

Yi Zhang ^{1,*}, Tao Yang ^{2,3} and Yiru Miao ³

- ¹ School of Vehicle Engineering, Chongqing University of Technology, Chongqing 400054, China
- ² School of Rail Transit and Aviation Service, Chongqing Industry Polytechnic College, Chongqing 401120, China; justmuch@163.com
- ³ State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China; miaoyiru@cqu.edu.cn
- * Correspondence: zagyi81@cqut.edu.cn

Abstract: Compared to the voltage source inverter, the current source inverter (CSI) can boost voltage and improve filtering performance. However, the DC side of CSI is not a real current source, and the DC input current comprises a DC power supply and an inductor. In the switching process, the DC-link inductor is charged or discharged and is in an uncontrollable state. This paper proposes a novel CSI topology containing five switching tubes and a modulation strategy based on the hysteresis control strategy of the DC-link current. Due to the conduction and switching loss being positive to the DC-link current, the calculation method for the least reference value of the DC-link current is derived to meet power requirements. By constructing a virtual axis, we then present the control strategy of the output voltage in a two-phase rotating reference frame. Finally, we carry out the simulation and experiment are to validate the proposed topology, modulation, and control strategy.

Keywords: current source inverter; DC-link current; modulation; control strategy

Citation: Zhang, Y.; Yang, T.; Miao, Y. Research on the Modulation and Control Strategy for a Novel Single-Phase Current Source Inverter. *Energies* **2023**, *16*, 6729. https:// doi.org/10.3390/en16186729

Academic Editors: Kan Liu and Wei Hu

Received: 3 September 2023 Revised: 17 September 2023 Accepted: 19 September 2023 Published: 20 September 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

1. Introduction

Inverters can be categorized as voltage source inverters (VSI) [1] and current source inverters (CSI) [2] according to the characteristics of input power supplies. Some unique advantages of CSIs have been discovered [3], such as their boost capacity, inherent short-circuit protection capacity, and AC filtering structure. CSI, therefore, has potential applications [4] in the solar photovoltaic industry, wind energy power generation, motor drive systems, and HVDC transmission systems.

In recent years, various control and modulation strategies for CSI have been proposed [5], such as decoupling methods, low common voltage modulation, and digital vector control strategy. However, the DC-link current is considered a constant value in the above studies in which the charging or discharging process of the DC-link inductor has been ignored, leading to the DC-link current being discontinuous or continuously increasing.

Unlike VSI, the DC-link current of CSI is formed by the DC input voltage DC-link inductor, and constant DC-link current output is a necessary condition for high performance operation of CSI [6]. In [7–11], several novel CSI topologies are proposed to achieve control of the DC-link current. In [7], a three-phase current source rectifier (CSR) is introduced to adjust the DC-link current, but this topology is very complex and only suitable for AC-DC-AC applications. A buck converter is added to the DC side to regulate the DC-link current in [8]. In [6], the buck converter is replaced with a bi-directional converter that can control the current, and the buck operation can also be realized. However, the switching and conduction losses increase as the converter is introduced. In [9], a buck-boost CSI is proposed, which has the advantages of a simple structure and large voltage output range, but the control strategy is difficult to implement. The current-fed quasi-Z-source inverter is

proposed in [10]. However, with the addition of many passive components, both efficiency and power density are greatly reduced.

In [11], an additional switching tube and diode are connected in parallel with the DC-side inductor of the three-phase CSI. The DC-side inductor can self-continuate when the switch is turned on. During the zero vector period, the continuous current mode is used to replace the traditional magnetizing mode, which can prevent the increase of the DC-link current. On this basis, a novel single-phase five-switch CSI topology is proposed in this paper. The modulation and control strategies are studied to obtain the constant DC-link current and high-quality AC voltage output. Finally, the simulation and experimental verification are carried out.

2. Topology and Operating Modes of the Proposed Single-Phase CSI

2.1. Analysis of the Proposed Single-Phase CSI's Operating Modes

The topology of the proposed single-phase CSI is shown in Figure 1. The DC side is composed of a DC voltage source and DC-link inductance L_{dc} . The inverter part is composed of switching tubes (S₁, S₂, S₃, S₄) and diodes (D₁, D₂, D₃, D₄). The AC side contains the filter capacitor *C* and the resistive load *R*. The switching tube S₀ and diode D₀ are parallel with L_{dc} .

Figure 1. The topology of the proposed single-phase CSI.

There are four operating modes of the proposed single-phase CSI. The corresponding switching states are shown in Table 1.

Operating Modes	Switching State	Switching Function <i>p</i> and <i>q</i>
magnetizing mode	S_1 and S_2 ON, S_0 , S_{3_1} and S_4 OFF	p = 0, q = 1
energy-supplying mode I	S_1 and S_4 ON, S_0 , S_2 , and S_3 OFF	p = 1, q = 0
energy-supplying mode II	S_2 and S_3 ON, S_0 , $S_{1,}$ and S_4 OFF	p = -1, q = 0
freewheeling model	$S_0 ON, S_1, S_2, S_3$, and $S_4 OFF$	p = 0, q = 0

Table 1. The operating modes, switching state, and switching function.

(1) Magnetizing mode: S_1 and S_2 are turned on, and the equivalent circuit under magnetizing mode is shown in Figure 2a. At this moment, i_0 is equal to 0 A, the u_{dc} is charging to L_{dc} , and C provides energy for the load separately.

(2) Energy-supplying mode I: S_1 and S_4 are turned on, and the equivalent circuit under this operating mode is shown in Figure 2b. At this moment, i_0 is equal to i_{dc} , and the u_{dc} and L_{dc} provide energy to the AC load together.

(3) Energy-supplying mode II: S_2 and S_3 are turned on, and the equivalent circuit under this operating mode is shown in Figure 2c. Different from energy-supplying mode I, the polarity of the output current is negative; i_0 is equal to $-i_{dc}$.

(4) Freewheeling model: Only S_0 is turned on, and the equivalent circuit under the freewheeling model is shown in Figure 2d. The i_{dc} freewheels through S_0 , and C provides energy for the load separately.

Figure 2. The operating modes of the proposed single-phase CSI: (**a**) magnetizing mode; (**b**) energy-supplying mode I; (**c**) energy-supplying mode II; (**d**) freewheeling model.

Two switching functions (p and q) are defined and shown in Table 1. The p is used to indicate whether the CSI is operating in energy-supplying mode, and the math relationship between i_{dc} and i_o can be expressed as

$$i_{\rm o} = i_{\rm dc} p \tag{1}$$

The state equation of u_0 follows:

$$C\frac{\mathrm{d}u_{\mathrm{o}}}{\mathrm{d}t} = pi_{\mathrm{dc}} - \frac{u_{\mathrm{o}}}{R} \tag{2}$$

q is used to indicate whether the CSI is operating in magnetizing mode. The state equation of i_0 follows:

$$L_{\rm dc}\frac{di_{\rm dc}}{dt} = qu_{\rm dc} - pu_{\rm o} \tag{3}$$

Since the conduction current of all switching tubes is i_{dc} , the current stresses of all switching tubes are equal to the DC-link current. The voltage stresses can be derived according to Figure 2, and the voltage stresses of all switching tubes under different operating modes are summarized in Table 2.

Table 2. Voltage stresses of all switching tubes under different operating modes.

Operating Mode	Withstand Voltage S ₀	Withstand Voltage S ₁	Withstand Voltage S ₂	Withstand Voltage S ₃	Withstand Voltage S ₄
Magnetizing mode	u _{dc}	0	0	$-u_{o}$	u _o
Energy-supplying mode	$u_{\rm dc} - u_{\rm o}$	0	$-u_{0}$	$-u_{0}$	0
Freewheeling model	0	uo	$-u_{\rm dc} - u_{\rm o}$	0	$-u_{dc}$

2.2. Comparison of Different CSI Topologies

The recent literature presents many CSI structures comprising distinct tradeoffs among different topologies, as shown in Figure 3. According to [12,13], a cost function (*CF*) is established in (4) to carry out a fair comparison of different CSI topologies:

$$CF = N_V (N_{\rm US} + 2N_{\rm BS} + N_D + N_C + N_{\rm drv} + N_T) / N_l$$
(4)

where N_V is the number of DC voltages, N_{US} is the number of unidirectional switches, N_{BS} is the number of bidirectional switches, N_D is the number of diodes, N_C is the number of capacitors, N_{drv} is the number of individual drivers, N_T is the number of transformers, and N_l is the number of output current levels.

Figure 3. The topologies of different CSI: (**a**) current source rectifier; (**b**) buck converter; (**c**) quasi-Z source network; (**d**) bidirectional DC chopper; (**e**) proposed single-phase CSI.

The comparison result is presented in Table 3. Although the quasi-Z source network receives the lowest *CF*, it contains numerous passive components, and its control system is too complex. The proposed single-phase CSI and the buck converter have the same CF. However, the buck converter contains more switches than the proposed single-phase CSI. The bidirectional DC chopper's *CF* is slightly higher than the proposed one because of the additional two diodes and switching tubes. The current source rectifier rates the worst *CF* because it includes too many components.

Table 3.	Comparison	of different	CSI to	pologies
				A

Parameter	Current Source Rectifier	Buck Converter	Quasi-Z Source Network	Bidirectional DC Chopper	Proposed Single-Phase CSI
$N_{\rm V}$	1	1	1	1	1
$N_{\rm US}$	0	0	0	0	0
$N_{\rm BS}$	8	5	4	6	5
N_D	8	5	5	6	5
N _C	2	1	2	1	1
N _{drv}	8	5	4	6	5
N_{T}	0	0	1	0	0
N_l	3	3	3	3	3
CF	11.33	7	6.67	8.33	7
Input H Bridge	Yes	No	No	Yes	No
Modulation	PWM	PWM	PWM	PWM	PWM

3. Modulation Strategy Based on DC-Link Current Control

Unlike VSI, switching signals cannot be directly generated by comparing modulated signals with carrier waves [14]. In [15], a logic conversion circuit is adopted to convert the switching signals, which will delay them. In this section, a novel modulation strategy is

presented which can be implemented by the DSP without a logic conversion circuit. Three logic signals (p_1 , p_2 , and p_3) are set, where p_1 represents the comparison result between the modulation wave and carrier wave, as shown in Figure 4, and where *d* is the duty cycle and is defined as

Figure 4. The diagram of p_1 , carrier wave, and modulation wave.

 $p_1 = 1$ represents the active vector period, and the CSI operates at energy-supplying mode I or II, which is determined by the polarity of i_0 . p_2 represents the polarity of i_0 . If $i_0 > 0$, $p_2 = 1$; otherwise, $p_2 = 0$.

 $p_1 = 0$ represents the zero vector period, and the CSI operates on either the magnetizing mode or freewheeling model, which is determined by i_{dc} . If $i_{dc} >$ the reference value $i_{dc'}^*$ the freewheeling model will be selected to prevent i_{dc} from increasing in the zero vector period. Otherwise, the magnetizing mode will be implemented to charge L_{dc} in the zero vector period. p_3 is defined to represent the math relationship between i_{dc} and $i_{dc'}^*$. If $i_{dc} > i_{dc'}^*$ $p_3 = 1$; else, $p_3 = 0$. The changing process of i_{dc} and p_3 is described in Figure 5. i_{dc} can be adjusted according to p_3 . This approach belongs to a hysteresis control method [16].

Figure 5. The changing process of i_{dc} and p_3 .

(5)

Based on the above settings and analysis, the production logic of the five switching signals is shown in Figure 6. The specific logic expression for each switching is described as follows:

$$p_{S1} = p_1 \& p_3 | p_2 \\ p_{S2} = \overline{p}_1 \& \overline{p}_3 | \overline{p}_2 \\ p_{S3} = p_1 \& \overline{p}_2 \\ p_{S4} = p_1 \& p_2 \\ p_{S0} = \overline{p}_2 \& p_3 \end{cases}$$
(6)

where p_{S1} , p_{S2} , p_{S3} , p_{S4} , and p_{S5} represent the driving logic of switch S_1 , S_2 , S_3 , S_4 , and S_5 , respectively.

Figure 6. Logical conversion for the proposed single-phase CSI.

4. Calculation for the Optimal Reference of DC-Link Current

In Section 3, a DC-link current hysteresis control is introduced into the modulation scheme. However, the reference of the DC-link current must be determined for the following reasons [17]. If i_{dc}^* is set too small, the DC-link current is unable to provide sufficient power to the AC load. If i_{dc}^* is set too great, the conduction loss, switching loss, and harmonic distortion will increase. Thus, the DC-link current should be reduced to satisfy the current requirements. The calculation method for the optimal reference of the DC-link current is derived in this section.

It is assumed that u_0 remains in a constant state in a switching period. Under energysupplying mode, the reduction $\Delta i_{dc_{down}}$ of i_{dc} can be expressed as follows:

$$\Delta i_{\rm dc_down} = \frac{T_{\rm s}}{L_{\rm dc}} d(t) [u_{\rm o}(t) - u_{\rm dc}]$$
⁽⁷⁾

The increment of Δi_{dc_up} under magnetizing mode can be expressed as

$$\Delta i_{\rm dc_up} = \frac{u_{\rm dc} T_{\rm s}}{L_{\rm dc}} [1 - d(t)]$$
(8)

According to (7) and (8), the total reduction Δi_{dc} of i_{dc} in a switching period can be expressed as

$$\Delta i_{\rm dc} = \Delta i_{\rm dc_down} - \Delta i_{\rm dc_up} = \frac{T_s}{L_{\rm dc}} [u_{\rm o}(t)d(t) - u_{\rm dc}] \tag{9}$$

By substituting (5) with (9), Δi_{dc} can be rewritten as

$$\Delta i_{\rm dc} = \frac{T_s}{L_{\rm dc}} \left[\frac{u_{\rm o}(t)i_{\rm o}(t)}{i_{\rm dc}(t)} - u_{\rm dc} \right] \tag{10}$$

Ignoring the harmonic component and initial phase, u_0 is expressed as

$$u_{\rm o}(t) = U\sin\omega t \tag{11}$$

where *U* represents the fundamental amplitude of u_0 , and ω represents the fundamental frequency. i_0 is expressed as

$$i_{\rm o}(t) = I\sin(\omega t + \theta) \tag{12}$$

where *I* represents the amplitude of i_0 , and θ represents the initial phase of i_0 . Due to the load of the inverter consisting of the resistance and the capacitance paralleling with the load, the following relations are satisfied:

$$\begin{cases} I = U\sqrt{1 + (\omega CR)^2/R} \\ \theta = \arctan(\omega CR) \end{cases}$$
(13)

Substituting (11) and (12) with (10), the following can be obtained:

$$\Delta i_{\rm dc} = \frac{T_s}{L} \left[\frac{UI\sin(\omega t)\sin(\omega t + \theta)}{i_{\rm dc}(t)} - u_{\rm dc} \right]$$
(14)

Formula (14) is simplified as follows:

$$\Delta i_{\rm dc} = \frac{T_{\rm s}}{2L} \left\{ \frac{UI[\cos\theta - \cos(2\omega t + \theta)]}{i_{\rm dc}(t)} - 2u_{\rm dc} \right\}$$
(15)

The maximum reduction Δi_{dcmax} of i_{dc} in a switching period is shown as follows:

$$\Delta i_{dcmax} = \frac{T_{\rm s}}{2L} \left[\frac{UI(\cos\theta + 1)}{i_{\rm dc}(t)} - 2u_{\rm dc} \right] \tag{16}$$

If $\Delta i_{dcmax} < 0$, i_{dc} can continue increasing in any switching period, which consists of magnetizing mode and energy-supplying mode. Thus, i_{dc} needs to be satisfied as follows:

$$i_{\rm dc} > \frac{UI(\cos\theta + 1)}{2u_{\rm dc}} \tag{17}$$

Substituting (13) with (17), and replacing i_{dc} with i_{dc}^* , Formula (17) can be rewritten as follows:

$$i_{\rm dc}^* > \frac{U^2 \left[1 + \sqrt{1 + (\omega C R)^2} \right]}{2u_{\rm dc} R}$$
 (18)

The theoretical waveforms in a fundamental period, including i_{dc} , u_o , and switching signals are presented in Figure 7. Based on the operation mode, switching signals, DC-link current optimal reference, and control strategy, the theoretical waveform is divided into eight stages:

(1) Stage 1 ($t_0 - t_1$): $0 < u_0 < u_{dc}$, L_{dc} is charged in energy-supplying mode I; S₁ remains on-state; S₀ is turned on in the zero vector period to prevent i_{dc} from continuously increasing.

(2) Stage 2 ($t_1 - t_2$): $-u_{dc} < u_o < 0$, L_{dc} is charged in energy-supplying mode II; S₃ remains on-state; S₀ is turned on in the zero vector period to prevent i_{dc} from continuously increasing.

(3) Stage 3 ($t_2 - t_3$): $u_0 < -u_{dc}$; L_{dc} discharges in energy-supplying mode II due to i_{dc} being still greater than i_{dc}^* ; S0 is also turned on in the zero vector period; i_{dc} begins to decrease.

(4) Stage 4 ($t_3 - t_4$): $u_0 < -u_{dc}$ and $i_{dc} < i^*_{dc}$; to prevent i_{dc} further decrease, S4 is turned on in the zero vector period, since i^*_{dc} is the optimal reference of the DC-link current; i_{dc} will be clamped near i^*_{dc} .

Figure 7. The theoretical waveforms in a fundamental period.

5. Control Strategy of the Output Voltage

Since the PI controller is not suitable for AC models, the math model of the singe phase CSI is established in d-q frame. The fundamental component of u_0 is represented as follows:

$$u_{\rm o}(t) = u_{\rm od}\sin(\omega t) + u_{\rm oq}\cos(\omega t) \tag{19}$$

where $u_{od} = U$, and $u_{oq} = 0$. The quadrature virtual component of u_o is introduced, which is shown as follows:

$$u'_{\rm o}(t) = -U_{\rm o}\sin(\omega t - \frac{\pi}{2}) \tag{20}$$

The d-q frame components u_{od} and u_{oq} can be obtained as follows:

$$\begin{cases} u_{od}(t) = u_o(t)\sin(\omega t) + u'_o(t)\cos(\omega t) \\ u_{oq}(t) = u_o(t)\cos(\omega t) - u'_o(t)\sin(\omega t) \end{cases}$$
(21)

The same representation for i_0 is shown as follows:

$$i_{\rm o}(t) = i_{\rm od}\sin(\omega t) + i_{\rm oq}\cos(\omega t)$$
⁽²²⁾

where i_{od} and i_{oq} are the DC component. Substituting Equations (21) and (22) with (2), it yields the following:

$$\begin{cases} C\frac{du_{od}}{dt} + \frac{u_{od}}{R} = \omega C u_{oq} + i_{od} \\ C\frac{du_{oq}}{dt} + \frac{u_{oq}}{R} = -\omega C u_{od} + i_{oq} \end{cases}$$
(23)

 u_{od} and u_{oq} are adjusted by the PI controller, and feedback decoupling is adopted to cancel out the coupling terms ωCu_{od} and ωCu_{oq} . The control strategy of u_o is shown in Figure 8, where u_{od}^* and u_{oq}^* are the reference of u_{od} and u_{oq} , and i_{od}^* are the reference of i_{od} and i_{oq} , respectively. i_{od}^* are expressed as follows:

$$\begin{cases} i_{od}^{*} = \frac{k_{p}s + k_{i}}{s} (u_{od}^{*} - u_{od}) - \omega C u_{oq} \\ i_{oq}^{*} = \frac{k_{p}s + k_{i}}{s} (u_{oq}^{*} - u_{oq}) + \omega C u_{od} \end{cases}$$
(24)

where k_p and k_i are the proportional coefficient and integral coefficient, respectively.

Figure 8. Control strategy diagram of output voltage.

Considering the digital delay, the open-loop transfer function $G_{\text{open}}(s)$ can be derived as follows:

$$G_{\rm open}(s) = \frac{k_{\rm p}s + k_{\rm i}}{s(1 + T_{\rm s}s)(1 + RCs)}$$
(25)

where T_s is the switching period and is equal to 100 µs. Zero point is set to offset the pole, and the cutoff frequency is set at 1 kHz. k_p and k_i are set as $2000\pi RC$ and 2000π . The Bode plot of $G_{\text{open}}(s)$ is shown in Figure 9a, and the Bode plot of the closed-loop transfer function $G_{\text{close}}(s)$ is shown in Figure 9b. Good track performance and fast dynamic response can thus be achieved.

Figure 9. The Bode-plots of the output voltage control: (**a**) *G*_{open}(*s*), (**b**) *G*_{close}(*s*).

6. Experimental Results

An experimental prototype of a single-phase CSI is established and shown in Figure 10. The corresponding soft simulation is presented in the Supplementary Material. The algorithm of modulation and control are implemented by TMS320F28335, and the IGBT and diode are PM400HSA120 and RM300HA-24F, respectively. u_{dc} is supplied by a DC power supply. The parameters of the passive components are consistent with Table 4.

Figure 10. Experimental prototype of proposed single-phase CSI.

	Table 4.	Parameters	of ex	periment.
--	----------	------------	-------	-----------

Name	Value
DC input voltage (V)	25
AC output voltage (V)	30~150
Load power (W)	$\leq 10^3$
Output frequency (Hz)	≤500 Hz
Switching frequency (Hz)	10 k
Sampling frequency (Hz)	10 k
$L_{\rm dc}$ (mH)	4
C (µF)	265
R (Ω)	25

6.1. Experimental Results of Steady-State

The amplitude and frequency of the reference of u_0 are 50 V and 50 Hz. i_{dc}^* is set to 13.5 A. The experimental waveforms of i_{dc} and u_0 are shown in Figure 11a, where the amplitude and frequency of u_0 are consistent with the reference, and i_{dc} is maintained in the range of 13.5 A to 15 A. Figure 11b shows that u_0 's THD is only 0.61%, and its harmonics are limited.

Figure 11. Experimental results under $i_{dc}^* = 13.5$ A: (a) experimental waveforms of i_{dc} and u_0 ; (b) FFT results.

In order to verify that $i_{dc}^* = 13.5$ A is the optimal reference of the DC-link current, a steady-state experiment is carried out in Figure 12, where i_{dc}^* is set to 11.5 A. A large fluctuation occurs in i_{dc} , which cannot maintain above 11.5 A. In some switching periods, i_{dc} cannot meet the requirement of current for the AC load. Therefore, significant low-order harmonic distortion occurs in u_0 , whose THD is 23.88%, and fundamental amplitude is 38.5 V, lower than the reference 50 V.

Figure 12. Experimental results under $i_{dc}^* = 11.5$ A: (a) experimental waveforms of i_{dc} and u_0 ; (b) FFT results.

In Figure 13, i_{dc}^* is set to 20 A, and i_{dc} maintains above 20 A with small fluctuation. Since i_{dc} is higher than the amplitude of i_0 , u_0 can track the reference. u_0 's THD is 1.38%, greater than the one when $i_{dc}^* = 13.5$ A. Meanwhile, the switching loss and conduction loss of IGBT and diode are positively related to i_{dc} . The above experimental results show that the calculation method for the optimal reference of DC-link current is correct and feasible.

Figure 13. Experimental results under $i_{dc}^* = 20$ A: (a) Experimental waveforms of i_{dc} and u_0 ; (b) FFT results.

6.2. Experimental Results of Dynamic-State

The dynamic performance of the output voltage control strategy will be verified in this section. The frequency remains 50 Hz, and the amplitude of the reference voltage is adjusted from 40 V to 60 V. According to Formula (18), i_{dc}^* is set to 9 A and 17.5 A, respectively. The experimental waveforms of i_{dc} and u_o are shown in Figure 14. i_{dc} reaches the steady state again after 2 ms and remains above 17.5 A. In Figure 14, the u_o 's amplitude is adjusted to 60 V with smooth changing.

Figure 14. The dynamic-state experimental waveforms under amplitude changing.

Figure 15 shows the experimental waveforms when the amplitude is set to 50 V, and the frequency ω changes from 50 Hz to 100 Hz. According to (18), i_{dc}^* is related to ω , so it should be adjusted from 13.5 A to 16.5 A. In Figure 15, i_{dc} and u_o can track the reference quickly. In conclusion, the superior steady-state and dynamic-state performance of the output voltage control strategy can be fully proved, and the DC-link current reference from the proposed calculation method is the minimum value that can meet the power demand.

Figure 15. The dynamic-state experimental waveforms under frequency changing.

Finally, the CSI's efficiency has been tested under different load powers from 100 W to 500 W. A curve map of the CSI's efficiency is illustrated in Figure 16. When the load power increases, the power loss in the conduction and switching increases relatively more slowly than the load power, so the CSI's efficiency rises with the increased load power.

Figure 16. The efficiency map of the proposed single-phase CSI.

7. Conclusions

This paper proposes a novel PWM modulation method to control DC-link current for the improved topology of single-phase CSI; the corresponding operating modes and modulation strategy with DC-link current hysteresis control are also introduced in detail. The relationship between the optimal reference of DC-link current and output voltage is derived. A voltage control strategy based on d-q frame components is discussed. A series of simulations and experiments is set up to demonstrate the feasibility of the proposed method. The conclusions are summarized as follows:

(1) DC-link current can remain in the expected range by adopting the improved PWM modulation, and the number of switching activities is the same as the traditional modulation.

(2) The calculation method of optimal reference for DC-link current can meet the AC side load demand, improving current utilization and reducing loss.

(3) The control of DC-link current is implemented by switching magnetizing mode and freewheeling mode, which is separated from output voltage control. Thus, the DC-side model can be considered a controlled current source. **Supplementary Materials:** The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/en16186729/s1. Figure S1. Simulation waveforms in steady state: (a) DC-link current; (b) AC output volt-age. Figure S2. Simulation waveforms on the traditional single-phase CSI when the initial DC-link current is 0A: (a) DC-link current; (b) AC output voltage. Figure S3. Simulation waveforms on the traditional single-phase CSI when the initial DC-link current is 16A: (a) DC-link current; (b) AC output voltage.

Author Contributions: Methodology, Y.Z. and T.Y.; Software, T.Y.; Writing—original draft, Y.Z.; Writing—review and editing, Y.M. All authors have read and agreed to the published version of the manuscript.

Funding: This work is supported by the Youth project of science and technology research program of Chongqing Education Commission of China (No. KJQN202001105).

Data Availability Statement: The data presented in this study are available on request from the corresponding author. The data are not publicly available due to the funder's requirement.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

VSI	Voltage Source Inverter
CSI	Current Source Inverter
HVDC	High Voltage Direct Current
L_{dc}	DC-link inductance (mH)
С	AC side's filter capacitor (μ F)
R	AC side's resistive load (Ω)
i _{dc}	DC side's current (A)
i _o	Output current on the resistive load R (A)
u _{dc}	DC side's voltage (V)
<i>u</i> _o	Output voltage on the resistive load R (A)
p/q	Switching functions for S_0 , S_1 , S_2 , S_3 , and S_4 (-)
d	Duty cycle (%)
i_{o}^{*}	Reference of the output current i_0 (A)
$i_{\rm dc}^*$	Reference of the DC side's current i_{dc} (A)
$\Delta i_{\rm dc_down}$	Decrement of i_{dc} when discharging (A)
$\Delta i_{\rm dc_up}$	Increment of i_{dc} when charging (A)
T _s	Switching period (s)
U	Fundamental amplitude of u_0 (V)
Ι	Fundamental amplitude of i_0 (A)
θ	Initial phase of i_0 (rad)
ω	Fundamental frequency of i_0 (Hz)
Δi_{dcmax}	Maximum reduction of i_{dc} (A)
u_{od}/u_{od}	d-q frame components of u_0
$u_{\rm od}^* / u_{\rm oq}^*$	Reference of u_{od}/u_{od}
i _{od} /i _{od}	d-q frame components of i_0
$i_{\rm od}^*/i_{\rm oq}^*$	Reference of i_{od}/i_{od}

References

- Chakrabarti, A.; Sarkar, K.; Kasari, P.R.; Das, B.; Biswas, S.K. A CB-PWM Technique for Eliminating CMV in Multilevel Multiphase VSI. IEEE Trans. Ind. Electron. 2022, 70, 8666–8675. [CrossRef]
- He, J.; Zhang, C.; Lei, M.; Han, J.; Guo, P.; Li, Y. An Active Bypass Pulse Injection-Based Low Switching Frequency PWM Approach for Harmonic Compensation of Current-Source Converters. *IEEE Trans. Power Electron.* 2021, 36, 1614–1625. [CrossRef]
- Rajeev, M.; Agarwal, V. Single phase current source inverter with multiloop control for transformerless grid–PV interface. *IEEE Trans. Ind. Appl.* 2018, 54, 2416–2424. [CrossRef]
- 4. Titus, J.; Harikrishnan, P.; Hatua, K. An SCR-Based CSI-Fed Induction Motor Drive for High Power Medium Voltage Applications. *IEEE Trans. Ind. Electron.* 2020, *68*, 4657–4666. [CrossRef]
- Guo, X.-Q.; Sui, S.; Wang, B.; Zhang, W. A Current-Based Approach for Short-Circuit Fault Diagnosis in Closed-Loop Current Source Inverter. *IEEE Trans. Ind. Electron.* 2019, 67, 7941–7950. [CrossRef]

- 6. Miao, Y.; Liao, W.; Huang, S.; Liu, P.; Wu, X.; Song, P.; Li, G. DC-Link Current Minimization Scheme for IM Drive System Fed by Bidirectional DC Chopper-Based CSI. *IEEE Trans. Transp. Electrif.* **2023**, *9*, 2839–2850. [CrossRef]
- Li, Y.W.; Pande, M.; Zargari, N.R.; Wu, B. DC-link current minimization for high-power current-source motor drives. *IEEE Trans.* Power Electron. 2008, 24, 232–240.
- 8. Geng, Y.; Yang, K.; Lai, Z.; Zheng, P.; Liu, H.; Deng, R. A Novel Low Voltage Ride Through Control Method for Current Source Grid-Connected Photovoltaic Inverters. *IEEE Access* 2019, *7*, 51735–51748. [CrossRef]
- 9. Wang, W.; Gao, F.; Yang, Y.; Blaabjerg, F. Operation and modulation of H7 current-source inverter with hybrid SiC and Si semiconductor switches. *IEEE J. Emerg. Sel. Top. Power Electron.* **2017**, *6*, 387–399. [CrossRef]
- Yang, S.; Peng, F.Z.; Lei, Q.; Inoshita, R.; Qian, Z. Current-fed quasi-Z-source inverter with voltage Buck–Boost and regeneration capability. *IEEE Trans. Ind. Appl.* 2010, 47, 882–892. [CrossRef]
- Guo, X.; Wang, N.; Zhang, J.; Wang, B.; Nguyen, M.-K. A Novel Transformerless Current Source Inverter for Leakage Current Reduction. *IEEE Access* 2019, 7, 50681–50690. [CrossRef]
- 12. Nascimento, A.J.P.; de Menezes, B.F.; de Mesquita, S.J.; Costa, K.R.; Tofoli, F.L.; Daher, S.; Antunes, F.L.M. Bidirectional Isolated Asymmetrical Multilevel Inverter. *IEEE Trans. Circuits Syst. II Express Briefs* **2022**, *70*, 151–155. [CrossRef]
- 13. Sun, R.; Wang, X.; Ye, Y. Seventeen-Level Inverter Based on Switched-Capacitor and Flying-Capacitor-Fed T-type Unit. *IEEE Access* 2022, *10*, 33561–33570. [CrossRef]
- 14. Ding, L.; Li, Y.W. Simultaneous DC current balance and common-mode voltage control with multilevel current source inverters. *IEEE Trans. Power Electron.* **2018**, *33*, 9188–9197. [CrossRef]
- 15. Guo, Q.; Zhou, C.; Li, S. A Multiple Loops Control Strategy Based on DC Link Voltage of Current Source PWM Rectifiers. *Trans. China Electrotech. Soc.* **2022**, *37*, 2051–2063.
- 16. Wu, F.; Feng, F.; Luo, L.; Duan, J.; Sun, L. Sampling period online adjusting-based hysteresis current control without band with constant switching frequency. *IEEE Trans. Ind. Electron.* **2014**, *62*, 270–277. [CrossRef]
- 17. Wang, Z.; Wu, B.; Xu, D.; Cheng, M.; Xu, L. DC-link current ripple mitigation for current-source grid-connected converters under unbalanced grid conditions. *IEEE Trans. Ind. Electron.* **2016**, *63*, 4967–4977. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.