, P, implantation in Si0.97 Ge0.03. The p+-wells were
prepared by implanting boron ion, B, in the material); these micro-TEGs would be appropri-
ate for on-chip or in-package integration with energy autonomous ICs. When the applied
temperature difference was equal to 15 K, the device produced an output power of 0.3 µW.
The whole module dimensions were 15.7 × 19.8 µm, whereas the single thermoelement
was 80 × 750 nm, and every single blade of the four composing the module was 65 nm
large. The comparison with commercial microelectronic devices based on bismuth telluride
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demonstrated that this technology has good potential for future applications. A schematic
of the device structure is shown in Figure 11.

Energies 2023, 16, x FOR PEER REVIEW 13 of 51 
 

 

bismuth telluride demonstrated that this technology has good potential for future appli-
cations. A schematic of the device structure is shown in Figure 11. 

 
Figure 11. The side-view cross section (not to scale) through one n-p thermocouple with contact 
metallization and heat exchanger layers is shown on the left. The plan view from up (to scale) on 
one thermopile unit cell composing the harvest mode micro-TEG used for the experiments is shown 
on the right. Each dark-colored solid square represents a group of four blade elements. The dark 
red lines are silicide electrical contacts to the n and the p legs. Reprinted with permission [43]. 

Hu et al. [44] fabricated a TEG using nanostructured silicon thermopiles produced 
on an industrial silicon Complementary Metal–Oxide-Semiconductor (CMOS) process 
line. Studies about this implementation of TEGs are crucial, because making the TE world 
closer to the microelectronics world is fundamental. The selected substrate was commer-
cial silicon used on a process line for the fabrication of microelectronic devices. The as-
sembly process and the device dimensions are complementary to the work by Dhawan et 
al. (Figure 11), and the n+-wells were fabricated through arsenic ion, As, and phosphorus 
ion, P, implantation in silicon and the p+-wells were produced by implanting boron ion, 
B, in the material. SiO2 was used for filling the space between the legs for mechanical re-
inforcement. The device showed an output of 0.2 µW when the temperature difference 
was equal to 20 °C; this result is comparable to common TEG for microelectronics based 
on bismuth telluride alloys. 

Kuang et al. [83] fabricated (via radio frequency magnetron sputtering) n-type 
Bi2Te2.7Se0.3 and p-type Bi0.5 Sb1.5Te3 based thin films for TE modules in WSNs sensors for 
energy harvesting. The thin films were deposited on a polyimide substrate in an annular 
configuration and were composed of a set of 8 to 16 TE legs; the thickness of both n- and 
p-type legs was about 1 µm and the total diameter of the module was 6 mm. Furthermore, 
the thin films underwent annealing for 30 min in a controlled atmosphere at 573 K. The 
TE modules composed of 12 legs showed the best performance: with a temperature dif-
ference of 23 K the output power was equal to 169 nW, a value comparable with literature, 
considering the small surface area of the samples. 

As a last example, Kobayashi et al. [84] prepared n-type Bi2Te3 and p-type Sb2Te3-
based thin films TE modules in WSN sensors via radio frequency magnetron sputtering. 
The thin films were deposited on flexible polyimide substrates and the TE modules were 
characterized by a tubular configuration and 16 p-n paired thermoelements. The overall 
TE device length was up to 36 mm and the tube radius equal to 7.5 mm, whereas the thin 
film thickness was equal to 1.5 µm. Finally, the samples were annealed in a controlled 
atmosphere at 323 K for 60 min. The tubular TEG generates an output power equal to 
306.8 nW when subjected to a 20 K temperature difference, which is better performing 
than Kuang et al. samples. Literature results on the performance of different TE materials 
by application are summarized in Table 1. 

  

Figure 11. The side-view cross section (not to scale) through one n-p thermocouple with contact
metallization and heat exchanger layers is shown on the left. The plan view from up (to scale) on one
thermopile unit cell composing the harvest mode micro-TEG used for the experiments is shown on
the right. Each dark-colored solid square represents a group of four blade elements. The dark red
lines are silicide electrical contacts to the n and the p legs. Reprinted with permission [43].

Hu et al. [44] fabricated a TEG using nanostructured silicon thermopiles produced
on an industrial silicon Complementary Metal–Oxide-Semiconductor (CMOS) process
line. Studies about this implementation of TEGs are crucial, because making the TE world
closer to the microelectronics world is fundamental. The selected substrate was commercial
silicon used on a process line for the fabrication of microelectronic devices. The assembly
process and the device dimensions are complementary to the work by Dhawan et al.
(Figure 11), and the n+-wells were fabricated through arsenic ion, As, and phosphorus
ion, P, implantation in silicon and the p+-wells were produced by implanting boron ion,
B, in the material. SiO2 was used for filling the space between the legs for mechanical
reinforcement. The device showed an output of 0.2 µW when the temperature difference
was equal to 20 ◦C; this result is comparable to common TEG for microelectronics based on
bismuth telluride alloys.

Kuang et al. [83] fabricated (via radio frequency magnetron sputtering) n-type Bi2Te2.7Se0.3
and p-type Bi0.5 Sb1.5Te3 based thin films for TE modules in WSNs sensors for energy har-
vesting. The thin films were deposited on a polyimide substrate in an annular configuration
and were composed of a set of 8 to 16 TE legs; the thickness of both n- and p-type legs
was about 1 µm and the total diameter of the module was 6 mm. Furthermore, the thin
films underwent annealing for 30 min in a controlled atmosphere at 573 K. The TE modules
composed of 12 legs showed the best performance: with a temperature difference of 23 K
the output power was equal to 169 nW, a value comparable with literature, considering the
small surface area of the samples.

As a last example, Kobayashi et al. [84] prepared n-type Bi2Te3 and p-type Sb2Te3-
based thin films TE modules in WSN sensors via radio frequency magnetron sputtering.
The thin films were deposited on flexible polyimide substrates and the TE modules were
characterized by a tubular configuration and 16 p-n paired thermoelements. The overall
TE device length was up to 36 mm and the tube radius equal to 7.5 mm, whereas the thin
film thickness was equal to 1.5 µm. Finally, the samples were annealed in a controlled
atmosphere at 323 K for 60 min. The tubular TEG generates an output power equal to
306.8 nW when subjected to a 20 K temperature difference, which is better performing than
Kuang et al. samples. Literature results on the performance of different TE materials by
application are summarized in Table 1.
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Table 1. This table sums up interesting results of different research groups (reported in output power
in mW) on TEGs, depending on application, material, and testing temperature. ∆T indicates the
temperature difference at which the performance is achieved. The term TAGS refers to the material
(GeTe)85(AgSbTe2)15; furthermore, the nomenclature (As), (P), and (B) indicates the ion implanted in
the material.

Material Output Power
(mW) ∆T Application Location Ref.

n-leg Bi2Se0.3Te2.7
p-leg Bi0.5Sb1.5Te3

100 \

Wearable and
medical devices

Wrist [53]

n-leg Bi2Se0.3Te2.7
p-leg Bi0.5Sb1.5Te3

0.035 per cm2 2.5 Arm [52]

n-leg
Mg3.2Bi1.498Sb0.5Te0.002

p-leg Bi0.4Sb1.6Te3

13.8 per cm2 13 Arm [58]

n-leg Bi2Se0.3Te2.7
p-leg Bi0.5Sb1.5Te3

0.001 22 Chest [57]

n-leg Bi2Se0.3Te2.7
p-leg Bi0.5Sb1.5Te3

1.5 6

Wireless Sensor
Networks (WSNs)

Building
windows [61]

n-leg Ag screen printing ink
p-leg Ni screen printing ink 0.308 127 Pipes insulation

systems [60]

n-leg Bi2Se0.3Te2.7
p-leg Bi0.5Sb1.5Te3

2 2 Water pipes [63]

n-leg Bi2Se0.3Te2.7
p-leg Bi0.5Sb1.5Te3

0.95 4 Building heating
system [62]

n-leg Bi2Se0.3Te2.7
p-leg Bi0.5Sb1.5Te3

16,600 gasoline
41,600 Diesel 50

Automotive

Engine exhaust [69]

n-leg Bi2Se0.3Te2.7
p-leg Bi0.5Sb1.5Te3

37,850 50 Engine exhaust [51]

n-type half-Heusler (Zr,Hf)
p-type Bi2Te3

125,000 480 Engine radiator [50]

n-leg PbTe
p-leg Bi2Te3/TAGS alloy 110,000 420

Aerospace

Energy supply [77]

n-type SiGe
p-type SiGe 285,000 430 Energy supply [75]

n-leg PbTe
p-leg PbSnTe/TAGS-85 105,000 425 Energy supply [77]

n+-wells Si (P, As)
p+-wells Si (B) 0.0002 20

Electronic devices

ICs [40]

n-leg Bi2Se0.3Te2.7
p-leg Bi0.5Sb1.5Te3

0.004 per cm2 20 Electronic
devices [85]

n+-wells Si0.97Ge0.03 (P, As)
p+-wells Si0.97Ge0.03 (B) 0.0003 15 ICs [43]

n-type Bi2Te2.7Se0.3
p-type Bi0.5Sb1.5Te3

0.000169 23 WSNs nodes [83]

3. Thermoelectric Materials

Thermoelectric materials can be categorized depending on chemical composition, ap-
plication, temperature of application, and other approaches. In this review, classification is
done depending on the material composition and secondarily depending on the application
temperature.
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Eight main categories can be identified in state-of-the-art thermoelectric materials:
skutterudites (SKUs) [86,87], half-Heusler [8,88], clathrates [89,90], zintls [91,92], oxy-
selenides [32,93], silicon–germanium alloys (Si-Ge) [94,95], organic and hybrid materi-
als [96,97], and chalcogenides [22,32,98]. Furthermore, these materials can be labeled with
one of three different temperature ranges:

• Low temperature range (up to 600 K): common low temperature applications are
wearable and medical devices, where the devices are working near room temperature
(Section 2.3.2). Microelectronics applications, such as nodes for WSN devices, may
be included in this category due to the low heating of such utilities (Sections 2.3.1
and 2.3.5).

• Medium temperature range (from 600 to 1000 K): thermoelectric materials are com-
monly employed in this range in automotive and in industries, where waste heat can
be converted into electrical current directly from the engine in the former case and
from plants (e.g., heat pipes) in the latter (Section 2.3.3).

• High temperature range (from 1000 K): this range of application is mainly involved in
aerospace to harvest energy for space missions and exploration of outer space, where
photovoltaic energy harvesting fails (Section 2.3.4) [21–24,32].

3.1. Skutterudites

Skutterudites derive from the aristotype cobalt triantimonide (CoSb3), a semiconductor
characterized by high carrier mobility (narrow band gap) and relatively large effective
electron mass; maximum ZT value for CoSb3 is not higher than 0.8 at around 900 K [86,87].
The most performing and used skutterudites for TE applications are filled SKUs: their
structural-chemical formula is EPyT4×12, where EP is an electropositive element species
(i.e., iron Fe, nickel Ni, gallium Ga, indium In, etc.), T a transition metal atom (i.e., cobalt
Co, rhodium Rh, etc.), and X is a metalloid (i.e., antimony Sb, tellurium Te, etc.) [21,86,99].
As an example, the structure of the filled SKU LaFe4Sb12 is shown in Figure 12.
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The temperature range for SKUs application is from RT up to 900 K and they are now
considered for applications such as automotive waste heat recovery, thermopiles for high
temperature energy harvesting, and aerospace (an example about SKU-based MMRTGs
by Holgate et al. [77,101] has already been presented in Section 2.3.4). SKUs are therefore
applicable in the low and medium temperature range [86]

Conventional techniques to densify skutterudites are high pressure sintering (HPS) or
high pressure-high temperature sintering (HPHTS) on powders which already underwent
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high energy ball milling (i.e., mechanical alloying). Often, melt spinning is also used
for bulk samples preparation [24,86,102]. As an example, Tomida et al. [103] prepared a
La0.8Co4Sb12 sample with a diameter of 200 mm, thickness of 21 mm, and a weight of 5 Kg
demonstrating ZT = 1 at 773 K.

The highest ZT value reached in literature is around 1.9 at 823 K, and it was achieved
by Rogl et al. [104]. This performance was attained when testing bulk samples of n-
type triple-filled skutterudite with composition (Sr0.33Ba0.33Yb0.33)0.35Co4Sb12 fabricated
by high energy ball milling and then by hot pressing. The most studied n-type and p-type
skutterudites are ytterbium (Yb) partially filled skutterudites and didymium (DD)-based
skutterudites, respectively; these two fillers can drastically reduce thermal conductivity of
the compound. Regarding thin films, Liang et al. [105] deposited Ti-doped CoSb3 thin films
on BK7 glass substrate magnetron sputtering. The films were annealed for 2 h in argon
atmosphere at 573 K. The final thin film thickness was around 400 nm, and the figure of
merit was 0.86 at 523 K.

3.1.1. n-Type Yb-Partially Filled Skutterudites—Medium Temperature Range

The potential of ytterbium (Yb) partially filled skutterudites was brought to light in
early 2000s by Nolas et al. [106] and further studies highlighted their potential. As an ex-
ample, Salvador et al. [102] prepared n-type ytterbium, barium (Yb,Ba)-filled skutterudites
bulk samples through melt spinning coupled with solid spark plasma sintering (MS-SPS),
followed by annealing at 973 K; the samples stoichiometries were Yb0.08Ba0.09Co4Sb12.12
and Yb0.13Ba0.1Co4Sb12.

The thermoelectric properties of Yb0.08Ba0.09Co4Sb12.12 were high, demonstrating a
figure of merit value equal to 1.1 at 700 K. Oppositely, near room temperature the ZT value
was around 0.25, which is low and difficult to implement in today’s industry.

3.1.2. p-Type DD-Based Skutterudites—Medium Temperature Range

Didymium is a natural double filler composed of 4.76% praseodymium (Pr) and
95.24% neodymium (Nd). Pr and Nd have relatively large atomic masses compared to
small ionic radii; therefore, thermal conductivity is strongly reduced when the voids
are filled by these elements [87,107]. This material has been developed recently and is
not yet employed in on-field applications; however, at around 800 K, materials such as
Ca0.21DD0.43Fe3CoSb12, Ba0.18DD0.48Fe3CoSb12, and Yb0.16DD0.5Fe3CoSb12 showed a ZT
value from 1 to 1.1 [86,99]. The highest ZT value in literature so far (1.2 at 700 K) was
obtained by testing DD0.65Fe3CoSb12 bulk samples [108]. Rogl et al. [107] demonstrated
that the material DDy(Fe1−xCox)4Sb12 with 0.3 ≥ x ≥ 0.2 and y = 0.60 or 0.65 shows
ZT values between 1.1 and 1.2 at 700 K; the authors stated that this didymium-based
material is an extremely promising p-type TEM. As a final example, Rogl et al. [109]
fabricated first via optimized melting reaction and then by mechanical alloying bulk
samples of DD0.54(Fe1−xNix)4Sb12 with 0.25 ≥ x ≥ 0.13. This material (cheaper than
DDy(Fe1−xCox)4Sb12 because of Ni employment) shows a figure of merit equal to 1.1 at
700 K when x = 0.15 and y = 0.54, comparable to DDy(Fe1−xCox)4Sb12 performance.

3.2. Half-Heusler Alloys

Heusler alloys are ternary intermetallic compounds characterized by a MgAgAs-
type crystal structure; the difference between Heusler alloys and half-Heusler alloys is
that the sublattice of the former is totally occupied, whereas that of the latter is partially
occupied [88,110,111]. The two structures of the alloys are represented in Figure 13.
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Half-Heusler alloys are better thermoelectric materials than full-Heusler ones because
they have a small band gap, low electrical resistivity, and high thermopower (i.e., high See-
beck coefficient) [20,110,112]. Recently, Ni and Sn have been substituted to get better perfor-
mances; Fe and Co replaced Ni, and Sb substituted Sn. Multiple filling was also explored, for
example by preparing materials such as Nb0.88Hf0.12FeSb and Ta0.74V0.1Ti0.16FeSb; promis-
ing results were achieved with different compositions. As an example, Zhu et al. [113]
reached a figure of merit of 1.42 at 973 K when testing the multiple filled p-type material
ZrCoBi0.65Sb0.15Sn0.2. These alloys can be applied from room temperature up to 1300 K
depending on their composition (the whole temperature range), but the best performances
are attained at around 800 K. Currently, there are no commercial applications for these
materials because achieving high ZT values is hindered by high contact resistance between
the interconnects and the TE leg; promisingly, the free-standing materials can show high
performances. At present, the most studied half-Heusler compounds are p-type XVFeSb
(XV = vanadium V, niobium Nb, and tantalium Ta) and ZrCoBi, and n-type XIVNiSn
(XIV = Ti, Zr, and Hf) and XIVCoSb (XIV = Ti, Zr, and Hf). However, since the promising
results in literature, the focus will be on p-type XVFeSb and n-type XIVNiSn [20,24,111,114].

3.2.1. p-Type XVFeSb—High Temperature range

The most impressive characteristic of this material family is large power factor (S2σ)
over a wide temperature range; most of these materials keep a power factor value over
5–6 mW·m−1·K−2 from 300 up to 1200 K. Generally, these materials are prepared first by
ball milling or levitation melting and then by sintering the powder to form bulk samples,
followed by low temperature annealing (at about 750 ◦C). As an example, Fu et al. [115] fab-
ricated FeNb0.88Hf0.12Sb bulk samples showing a ZT value equal to 1.5 at 1200 K, and from
300 to 1200 K; the samples were prepared via levitation melting and spark plasma sintering
(SPS), concluding the process with a 3-day-long sintering process at 1073 K. Concerning the
power factor, at 1200 K, this material showed a PF value of 5.8 mW·m−1·K−2. To conclude,
this material has good performance, but it should be utilized at high temperatures.

3.2.2. n-Type XIVNiSn—Medium Temperature Range

Nowadays, there are no reproducible examples of high TE performance for these
half-Heusler in the literature; however, some features of this class of materials are extremely
interesting. The XIVNiSn need very low doping to optimize the power factor; p-types
require atomic substitution at around 20% to maximize the response, whereas these phases
just need around 1 to 2% to attain the same optimization level. They also present some
full-Heusler phases, which can be beneficial for the performance. A high figure of merit values
was not reached yet; however, the potential of this half-Heusler material family is high. The
highest performance to date has been achieved by Kang et al. [116] by introducing tungsten
(W) nano-inclusions in the material; they fabricated n-type Hf0.6Zr0.4NiSn0.99Sb0.01 + 5 wt% W
powder by radio-frequency induction melting, followed by mixing with tungsten nano-
powder and densification by spark plasma sintering. This material showed a figure of
merit equal to 1.4 at 773 K, mainly thanks to the introduction of the nano-powder, which
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functioned both as electron-injector and as filtering effect that enhanced the thermopower
of the material.

3.3. Clathrates

In a similar fashion to skutterudites, clathrates are characterized by a cage-like struc-
ture that allows thermal conductivity engineering via insertion of atoms in the material
structure. This crystal structure is related to type I and type II clathrate hydrates, such as
(Cl2)8(H2O)46 and (CO2)24(H2O)136 [89,117–119]. The general formula representing type
I clathrates is X2Y6E46, where both X and Y are guest atoms (alkali metals, rare earth, or
alkaline earth elements which are not strongly bonded to the structure) and E represents
an element of the group XIV (Si, Ge, or Sn); the formula for type II clathrates is instead
X8Y16E136 [21,24,89,90,120]. The crystal structure of type II clathrate CsNa2Si17 is shpwn in
Figure 14. A lot of work has been done around type I structure in recent years, trapping
many di fferent atoms inside the polyhedra, such as alkali metals and rare earth atoms. The
extremely low thermal conductivity is the most attractive feature of type I clathrates, which
in some cases was comparable to the thermal conductivity of amorphous materials. An
example is the glass-like thermal conductivity of Sr8Ga16Ge30; the lattice thermal conduc-
tivity kl was determined to be around 8 W·m−1·K−1 [89,117,118,121]. The other clathrates
families are type VII, twisted, VIII, and IX; however, a few compounds reached stability so
they are not widely studied for TE applications [90].
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VESTA Software 3 [100].

The synthesis of clathrates samples is usually carried out with different methods
depending on their dimensions. The fabrication of microscopic samples is usually done
by thermal decomposition or solid-state synthesis; the macro samples are produced with
well-established routes such as the Czochralski method [89,122] or vertical Bridgman
growth [89,123]. Currently, TE applications based on clathrates have not been developed
yet, but the studies highlighted that the best performance is achieved in the medium and
high temperature range [89,90,121]. The most studied materials, which also yielded the
best TE performances, are usually based on gallium and germanium [55,118].

These materials show high TE performance in the medium/high temperature range,
but reaching their peak in the high T range. As an example, Saramat et al. [124] prepared
46 mm long crystals of n-type Ba8Ga16Ge30 using the Czochralski method, the TE properties
were assessed on disks cut from these samples; the crystals are shown in Figure 15. The
figure of merit value was 1.35 in the medium temperature range (900 K) and 1.63 in the
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high temperature range (1100 K). This performance is interesting and shows potential for
future applications in both ranges.
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Materials such as Yb14MnSb11 [126], Yb9Mn4.2Sb9 [125], and Ca5Al2Sb6 [130] demon-
strated the highest TE performances thanks to their intrinsically low lattice thermal con-
ductivity. These materials show an intrinsic p-type behavior and can operate in any tem-
perature range depending on composition [91,92]. Currently, the focus is mostly on poly-
crystalline samples fabricated either by high-energy ball milling followed by high temper-
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Figure 15. Picture of the single Ba8Ga16Ge30 46 mm crystal fabricated by Saramat et al. via the
Czochralski pulling method. Reprinted with permission [124].

Furthermore, Toberer et al. [119] prepared p-type Ba8Ga16Ge30 samples through grind-
ing then hot pressing followed by vacuum annealing for 60 min at 827 ◦C. It resulted that
in the low temperature range, the TE performance is not high: the highest reached figure of
merit was around 0.5 at 773 K.

3.4. Zintls

Zintls are ternary compounds structured like CaAl2Si2; their formula is AB2C, where
A = magnesium Mg, calcium Ca, strontium Sr, barium Ba, europium Eu, or ytterbium Yb,
B = magnesium Mg, zinc Zn, or cadmium Cd, and C = phosphorus P, arsenic As, antimony
Sb, or bismuth Bi [91,125,126]. The crystal structure of zintls is represented in Figure 16.
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These materials were studied as p-type thermoelectric materials, demonstrating a
high potential in this field. The strong lattice anharmonicity is intrinsically the cause of
low lattice thermal conductivity and tunable valence-band structure enables high electrical
performance [91,127–129].

Materials such as Yb14MnSb11 [126], Yb9Mn4.2Sb9 [125], and Ca5Al2Sb6 [130] demon-
strated the highest TE performances thanks to their intrinsically low lattice thermal conduc-
tivity. These materials show an intrinsic p-type behavior and can operate in any temperature
range depending on composition [91,92]. Currently, the focus is mostly on polycrystalline
samples fabricated either by high-energy ball milling followed by high temperature sin-
tering (hot pressing or spark plasma sintering), or by melting and subsequent annealing,
followed by consolidating processes. Zintls currently yielding the highest TE performance
are the ones where B = Zn and C = Sb [92,126,130].

These materials yield the highest performance thanks to the extremely low thermal
conductivity, which can also be achieved via band engineering (e.g., band alignment).
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Aside from Zn and Sb, the other components of the high performance zintls are often
cadmium Cd and ytterbium Yb [24,91,127].

The highest ZT peak in a zintl was in fact reached in 2018 by Wang et al. [92] testing
bulk samples of Yb1-yBayCd2-xZnxSb2 (with y = 0, x ≤ 0.9; x = 0.5, y ≤ 0.1). Those samples
were prepared by hot-pressing a powder obtained by hand-grinding ingots fabricated
in vacuum quartz ampoules at 1273 K for 2 h from pure powders with stoichiometric
composition. They achieved a figure of merit value equal to 1.3 at 700 K when the zintl
composition was Yb0.96Ba0.04Cd1.5Zn0.5Sb2, also employing band alignment. As a final
example, Zheng et al. [131] achieved a figure of merit value close to 0.9 at 700 K by testing
EuCd1.4Zn0.6Sb2. The samples were polycrystalline and bulky; in a similar fashion to Wang
et al., they prepared the samples themselves by forming the ingot, which was then ground
to obtain a fine powder which was hot-pressed at 823 K for 50 min with uniaxial pressure
of 80 MPa.

3.5. Oxyselenides

Oxyselenides are oxy-chalcogenide compounds containing selenium of general for-
mula RMCSeO (R = bismuth Bi, cerium Ce, or dysprosium Dy, M = copper Cu or silver
Ag, Se = selenium, and O = oxygen). Between the pristine oxyselenides, the highest perfor-
mance was shown by BiCuSeO, which behaves as a p-type semiconductor, it crystallizes
in a layered ZrCuSiAs structure type where Bi2O2 layers are alternatively stacked with
Cu2Se2 layers, as represented in Figure 17 [35,112,132–134].
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BiCuSeO has a low electrical conductivity in comparison to state-of-the-art TEMs
because of its low carrier concentration; doping is in fact the main strategy to enhance its
figure of merit [132,133]. However, what makes oxyselenides attractive materials for TE
applications is the intrinsically low lattice thermal conductivity due to the slow transport
of phonons resulting from the soft bonding (low stiffness) [112,135]. Pristine BiCuSeO can
reach a figure of merit of 0.5 at 900 K thanks to such low thermal conductivity, but the
improvement in electrical conductivity (mainly through dopants) has resulted in a maxi-
mum value of 1.4 at 923 K [132]. Currently, TE devices based on BiCuSeO are not present
on the market, but many papers highlighted that doping this material with magnesium
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Mg, cadmium Cd, and barium Ba led to higher TE performances, therefore adapting the
general formula to Bi1−xMxCuSeO, where M is the dopant, which is located on the copper
site [21,24]. BiCuSeO alloys work as p-type semiconductors and perform better in the
upper medium/lower high temperature range (between 850 and 925 K) [132,133]. In the
following section, a few examples are displayed.

As an example, Li et al. [136] fabricated Bi1−xBaxCuSeO (with x = 0, 0.025, 0.05, 0.075,
0.1, 0.125, and 0.15) bulk samples demonstrating a ZT value of 1.1 at 923 K. The samples
heavily doped with barium were prepared by crushing the ingots sintered by hot pressing
powders in stoichiometric ratio (573 K for 8 h or 1073 K for 24 h), followed by ball milling
of the obtained coarse powder and consolidation by spark plasma sintering. The disk size
was diameter 20 mm and thickness 7 mm. The thermal conductivity was equally slow for
these materials, but the electrical conductivity after doping was at its higher value when
the stoichiometry was Bi0.875Ba0.125CuSeO, which showed ZT value 1.1 at 923 K. As a last
example, Farooq et al. [137] fabricated bulk samples (15 × 3 × 3 mm3) via spark plasma
sintering of hand-crushed annealed powders (573 K for 8 h and 873 K for 24 h), which were
previously prepared via cold-pressing of ball-milled commercial powders in stoichiometric
ratio. The doped material had general formula Bi1−xCdxCuSeO (with x = 0.01, 0.05, and
0.1) and in this case, the dopant did not significantly influence thermal conductivity, but
it greatly increased the electronic one. The best TE performance was shown by the most
doped formulation Bi0.9Cd0.1CuSeO, which at 923 K, demonstrated a ZT value equal to 0.9.
These materials still need extensive study but are promising solutions for TE applications.

3.6. Silicon–Germanium (Si1−xGex)—High Temperature Range

Since silicon and germanium are completely miscible, silicon–germanium (Si-Ge)
alloys are under consideration as solid-solution semiconductors, whose formula is Si1-xGex;
furthermore, it has a diamond-like lattice structure (Fd3m, Figure 18) characterized by a
hexagonal cell [22,32,95].
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Si-Ge alloys yield better TE performance in the high temperature range (especially
from 1100 K to 1400 K) [95]; nowadays p- and n-type doped Si80Ge20 alloys have been
applied in aerospace [74,138] and automotive [21,69]. An attractive aspect of Si-Ge alloys is
the relative ease in preparing n-type and p-type semiconductors; the former can be achieved
via microstructural control (grain boundaries, dislocations, etc.) and alloying (often by
adding phosphorous, P, on the germanium site); the latter can be achieved by dopants on
the silicon site (a high performing dopant is yttrium silicide, YSi2, and a common one is
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boron, B) [95]. Recently, the TE performance was enhanced using nano-inclusions [139,140].
An example of n-type high performance Si1−xGex material with nano-inclusions and an
example of a p-type high performance Si1−xGex without nano-inclusions are displayed
here. The first case is extracted from the work by Mackey et al. [141]; they fabricated a
silicon–germanium matrix with precipitated tungsten disilicide nano-inclusions (p-type
boron (B)-doped Si/Ge-WSi2 and n-type phosphorous (P)-doped Si/Ge-WSi2) bulk samples.
In the first place, they used mechanical alloying starting from the elemental powders to
prepare a suitable powder, that was successively consolidated using spark plasma sintering
(SPS) from 1073 to 1373 K for 10 min with a 35 kN uniaxial load. They demonstrated that
the n-type sample (doped with P) with higher nano-inclusions content (P dopant 2 vol%—
Si80Ge20—5 vol%WSi2) performed better than the other samples, showing at 1173 K a ZT
value equal to 1.16.

As a final example, Bathula et al. [142] successfully prepared high performing nano-
structured bulk samples (disk with diameter around 12.7 mm) of p-type (boron (B)-doped)
Si80Ge20. They fabricated the samples similarly to Mackey et al., therefore starting from
mechanical alloying of the stoichiometric quantities of elemental powders and finally
employing SPS (from 1173 to 1423 K for 3 min with a uniaxial load equal to 60 MPa) to
consolidate the prepared powders. The samples (with an unspecified amount of dopant)
showed a ZT value equal to 1.2 at 1173 K; both these results highlight the potential of these
materials, especially in a temperature range that has few alternative solutions.

3.7. Organic and Hybrid Materials

The most popular organic TEMs are polymers, followed by carbon-based materials.
These solutions would be crucial to implement flexible and wearable self-powered de-
vices in today’s industry, currently lacking in the market but extensively studied [21,143].
Furthermore, most organic materials are cheaper, more available on Earth, intrinsically
more flexible, and worst thermal conductors than, for example, traditional chalcogenides
such as bismuth telluride. Another interesting characteristic of organic materials is the
high TE performance around RT in comparison to conventional thermoelectric materi-
als [21,24,135,143]. Finally, this topic is extremely wide and since this review revolves
around the more consolidated inorganic TEMs, information is briefly summarized in this
section. However, the referenced literature will provide a better insight over this TEM class.
The Internet of Things (IoT) is quickly growing within society and fast development of
low temperature bismuth telluride-based TE devices led to a higher need for wearable
and flexible devices. Recently, implementation of TEMs in polymers and other organic
materials has been studied as a possible solution to this problem. However, this is still part
of research because high TE efficiency values are still far from being achieved [21,24,143];
highly performing TE polymeric materials can reach ZT values not higher than 0.75 [144].
The main reasons for these low performances are the extremely low electrical conductivity
and Seebeck coefficient that characterize these materials. As mentioned, these materials are
applicable in the low temperature range, and are currently used as substrates or supports
for chalcogenides that perform at low temperatures (e.g., Bi2Te3) [21,24,32]. The most
studied organic materials for TE applications are conducting polymers and carbon-based
materials.

3.7.1. Conducting Polymers—Low Temperature Range

Conducting polymers are called π-conjugated polymers, their best quality is that of
having adjustable levels of doping and a wide variety of usable doping elements [143].
The most common fabrication techniques for these materials are by layer-by-layer assem-
bly [145], in situ polymerization [146], electrospinning [147], and spin coating [148]. The
most used conductive polymers are poly(3,4-ethylenedioxythiophene) (PEDOT), poly(3,4-
ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS), and polyalanine (PANI) [143].
Currently, the TE performances are extremely low. As an example, the top performance
was achieved by Fan et al. [144], reaching a ZTmax value of 0.32 at RT testing PEDOT:PSS
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films which underwent surface ion accumulation. Among the polymeric materials that
are applied for thermoelectric means in the low temperature range, PEDOT:PSS are the
most studied. PEDOT:PSS solutions are not commercially applied, and the studies about
these materials address wearable and self-powered applications. The low temperature
range is considered because at higher temperatures, the polymers would degrade and
secondarily because the potential applications require very low temperatures. Mengistie
et al. [149] prepared both bulky and thin samples of formic acid-doped PEDOT:PSS starting
from an aqueous solution of this polymer; the doping was carried out through established
consolidated surface treatment. The bulky samples had a thickness of 100 µm and were
prepared by vacuum filtration, whereas the thin samples were prepared by spin coating
and reached a thickness of 200 nm; both were prepared on glass substrates. After testing
the samples, the thin film exhibited the best performance, which corresponded to a ZT
value of 0.32 at room temperature.

As a final example, following a well-established procedure, Bubnova et al. [150]
deposited a 200 nm thin film of PEDOT:PSS polymerized with iron tosylate as a dopant, on
a glass substrate, via spin coating. The final TE figure of merit value around RT was equal
to 0.25. These two papers highlight two of the higher TE performances achieved with this
class of materials.

3.7.2. Carbon-Based TE Materials—Low Temperature Range

Carbon-based 2D materials are extremely promising in many different fields thanks
to their low fabrication cost, high efficiency, and flexibility [151–153]. Currently, the most
studied carbon-based material for TE devices are carbon nanotubes (CNTs), which can be
used both as p- and n-type semiconductors, but largely studied as the former; the p-type
conduction is conventionally induced by oxygen doping, and the n-type is induced by
introducing functional groups using polymers [21,24,143]. However, the performance is
very low; for instance, p-type single wall carbon nanotubes (SWCNTs) doped with O2
reached a top RT figure of merit of 0.027 [154]. Graphene has also been studied as p-type
conductor, but integrated in hybrid TEMs, which are better discussed in Section 3.7.3. In
a similar fashion to polymeric materials, these solutions can be applied in the low tem-
perature range [143]. Zhou et al. [155] prepared oxygen doped p-type carbon nanotubes
films (thickness up to 500 nm) by floating catalyst chemical vapor deposition (FFCCVP)
method. They obtained a figure of merit of around 0.021 at RT. Fukumaru et al. [156] fabri-
cated n-type cobaltocene(CoCp2)-encapsulated SWNTs 30 µm thick samples (nominated
CoCp2@SWCNTSs) through a previously established encapsulation synthesis process [157].
They demonstrated that at 320 K, the ZT value was equal to 0.157. The sample is shown in
Figure 19.

Energies 2023, 16, x FOR PEER REVIEW 24 of 51 
 

 

 
Figure 19. Picture of a CoCp2@SWCNTS film fabricated by Fukumaru et al. Reprinted with permis-
sion [156]. 

3.7.3. Organic Hybrids Materials—Low Temperature Range 
Incorporating organic and inorganic compounds into organic TE materials to fabri-

cate an integrated matrix is an effective way to enhance the TE performance of materials 
by reducing thermal conductivity [20,158]. The most recurrent studies are about the im-
plementation of conventional TEMs in a carbon-based or polymeric matrix. Depending 
on the material class, p-type or n-type semiconductors can be fabricated; however, it is 
generally difficult to achieve very high performance and the potential applications should 
be in the low temperature range [21,24,143]. Wang et al. [159] employed a complex process 
(including nanosphere lithography and thermal evaporation) to deposit PEDOT/p-type 
Bi2Te3 hybrid films on a polystyrene substrate; the films were around 56 nm thick. They 
tested the film, demonstrating that at room temperature, the material attained a figure of 
merit equal to 0.57, which already almost doubles the best performance of free-standing 
carbon-based materials. Li et al. [160] fabricated bulk samples of graphene nanosheets 
(GNs)/(Bi2Te3)0.2(Sb2Te3)0.8 with different graphene contents (f = 0, 0.1, 0.2, 0.3, and 0.4 
vol.%). The preparation consisted of: (a) milling a (Bi2Te3)0.2(Sb2Te3)0.8 ingot fabricated by 
hot pressing commercial powders, (b) dispersing the powder in a colloidal dispersion of 
graphene nanosheets in acetone, and (c) stirring until obtaining dried powder. Finally, the 
GNs/(Bi2Te3)0.2(Sb2Te3)0.8 powders were hot pressed to obtain bulk bars (1.5 × 3 × 10 mm3). 
The best TE performance was shown by the 0.3 and 0.4 vol.% GNs/(Bi2Te3)0.2(Sb2Te3)0.8 sam-
ples, which at 300 K and 440 K showed ZT values of 1.29 and 1.54, respectively. This result 
is promising for future developments; however, it is not highly replicable. 

3.8. Chalcogenides 

A chalcogenide is a chemical compound consisting of at least one chalcogen anion 
(elements of the group 16, such as tellurium Te, sulfur S, and selenium Se) and at least an 
electropositive element (such as bismuth Bi, lead Pb, and tin Sn). The most used chalco-
genides in TE applications are commonly IV–VI compounds (PbTe, SnSe, GeTe, etc.) and 
V–VI compounds (Bi2Te3, Sb2Te3, Bi2Se3, etc.); these compounds crystallize in the rock-salt 
structure [21–24]. The most used materials on the market are called BST (bismuth–anti-
mony or selenium–telluride) compounds and are often used in cooling for electronics and 
other fields (Sections 2.3.1, 2.3.2, and 2.3.5) [22,23,135,161]. Other ternary compounds are 
also largely studied but not as applied as BST; a promising ternary chalcogenide class is 
represented by thallium tellurides (i.e., Tl9BiTe6, Tl8.05Sn1.95Te6, etc.) [162]. As an example, 
Duong et al. [162] prepared a Bi-doped SnSe single crystal with a ZT value of 2.2 around 
773 K; currently, this is the highest ZT value in literature for bulk materials. Chalcogenides 
are the most widely employed materials for thermoelectric applications, almost 75% of the 
entire thermoelectric market is occupied by bismuth telluride (Bi2Te3) and lead telluride 
(PbTe) [25]. Among the state-of-the-art thermoelectric materials, these two tellurides have 
the largest figure of merit near room temperature. Tellurium is so effective because it is 
heavier and less ionic than the other chalcogens used for such applications; the former 
characteristic is advantageous for reduced thermal conductivity, the latter for enhanced 

Figure 19. Picture of a CoCp2@SWCNTS film fabricated by Fukumaru et al. Reprinted with permis-
sion [156].



Energies 2023, 16, 6409 24 of 50

3.7.3. Organic Hybrids Materials—Low Temperature Range

Incorporating organic and inorganic compounds into organic TE materials to fabricate
an integrated matrix is an effective way to enhance the TE performance of materials by
reducing thermal conductivity [20,158]. The most recurrent studies are about the imple-
mentation of conventional TEMs in a carbon-based or polymeric matrix. Depending on the
material class, p-type or n-type semiconductors can be fabricated; however, it is generally
difficult to achieve very high performance and the potential applications should be in the
low temperature range [21,24,143]. Wang et al. [159] employed a complex process (including
nanosphere lithography and thermal evaporation) to deposit PEDOT/p-type Bi2Te3 hybrid
films on a polystyrene substrate; the films were around 56 nm thick. They tested the film,
demonstrating that at room temperature, the material attained a figure of merit equal to 0.57,
which already almost doubles the best performance of free-standing carbon-based materials.
Li et al. [160] fabricated bulk samples of graphene nanosheets (GNs)/(Bi2Te3)0.2(Sb2Te3)0.8
with different graphene contents (f = 0, 0.1, 0.2, 0.3, and 0.4 vol.%). The preparation con-
sisted of: (a) milling a (Bi2Te3)0.2(Sb2Te3)0.8 ingot fabricated by hot pressing commercial
powders, (b) dispersing the powder in a colloidal dispersion of graphene nanosheets in ace-
tone, and (c) stirring until obtaining dried powder. Finally, the GNs/(Bi2Te3)0.2(Sb2Te3)0.8
powders were hot pressed to obtain bulk bars (1.5× 3× 10 mm3). The best TE performance
was shown by the 0.3 and 0.4 vol.% GNs/(Bi2Te3)0.2(Sb2Te3)0.8 samples, which at 300 K
and 440 K showed ZT values of 1.29 and 1.54, respectively. This result is promising for
future developments; however, it is not highly replicable.

3.8. Chalcogenides

A chalcogenide is a chemical compound consisting of at least one chalcogen anion
(elements of the group 16, such as tellurium Te, sulfur S, and selenium Se) and at least
an electropositive element (such as bismuth Bi, lead Pb, and tin Sn). The most used
chalcogenides in TE applications are commonly IV–VI compounds (PbTe, SnSe, GeTe, etc.)
and V–VI compounds (Bi2Te3, Sb2Te3, Bi2Se3, etc.); these compounds crystallize in the
rock-salt structure [21–24]. The most used materials on the market are called BST (bismuth–
antimony or selenium–telluride) compounds and are often used in cooling for electronics
and other fields (Section 2.3.1, 2.3.2, and 2.3.5) [22,23,135,161]. Other ternary compounds
are also largely studied but not as applied as BST; a promising ternary chalcogenide
class is represented by thallium tellurides (i.e., Tl9BiTe6, Tl8.05Sn1.95Te6, etc.) [162]. As an
example, Duong et al. [162] prepared a Bi-doped SnSe single crystal with a ZT value of
2.2 around 773 K; currently, this is the highest ZT value in literature for bulk materials.
Chalcogenides are the most widely employed materials for thermoelectric applications,
almost 75% of the entire thermoelectric market is occupied by bismuth telluride (Bi2Te3) and
lead telluride (PbTe) [25]. Among the state-of-the-art thermoelectric materials, these two
tellurides have the largest figure of merit near room temperature. Tellurium is so effective
because it is heavier and less ionic than the other chalcogens used for such applications;
the former characteristic is advantageous for reduced thermal conductivity, the latter
for enhanced electrical conductivity [21,24,32]. Chalcogenides can be employed both at
low and intermediate temperatures, depending on their composition. Wearable devices,
automotive, healthcare system devices, and microelectronics (e.g., miniaturized sensors)
are the most common fields of application [6,22,32].

The materials discussed in this section are the most widely studied chalcogenides for
TE applications: lead telluride (PbTe), tin telluride (SnTe), germanium telluride (GeTe), and
bismuth telluride (Bi2Te3) and their respective alloys.

3.8.1. Lead Telluride (PbTe) and Its Alloys—Medium Temperature Range

Lead telluride (PbTe) has a highly symmetric rock salt crystal structure with the Fm-3m
space group, being characterized by face centered cubic (FCC) lattice. This semiconduc-
tor can show both p-type behavior (tellurium-rich PbTe) and n-type behavior (lead-rich
PbTe) [23,163]. This material particularly shows a good figure of merit in the mid tem-
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perature range from 500 to 800 K, being a promising TEG for applications as automo-
tive [22,163,164]. The structure of PbTe is shown in Figure 20.
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Girard et al. [165] fabricated bulk samples (2 × 2 × 10 mm3) of sodium (Na)-doped
Pb1−xNaxSyTe1−y. The synthesis was carried out by firstly preparing Pb1−xNaxTe and
Pb1−xNaxS via hot pressing and crushing, finally melting the two powders together (up to
1383 K) and subsequently rapidly cooling the molten material. The structure of the material
consists of a PbTe matrix in which nano-domains of PbS are dispersed and finally the
Na-doping was performed to attain a p-type semiconductor. The highest TE performance
was achieved by the Pb0.88Na0.12S0.12Te0.88 material, which demonstrated a ZT value equal
to 1.8 at 800 K. Although this material is highly expensive, the promising TE properties
highlight the potential of this telluride.

A scanning/transmission electron microscopy (S/TEM) image of a Pb0.88Na0.12S0.12Te0.88
sample is shown in Figure 21.
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Reprinted with permission [165].

As a final example, Wu et al. [166] prepared sintered bulk samples of NaxEuySnqPbx+y−qTe.
They first prepared the powders with x ≤ 0.05, y ≤ 0.05, q ≤ 0.03 by melting the stoichio-
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metric quantities of pure elements at 1300 K for 6 h, then they quenched the material in
cold water, and concluded the process by carrying out 10 weeks of annealing (700, 800, and
900 K). Finally, the powders were mechanically alloyed with SnTe and EuTe to tune the
band structure and doped with Na to enhance the carrier concentration. The final ingots
were hand-crushed and ground by ball milling to obtain a fine powder that was sintered in
bulk samples at 877 K for 30 min with an applied uniaxial pressure of 60 MPa. The samples
of Na0.03Eu0.03 Sn0.02Pb0.92Te were tested, obtaining a maximum figure of merit value equal
to 2.5 at 900 K. To conclude, investing in PbTe is a very risky choice nowadays due to the
banning of the dangerous lead from the industry; recently, tin (Sn) has been studied as
possible substitute of Pb.

3.8.2. Tin Telluride (SnTe) and Its Alloys—Medium Temperature Range

Tin telluride has been widely studied as a possible substitute of PbTe to reduce the
environmental impact of lead [167,168]. However, up to the 1980s, when the figure of merit
optimization was not as deeply studied as now, it was not considered a possible alternative
because of its low ZT values. SnTe became a popular topic after the revolution of band
engineering and nano-structuring [32,169,170]; some examples highlight a peak ZT value
at 900 K equal to 1.4 [171,172]. The crystal structure of the SnTe rock salt (Fm3m space
group) is formed by two inter-penetrating face-centered-cubic lattices, and the complex
band structure guarantees many degrees of freedom to optimize the performance of the
TE material; currently, optimization strategies for SnTe are mainly based on addition of
dopants during the samples fabrication [24,32,170,171]. The crystal structure of SnTe is
shown in Figure 22.
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In a similar fashion to PbTe-based materials, SnTe is applied in the mid-temperature
range, showing better performance between 700 and 950 K; the few applications of this
TE material have been in the automotive sector. As an example, Bhat et al. [169] produced
highly performing Sn1.04−3xCa2xInxTe (0 ≤ x ≤ 0.04) bulk samples via modified Self-
propagating High temperature Synthesis (SHS) and Direct Current Sintering (DCS). They
employed double doping to enhance the TE parameters of tin telluride to have p-type con-
duction. The highest ZT value was shown by samples with composition Sn0.92Ca0.08In0.04Te,
with a top ZT value of 1.65 at 840 K. Tang et al. [173] fabricated highly performing Sn1−x−y+δ
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GeyMnxTe(Cu2Te)0.05 (with x ≤ 0.3, y ≤ 0.25, δ ≤ 0.08) bulk samples (disks with diameter
of 12 mm and thickness of 1.5 mm). The process is based on producing the Sn1−x−y+δ
GeyMnxTe alloy, followed by alloying to Sn1−x−y+δ GeyMnxTe(Cu2Te)0.05. The procedure
firstly consisted in melting the pure elemental powder at 1223 K for 6 h, then quenching the
material in cold water and annealing at 950 K for 48 h; finally, the ingots were hand-crushed
and the samples were fabricated via hot pressing with a 60 MPa uniaxial load at 950 K
for 45 min. Alloying was carried out to obtain the Sn1−x−y+δ GeyMnxTe(Cu2Te)0.05 bulk
samples. Tang et al. demonstrated that the highest ZT value was 1.9 at 900 K, and it
was achieved by testing the Sn0.83 Ge0.05Mn0.2Te(Cu2Te)0.05 samples. These results are
encouraging for a future substitution of PbTe-based TE materials with SnTe; however, the
complex and expensive fabrication of this telluride could slow down the progress in this
field.

3.8.3. Germanium Telluride (GeTe) and Its Alloys—Medium Temperature Range

GeTe is characterized by two different crystal structures: high temperature cubic
(c-GeTe) and low temperature rhombohedral (r-GeTe) structure; the transition between
the two occurs at around 720 K. The symmetry breaking due to such transition implies
important changes in the band structure. However, GeTe is mostly applied in the mid-
temperature range up to 800 K and was studied particularly in its cubic symmetry in
the past, obtaining a figure of merit close to 2.4 in some works. On the other hand, the
rhombohedral structure has been studied in recent years for applications in the mid-range
below 700 K, demonstrating exceptional performances [22,24,32,112,174]. A representation
of GeTe structure is shown in Figure 23.
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Qiu et al. [175] prepared Ge0.90−xPb0.10BixTe bulk samples by testing the effect of Bi
doping on the Ge sites. Manufacturing consisted of melting the pure elemental powders,
followed by quenching in cold water and finally annealing at 973 K for 72 h. The ingots
were crushed, and then disk-shaped samples were prepared by sintering at 823 K for 3 min
with a uniaxial pressure of 50 MPa. The highest figure of merit was around 1.1 at 600 K,
which was achieved when testing the Ge0.86Pb0.10Bi0.04Te samples. The undoped material
(Ge0.90Pb0.10Te) showed a ZT value under 0.3 at 600 K.

Chen et al. [176] achieved a power factor value of 2 mW·m−1·K−2 at 523 K testing GeTe-
rich Ge-Sb-Te thin films annealed at 450 ◦C (for most self-powered devices 1 mW·m−1·K−2

is enough [21,177]). In that case, they deposited the films on a silica substrate via radio
frequency magnetron sputtering at room temperature; after annealing at 450 ◦C, the thin
film thickness was around 338 nm.

3.8.4. Bismuth Telluride and Its Alloys—Low and Medium Temperature Range

Bismuth alone behaves like a metal, but when alloyed with tellurium, it behaves like
a semiconductor; furthermore, Bi2Te3 shows high TE performance [1,178]. The structure
of bismuth telluride is represented in Figure 24. Bi2Te3 crystallizes in the trigonal system
(space group R3m) and the cell is hexagonal. Its structure consists of 15 layers stacked
along the c-axis (Figure 24) and shows the combination of three-layer stacks of TeBiTeBiTe
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composition. The coordination polyhedron of every atom is a distorted octahedron. The
average distance between two layers of atoms was evaluated as about 2 Å [41,112,179].
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Bi-Te phases start from Bi (0 at% Te) to reach stability when the composition is Bi2Te3
(66 at% Te), going through six different phases with increasing Te atomic content. This alloy
system is characterized by the formation of one intermediate phase (β) with congruent
melting at 858 K and homogeneity region from 52 to 65 at% Te. After that, stability of the
phase is reached (Bi2Te3) [181].

Doped bismuth telluride materials are called BST, and their composition is Bi2Te3-xSex
for n-type legs and Bi2-xSbxTe3 for p-type legs [180,182,183]. In recent times, research
has been carried out around new doping strategies for bismuth telluride, using elements
such as lead, germanium, and manganese. However, bismuth telluride shows the best TE
performances when alloyed with Se and Sb. Furthermore, devices based on elements such
as Pb and Ge are polluting and difficult to dispose [184–186].

Nozariasbmarz et al. [182] succeeded in preparing a relatively efficient TE wearable
device to generate electrical current from body heat. They synthesized n-type bismuth
telluride doped with Se: Bi2Te2.7Se0.3. In their case, they achieved a room temperature
thermal conductivity as low as 0.65 Wm−1K−1 and high absolute Seebeck coefficient of
−297 µVK−1, also maintaining a high thermoelectric figure of merit, ZT, of 0.87 and an
average ZT of 0.82 over the entire temperature range (from 298 K to 498 K).

As an additional example, Shen et al. [187] reached a figure of merit as high as 1.3 at
room temperature. These values were obtained by in situ nanostructuration of Bi0.5Sb1.5Te3,
during recrystallization, thus giving credit to the small-scale approach. The process was
replicable even on an industrial scale [187–189].

Therefore, bismuth telluride and its alloys are regarded as the best materials for
thermoelectric generators when the source is found at moderate temperatures (from room
temperature to 473 K) [39,190]. As an example, Yuan et al. [177] fabricated a fully self-
powered and flexible wearable monitoring system based on bismuth telluride; the n-type
legs in Bi0.5Sb1.5Te3 and the p-type legs in Bi2Se0.2Te2.8 were deposited on a polyimide
substrate (125 µm thick). The material was deposited via lift-off micro-structuring process
and then assembled in a similar fashion to a bracelet (area 4 × 16 cm2). Considering a
temperature difference around 13 K (human skin/room temperature difference), the device
produced an output power of 4.1 mW, which is enough to power a wearable monitoring
system (up to 3.5 mW). More examples addressing the enormous potential of bismuth
telluride are summarized in Sections 2.3.1, 2.3.2 and 2.3.5.
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In conclusion, research around TEMs for applications at low and moderate tem-
peratures (wearable devices, automotive, healthcare system devices, and microelectron-
ics [6,22,32]) is focused on bismuth telluride and its alloys; ease of fabrication (many
different technologies are usable and summed up in Section 4), low cost in comparison to
other high performing TEMs (e.g., SKUs), and high enough performances make it the most
suitable solution [22,23,32,98].

4. Manufacturing Methods

The materials are produced either as bulk structures or films. The bulk structures can
be obtained either from single crystals or polycrystalline materials from powder processing
and shaping. Several papers evidence that thin films show higher thermoelectric perfor-
mance than bulk devices [1,4,5,95,135,191,192]. Two main aspects can be studied when
discussing differences between bulk materials and thin films:

• Microstructural control: nucleation and growth of the grains is totally different in thin
films and bulk materials. Typical bulk materials are products of high temperature
shaping and consolidation steps. During thin film fabrication, high nucleation rate
of grains is shown due to the condensed vapors at low temperatures, leading to
smaller grains; bulk materials and thin films average grain sizes are around 30 and
0.1 µm, respectively. Properties such as electrical and thermal conductivity are greatly
enhanced by lower grain size and higher microstructural homogeneity.

• Size effect and layered structure: films show unique properties that do not have
any counterpart in bulk materials. Extremely thin or multi-layered materials (e.g.,
superlattices) show these properties: in such cases, the surface atoms are predominant
in determining the material behavior with respect to bulk atoms. Most studied effects
are electron scattering from the surface, quantum effects, and non-linear diffusion
effects. These phenomena are influencing charges and phonons movements, crucial
for thermoelectric properties [1,193,194].

Therefore, thin films may be seen as infinite extension of the bulk, so that the differ-
ences in properties vary only in extent and degree, but not in kind. In different modern
applications (e.g., thermoelectric materials), this can be a key factor to enable high perfor-
mances [4,135,193,195].

As an example, Aversano et al. [196] fabricated bulk ytterbium (Yb)-filled skutterudite
(Co4Sb12) samples and studied how different solidification rates impacted the thermoelec-
tric performance of the material. The ingots were fabricated by casting powder based on
elemental Co (cobalt), Sb (antimony), and Yb in stoichiometric ratio (Yb0.25Co4Sb12) and
slowly heating from room temperature (RT) to 1473 K.

The different batches of molten material were solidified in two ways:

• Slow solidification in the furnace (free cooling to RT).
• Rapid solidification carried out with a planar flow casting apparatus forming Yb0.25Co4Sb12

ribbons 20 to 30 µm thick.

Both ingots were annealed for 4 days at 898 K.
Thermoelectric properties were evaluated on sintered samples from die-pressed coarse

powder obtained by hand-crushing the ingots.
Aversano et al. deduced that:

• Grain size was hundreds of times higher for the ingots than the ribbons: tens of
micrometers against a grain size around tenths of micrometers.

• The ingot samples showed higher microporosity due to lack of compaction between
grains, thus being source of inhomogeneities. Ribbons samples reached 95% relative
density.

• The ingot samples showed more secondary phases rather than ribbons.

Finally, the sintered samples fabricated from the rapid solidified powder reached the
higher thermoelectric performance at 660 K: the maximum power factor and ZT values
were equal to 3.75 mWm−1K−2 and 0.85, respectively. Therefore, it can be concluded that



Energies 2023, 16, 6409 30 of 50

the fabrication process of the skutterudite ingots is economical but time-consuming and
leads to low TE performance: the microstructure is not fine and is difficult to control.

In contrast, Kumar et al. [93] grew on silicon substrates indium (In)–ytterbium (Yb)-
filled skutterudite (Co4Sb12) thin films. The films were deposited using pulsed laser
deposition (PLD) of spark plasma sintered (In, Yb)-doped CoSb3 target (In0.1Yb0.1Co4Sb12).
The thin film thickness was fixed at 200 nm. During deposition, the amorphous SiO2
covered Si substrates were maintained at 533 K. After deposition, the thin films underwent
a thermal treatment in argon atmosphere for 14 h, slowly reaching 700 K. The thin films’
characterization highlighted high compositional homogeneity.

The thermoelectric power factor was calculated measuring electrical conductivity, Hall
coefficient, and Seebeck coefficient using a four-probe method from RT to 660 K.

The maximum PF value was 0.68 Wm−1K−2 (at 660 K).
The thermoelectric performance of the samples fabricated by Aversano et al. by sinter-

ing using the rapidly solidified Yb-filled skutterudite powder was extremely inferior to the
performance of the (In, Yb)-filled skutterudite thin films fabricated by Kumar et al.: the
higher power factor value reached by Aversano was 0.00375 Wm−1K−2, whereas the higher
value by Kumar was 0.68 Wm−1K−2, both at 660 K. This highlights how working on thin
films and low-dimensional devices in general can be key to achieving high thermoelectric
performances [93,196]. However, the choice between thin or bulk manufacturing is mainly
dependent on the TE leg application.

This review aims to highlight the main bulk and thin film technologies used to man-
ufacture thermoelectric elements. It focuses on innovative material technology and the
processes used in industrial manufacturing of TE bulk legs are thus excluded.

4.1. Processing Technologies: Single Crystal Growth

This methodology has been highlighted in recent times because as-grown crystals can
be cut and polished straight away, along with an excellent thermoelectric performance
and the possibility to directly assemble TE modules [22,24]; at the laboratory scale, it is
largely used to fabricate single crystal clathrates [119,124] (Figure 15), SnSe, SnS, and SnSb
samples [162,197–199]. Direct vapor transport [200] and the Bridgman method [123] are
the most known methods to grow bulk crystal, where the former was developed as a
faster version of the latter; the maximum sample length that can be attained using these
technologies (maintaining high material quality) is around 10 mm. Direct vapor transport
consists in applying a temperature gradient to the material powders placed in an evacuated
and sealed ampoule (often in quartz, SiO2), which is located in a dual-zone horizontal
furnace; the crystal will grow from the cold end towards the hot one. The temperature
is gradually increased from room temperature to a target temperature, which is usually
between 1100 and 1300 K. After a long holding time (tens of hours), the cooling to room
temperature is carried out gradually. This method is faster than the Bridgman method,
but precursors purity and temperature must be carefully controlled to achieve high crystal
quality [200–202]. Two examples of high-performing TEMs grown with the former and
latter methods are summed up in Section 4.3.1 [119,124].

Currently, new studies have been published on a new technique called ‘temperature
gradient growth’ [203,204] that enabled the fabrication of high-performing TE single crys-
tals; as an example, Duong et al. [162] fabricated an n-type (Bi-doped) SnSe single-crystal
that exhibited a ZT value around 2.2 at 773 K.

4.2. Bulk Technologies: Powder Synthesis

The fabrication of bulk samples starting from powder processing includes several
technologies; among these methods, mechanical alloying, melting, melt spinning, and
arc-melting are described in this review.
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4.2.1. Mechanical Alloying

Mechanical alloying is a solid-state powder processing technique that involves the
blending and milling of precursors in a high-energy planetary ball mill, where the process
parameters are represented by rotational speed (often from 250 to 800 min−1), process
time (from hours to tens of hours depending on the other process parameters), atmosphere
(often argon and hydrogen), powder:ball weight ratio (usually from 1:10 to 1:20), and
milling media size (diameter from 1 to 10 mm, the choice depends on the starting particles
size) [205–207]. The vessel and balls can be made of different hard materials; the most
common one is stainless steel, but the most effective materials are zirconia (ZrO2) or
silicon nitride (Si3N4). When two balls collide, some powder is trapped between them and,
depending on the kinetic impact energy, the powder can be broken down to finer particles.
The dimensions that can be reached are in the order of hundreds of nanometers; the fine
powder can be used to prepare colloidal suspensions or bulk samples via, for example,
direct sintering [208–210].

As an example, Lin et al. [211] and Lu et al. [212] reduced the particle size of hand-
crushed Bi0.45Sb1.55Te3Se0.034 and Bi2Te2.7Se0.3 ingots (initial particle size around 1 mm)
to an average of 1 µm with a very short but effective process; they used the Planetary
Ball Mill PM100 by Retsch (the schematic of a generic planetary ball milling process is
represented in Figure 25). The process consisted in milling with 10 mm diameter stainless
steel balls in a vessel of the same material for 30 min at 350 rpm, and successively for
90 min at 350 rpm with 2 mm balls, in both cases with a powder:ball weight ratio of 1:4
and with a 10 min holding time every 20 min of milling to avoid over-heating. The powder
was then compressed by cold pressing and finally sintered in argon. Full densification
in thermoelectric materials (i.e., intermetallics) after sintering is an issue that is not fully
addressed. The equipment used to sinter these materials is often very expensive (e.g., hot
isostatic pressing).
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4.2.2. Melting

Despite being considered a conventional methodology, melting the mixed raw materi-
als is still largely used to fabricate polycrystalline powders to produce bulk TEMs because
of high productivity and scalability, low cost, and ease of operation. The process takes
place in an evacuated and sealed quartz tube or container, where the high purity precursor
powders are heated up over their melting point and kept at high temperature for a deter-
mined amount of time, being finally slowly cooled down to room temperature (cooling
can take place also in the presence of oil, water, or liquid N2 to accelerate the process or
achieve a particular ingot internal structure) [213–215]. Annealing is often carried out after
ingot fabrication to increase stability, mechanical properties (ductility, hardness, etc.) and in
some cases enhance electrical conductivity and Seebeck coefficient [21,24]. Three different
furnaces are largely used in current TEMs manufacturing by melting: high-temperature
muffle furnace [32], arc melting method [216,217] (the source is provided by an electrical



Energies 2023, 16, 6409 32 of 50

arc that passes through the precursors, it is used when higher heating rate is required), and
melt spinning method [218–220] (it consists of hitting an internally cooled cylinder with
the molten material stream and it is selected to cool rapidly and achieve precise properties,
such as low thickness [196]). A schematic of a generic melting process is shown in Figure 26.
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permission [24].

In most cases, the as-fabricated ingots are hand-crushed and used to fabricate bulk
samples via single crystal growth (Section 4.1), mechanical alloying (Section 4.2.1), hot
pressing or spark plasma sintering (SPS) [24]. Hot pressing (HP) consists of the densification
of a weakly packed powder or a compacted preform by simultaneously applying heat
and pressure. The attractive features of hot pressing are the possibility to fabricate from
small volume samples (tens of mm3) up to samples with higher volumes (tens of cm3),
the achievement of high final density, and microstructural improvement (e.g., fine grain
size). Hot-pressing procedures include uniaxial hot pressing, continuous pressing, and
hot isostatic pressing (HIP). The main disadvantages of these processes are their high
cost and limited shape-freedom when producing at high mass rates [224–226]. In TEMs
manufacturing, the most used techniques among these are uniaxial hot pressing and
HIP [24]. However, the most frequently used compaction technology for bulk samples
fabrication is spark plasma sintering; this technology is a sintering technique involving
the simultaneous use of uniaxial pressure and high-intensity and low-voltage pulsed
current [227,228]. SPS can be considered a hot-pressing process where the furnace is
replaced by the mold containing the powder, which is heated by a current flowing through
it and eventually through the sample. Thanks to its high effectiveness, SPS is used to
sinter materials which are normally difficult to compact, such as nanomaterials, refractory
materials, and TEMs. The unique features of SPS are the higher heating rates (up to
hundreds of K min−1; this enables faster processing considering that for HP the typical rates
are in the order of tens of K min−1), shorter sintering cycles, lower sintering temperatures
(up to 923–1023 K; low temperatures are allowed by the higher process efficiency, a typical
SPS process does not last longer than a few minutes), and reduced grain growth (this is
enabled by lower process temperatures and shorter holding time) [225,227–231].
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4.3. Film Technologies: Chemical and Physical Methods

Crystalline materials such as nano- and micro-plates, nanowires, and thin films are
often prepared using evaporation or deposition methods, which are crucial for the fabrica-
tion of miniature or microscale TE devices [232–234]. In a typical evaporation or deposition
method, the source material or precursors should be evaporated in vacuum or put in a gas
(i.e., aerosol), so that the material can travel to the target object (called substrate); finally,
the vapors can condense or react on the substrate to form a crystalline solid [232,235,236].
According to a wide collection of literature [37,72,237–240], manufacturing via evaporation
or deposition methods is one of the most promising paths for small scale TEMs fabrication
because of the high quality of the final product, the possibility to deposit any material,
and the high scalability of the process. However, the two main factors hindering the ap-
plicability of these technologies are the difficult optimization of process parameters (thus
complicating the achievement of the process reproducibility) and the high process costs (as
an example, magnetron sputtering requires a high vacuum chamber to maintain high qual-
ity during deposition, high voltage discharges, and highly expensive magnets [241–243]).
Therefore, research has focused on deposition technologies that can guarantee high quality
materials but with lower economic costs [233,234,238,244–247]; currently, inkjet printing
and aerosol jet printing are candidates satisfying such requirements, since a variety of
promising cases have been collected in literature [248–250]. Aerosol jet printing (AJP) is
especially interesting thanks to the possibility of using almost any material dispersed in a
liquid phase [251–253]. In Sections 3.2, 3.3 and 4.3.1, the deposition technologies mainly
used for TEGs fabrication are briefly described along with examples, with a particular focus
on AJP.

4.3.1. Magnetron Sputtering

Sputtering occurs when an ion impact establishes a train of collisions on the target,
leading to the ejection of a matrix atom. Sputtering is related to the transfer of momentum
from energetic particles to the target surface atoms. Most of the kinetic energy transferred
to the target by incoming ions is converted into heat; therefore, an efficient cooling system
is required [254,255]. A generic sputter deposition process consists in the evacuation of a
chamber (the pressure ranges from 10−3 to 10−1 mbar) and the discharge is initiated and
sustained thanks to an inert gas that fills the chamber (usually argon, and it is also referred
as ‘medium’). The target (cathode) is subjected to a negative voltage; subsequently, a
current flow and a film is condensed on the substrate (anode). Positive ions in the discharge
hit the cathode and eject neutral target atoms; these atoms pass through the discharge
region to finally deposit on the growing film. The discharge is sustained by ionization
thanks to secondary electrons emitted from the target plate [241,243,254]. A schematic of a
generic sputtering deposition process is shown in Figure 27.
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Direct current (DC) and radio frequency (RF) sputtering are the two main sputtering
deposition modalities; the former is characterized by the application of direct current
(voltage up to 800 V), low ionization efficiency, and the suitable pressure range for operation
is quite narrow (below 10−2 mbar), whereas the latter is characterized by the utilization
of alternate current (from a few kHz to almost 1 GHz; radio frequency range is used as
it establishes a total negative voltage and fixed anode and cathode behavior) and higher
ionization efficiency [243,254,257]. In magnetron sputtering, a magnetic field is therefore
superimposed to the electrical field already present between target and substrate, therefore
applying the additional Lorentz force to the electrons. In magnetrons, the ionizing efficiency
is increased by the electrons trapped near the target (thanks to a magnetic field oriented
parallel to the target and perpendicular to the electric field). Therefore, a closed path
for the electrons is defined placing the magnets behind the target. The target erosion by
sputtering takes place within this path because the maximum ionization intensity is located
above the sputtered material [242,258,259]. Larger discharge currents and increased sputter
deposition rates are achieved with magnetron sputtering rather than traditional sputtering
technologies [241–243] (usually 1 µm/min is attained in RF magnetron sputtering, against
the usual 0.5 µm/min of conventional RF sputtering, both considering aluminum as
target material [254]). Magnetron sputtering can be applied both in direct current and
radio frequency modality, but usually it is applied in RF modality because of the higher
deposition rates; it can be used to deposit thin films with thickness from tens of nanometers
to tens of micrometers [254,260]. The magnetron sputtering process is shown in Figure 28.
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As an example, Kurokawa et al. [262] fabricated a nanocrystalline bismuth telluride
thin film via DC magnetron sputtering with a maximum ZT value around 0.7 near room
temperature (300 K). They deposited the material on different substrates (BK7 glass, poly-
imide, alumina, and sapphire, all 125 µm thick) annealing the sample for 2 h at 573 K,
obtaining the higher ZT value when deposited on glass. The thin films were character-
ized by an average crystal size of 20 nm, and the film thickness was around 1 µm. The
deposition rate was around 0.4 nm·s−1 and the distance between target (Bi2Te3 disk with
127 mm diameter) and substrate (heated up at 573 K) was 140 mm. The thermoelectric
performance of the rapidly fabricated thin films is high; however, since the substrate is
of moderate temperature, only materials resistant to such temperature range can be used.
Finally, magnetron sputtering is an expensive technology and can be utilized only for niche
applications [242,254,258].

4.3.2. Inkjet Printing (IJP)

Inkjet printing (IJP) is a suspension-based, non-contact and additive deposition process
in which materials are patterned at high speed (up to 100 mm·s−1) and resolution (up to
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10 µm), achieving thin films with thicknesses in the order of tens of nanometers [249,263,264].
IJP can be used in two main modalities, continuous (CIJ) and drop-on-demand (DOD) [265]:
continuous inkjet printers use plate electrodes to selectively charge individual droplets
in a falling jet; charged droplets are deflected by an electric field onto a substrate while
uncharged droplets fall into a gutter system for recycling. In drop-on-demand inkjet
systems, individual droplets are ejected mainly via piezoelectric actuators [249,263,265].

The formation and displacement of a droplet is imposed through a shockwave on the
plastic container. In this case, ink viscosity must be low enough to permit the formation
of the drop after the shockwave. After deposition, the solvent is meant to evaporate,
leaving on the substrate only the functional part of the ink [248,249,266,267]. DOD printing
guarantees higher reliability and precision than CIJ printing but needs more time to print
the same feature [265]. The DOD and CIJ systems are depicted in Figure 29.
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Chen et al. [250] deposited thin films based on bismuth telluride (Bi2Te3) and bismuth
antimony telluride (Bi0.5Sb1.5Te3) nanowires (NWs) through drop-on-demand inkjet print-
ing onto polyimide substrates. The maximum power factor was found at room temperature
around 180 µWm−1K−2 and 110 µWm−1K−2 for the Bi2Te3 and Bi0.5Sb1.5Te3 nanowires,
respectively. The 8 nm thick nanowires were fabricated via low temperature, solution-phase
synthesis methods. Tellurium dioxide with surfactant polyvinylpyrrolidone is reduced
into tellurium NWs within a mixture of potassium hydroxide (KOH), ethylene glycol, and
hydrazine (N2H4, that works as a reduction agent). Subsequently, bismuth and antimony
precursors are added to form the BST and BT NWs, respectively. Finally, the solution was
diluted with distilled water to reach low viscosity for printing. The printed thin films had a
thickness lower than 5 µm. Samples printed with IJP always necessitate annealing. Chen
et al. carried out the annealing at 723 K for 10 min. This treatment significantly increased
electrical conductivity of the samples. Despite its relatively low cost and high-quality
results, inkjet printing does not enable the printing of any material since a narrow viscosity
range should be attained; not only would not respecting such requirements lead to low
quality results, but also to machine damages (i.e., clogging and over-heating) [249,265,267].

4.3.3. Aerosol Jet Printing (AJP)

Aerosol jet printing (AJP) is an emerging microscale additive manufacturing technol-
ogy used to print films on any substrate. Films are deposited by random stacking of layers;
this happens due to the spraying nature of the technology [269,270]. AJP is a promising tool
for the application of functional nanomaterials to printed electronics (e.g., flexible circuits,
environmental and biomedical sensing).

The Inks for AJP are colloidal su”pens’ons, often based on organic or polymeric dispers-
ing phases. The achievable resolution on the substrate can be lower than 10 µm [252,271].

The process requires three gases: atomizing gas (only with pneumatic atomization),
carrier gas, and sheath gas. Aerosol jet printing is divided into five main physical steps:
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1. Atomization: the functional ink is transformed into an aerosol through pneumatic or
ultrasonic atomization.

# Pneumatic atomization: a piston is partially immersed in the ink. Aerosolization
is achieved using an atomizing gas (usually N2) that hits the ink through the
piston, splashing the droplets.

# Ultrasonic atomization: commercial aerosol jet printers usually use this system.
High frequency (MHz) ultrasound sets up a capillary wave on the ink surface,
leading droplets to break off with a well-defined size distribution.

2. Transport: following atomization, the carrier gas (often nitrogen N2) carries ink
droplets through the mist tube to the deposition head. The process can take around
10 s under typical operating conditions. Large droplets are separated from small
droplets before collimation: the large ones go back to the jar; the small ones are part
of the aerosol.

3. Collimation: while entering the deposition head, the aerosol gas (which contains ink
droplets) is surrounded by a flowing sheath gas (usually N2). This collimates the
beam and prevents ink accumulation on the deposition nozzle walls.

4. Aerodynamic focusing: sheath gas allows volume displacement to collimate the
aerosol inside the deposition head. Aerodynamic focusing makes it possible to better
collimate the aerosol gas. Therefore, the focusing offered by the sheath gas is coupled
with the mechanical focusing of the nozzle (the nozzle diameter can vary from 100 to
400 µm).

5. Impact: the aerosol jet hits the substrate, and it gets deposited following a pattern
defined in a 2D environment software (e.g., KEWA software for Ceradrop AJ printers).
Droplets with a size smaller than average will not impact the substrate; droplets sized
larger than the critical dimension will impact the substrate but overspreading on the
surface [252,269,272].

The above-mentioned steps are represented in Figure 30.
Key process parameters in AJP are:

• Ink mass density, $p (g·cm−3)
• Ink viscosity, η (cP)
• Ink surface tension, γs (N·m−1)
• Atomizer gas flow, FG (sccm)
• Carrier gas flow, FC (sccm)
• Sheath gas flow, FS (sccm)
• Ink temperature, T (K)
• Deposition nozzle diameter, D (µm)
• System geometry (e.g., diameter of the mist tube)
• Deposition velocity, v (mm·s−1)

Jet focusing is crucial for the process since during aerosol transportation, droplets col-
liding with the walls are lost, leading to changes in the deposition rate (material impinging).
With experience and practice, it is possible to define an operational window that permits
an optimal printing process; this is defined depending on the parameters mentioned above.
Material loss can lead to contamination, process drift, and clogging of the printing head.
Two main physical mechanisms are the source of transport losses:

• Gravitational sedimentation: it is generally associated with larger droplets. It consists
in settling before deposition of larger droplets during transportation.

• Diffusion: usually associated with smaller droplets. The loss is due to droplets
diffusion after impingement against the tube walls [252,272].
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Together with process parameters, these phenomena determine the inertial impaction
effectiveness; it is quantified using Stokes number (St), defined as St = $p·U·Cc·dp

2·(9·µ·D)−1;
where $p (g·cm−3) is the ink mass density, U (m·s−1) is the impinging jet velocity, Cc (arb.
units) is the Cunningham slip correction factor, dp (µm) droplet diameter, and D (µm)
nozzle diameter of the deposition head.

Attention should be focused on the droplet size:

• Small dp (St < 1): low focusing, diffusion takes place.
• High dp (St > 1): over-focusing, gravitational sedimentation occurs.
• Optimal focusing: St ~ 1

Parameter selection should be carried out by coupling this approach with the printing
practical experience, aiming to achieve optimal focusing [252,273].

The attractive aspects of AJP in comparison to traditional technologies and other AM
technologies (e.g., inkjet printing) for TEMs preparation are:

• Wide ink viscosity (η) acceptability range (η can range from 1 to 1000 cP for AJ printer
installed with pneumatic atomizers), permitting the utilization of different materials.

• High resolution printing (<5 µm × 5 µm) [274].
• The thickness range of a single pass layer is from 100 nm to 10 µm. The ink solid

fraction is a crucial parameter for this dimension: higher nanoparticles concentration
means higher thickness.

• Simple geometry control thanks to aerosol jet printing systems configuration and to
aerodynamic focusing.

• In comparison to other AM technologies (e.g., inkjet printing), clogging is less likely to
take place thanks to the sheath gas utilization.

• The process is flexible, potentially cheap, and scalable [275,276].

On the other hand, the issues which should be addressed around AJP are:



Energies 2023, 16, 6409 38 of 50

• Due to the large number of parameters, defining optimal conditions is a hard and long
process. This is also related to the difficult reproducibility of the process.

• Films often lack homogeneity and property uniformity, and high pore volume fraction
(vol%) can be detrimental (in good proportions, porosity is favorable for thermal
conductivity reduction, whereas in unfavorable proportions, it is detrimental for
electrical conductivity enhancement). Optimal printing conditions can solve such
issues.

• Overspray: the ink is deposited on unintended areas of the substrate, usually around
the actual printed material. The problem can be reduced by matching the conditions
of optimal focusing.

• Time-consuming cleaning and maintenance of the printer can be crucial. It must be
carried out after every printing session [251,252].

Currently, research is in its preliminary state, forcing a step-by-step approach. A
literature review of bismuth telluride-based aerosol jet printing thermoelectric devices is
presented in Section 5.1 Bismuth telluride is selected thanks to the high performances in
the low temperature range, together with its current position in the market, as summarized
in Section 3.8. However, bismuth telluride is extremely sensitive to oxidation, forcing the
utilization of non-aqueous-based suspensions. Both inkjet printing and aerosol jet printing
are less performing with inks based on organic carriers because of the lower surface tension
than water.

In conclusion, aerosol jet printing is a promising technology for the fabrication of
solid-state generators; flexibility, scalability, and possible low costs are encouraging aspects.

5. Conclusions
5.1. Printing of Bismuth Telluride-Based Thermoelectric (BT-TE) Materials through Aerosol Jet
Printing (AJP)

Research works about AJP of BT-TEMs are not numerous because of the recent devel-
opment of the technique. However, the fabrication path described in the different papers is
similar, as represented in Figure 31.
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It is important to point out that powders are mostly prepared by chemical synthesis;
high energy ball milling is instead widely used to prepare BT-TE powders for compacted
samples fabrication but not for additive manufacturing technologies.

As an example, Hollar et al. [253] deposited Bi2Te3 thin films on flexible polyimide
(PI) substrates using aerosol jet printing. The thin films fabricated by the group showed
a peak power factor value of 0.35 mWm−1K−2 at 473 K. Inks were prepared by solution-
phase synthesis of Bi2Te3 nanoplatelets: Bi(NO3)3·5H2O (bismuth nitrate), NaTeO3 (sodium
tellurite), NaOH (sodium hydroxide), PVP (polyvinylpyrrolidone), and EG (ethylene glycol)
were used. The thin films thickness (always in the order of hundreds of nanometers) was
tunable depending on the nanoplatelets concentration: the higher the concentration, the
higher the thickness. The printer aerosolized the ink with an ultrasonic system. The key
process parameters were:

• Platen temperature: 313 K
• Carrier gas flow: 35 sccm
• Nozzle diameter: 200 µm
• Stand-off: 3 mm
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The samples were dried in a glovebox after printing, then sintering was carried out at
623 K for 1 h in Argon atmosphere.

A couple of thin films deposited on the flexible substrate by Hollar et al. are shown
in Figure 32, together with a scanning transmission electron microscope (STEM) cross-
sectional image. The film was porous and showed few inhomogeneities; during aerosol jet
printing, this is the main issue with the finished product. The solution is optimization as
well as the process parameters.
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Tony Varghese [277] developed his PhD thesis about n-type bismuth telluride films
fabricated with additive manufacturing. Varghese et al. achieved a power factor value
equal to 250 µWm−1K−2 at room temperature. He chemically synthesized Bi2Se0.3Te2.7
nanoparticles (NPs) via microwave-assisted stimulated wet-chemical method.

During chemical synthesis, thiolglycolic acid (TGA) is added to have a capping effect
on the NPs. The ink was prepared as a 60 wt%/40 wt% mixture of nanoparticles and
dispersing phase.

The dispersing phase was a mixture of ethylene glycol:glycerol:ethanol (35:5:60 wt%).
The printer was equipped with a pneumatic system for aerosolization; this allows the
processing of high viscosity inks with high solid fractions. The printing was carried out on
an oxygen plasma-treated HN Kapton substrate.

The printing parameters were:

• Platen temperature: 348 K
• Carrier gas flow (N2): 470 sccm
• Nozzle diameter: 300 µm
• Stand-off: 3 mm

Again, the thickness of the thin films was in the order of hundreds of nanometers.
Drying was carried out on a hot plate at 473 K for 5 min. However, some samples were
pressed hydraulically, and others were not pressed; the effect on porosity, thermoelectric
properties, and thickness was studied. Porosity was reduced by 40%, as well as thickness. A
slight improvement in TE was detected. Photonic sintering was carried out on the samples:
a xenon lamp ranged from 200 to 800 nm of wavelength. Based on the sample, treatment
could last from few minutes to tens of minutes.

Other works in literature [278,279] could be mentioned as examples.
Aerosol jet printing of films using BT-TE inks prepared starting from milled powders has

never been mentioned in literature. However, numerous papers demonstrate that mechanical
alloying can be used to prepare doped bismuth telluride nano-powders [185,211,280,281]. Once
the powder is prepared, it can be dispersed in a liquid phase, thus proceeding with printing.
The reduction of the powder mean size in the sub-micrometric range by ball miling is still
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to be achieved. It is generally difficult to reduce the mean size to under 1 µm. The process
is well explained in Section 4.2.1, together with an example.

As a further example, Kim et al. [280] prepared a BT-TE ink for inkjet printing using
high energy ball milling. In that case, they prepared p-type Bi0.4Sb1.6Te3 and n-type
Bi2Sb1.6Se0.3 powders by mechanical alloying. High energy ball milling was carried out
with Bi, Te, Se, and Sb in stoichiometric ratio for 5 h, reaching a grain size lower than 45 µm.
As dispersing phase for inkjet printing, glycerol was used.

The works by Li et al. [282] and Yang et al. [281] are further examples of BT-TE powder
preparation and deposition.

5.2. Final Remarks

This review highlights the superiority of bismuth telluride-based materials for moder-
ate temperature applications thanks to ease of fabrication, low cost in comparison to other
high performing TEMs (e.g., SKUs), and high performances (ZT up to 1.3 at RT) [22,23,32,98].
Furthermore, the enormous potential of aerosol jet printing for TEMs fabrication was high-
lighted: scalability (e.g., clogging less likely to happen), flexibility (e.g., wide viscosity
range), and low price (e.g., fast printing) are encouraging aspects [275,276]. However,
limiting factors hinder the development of a suitable approach to fabricate BT-TE materials
on an industrial scale using this spraying technology. The main difficulties deal with ink
formulation (viscosity η (cP) and surface tension γ (N·m−1): nanoparticles volume fraction
and deflocculant chemistry and amount) and printing parameters (i.e., atomizer FG, carrier
FC, and sheath gas FS flows (sccm), and printing temperature T(K)); defining an operating
window is still a complex task [251,252].

Currently, suspensions for aerosol jet printing are prepared via dispersion using
chemically synthesized BT-TE powders. Chemical synthesis guarantees high control on
NPs size and composition, but it is not scalable: low volumes and high prices [253,277].
However, in literature, it was demonstrated that it is possible to prepare BT-TE NPs using
high energy ball milling (i.e., mechanical alloying). This process does guarantee similar
powder quality to chemical synthesis, but it is more scalable: lower price and higher
volumes [211,281]. Research works about the AJP of BT-TE inks prepared via high energy
ball milling are not yet present in the literature.

In view of a more environmentally friendly and sustainable industry of thermoelectric
materials, we think that studying the combination of powder processing, and aerosol jet
printing might be promising for the future.

Therefore, the preparation of inks for AJP starting from milled powders should be
considered for future research; in practice, two main paths should be followed:

• AJP process optimization: achieving process reproducibility would enable the defini-
tion of process windows depending on ink formulation.

• Utilization of BT-TE inks prepared from powder synthesized by high energy ball
milling: this would couple innovation with future process scalability.
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