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Abstract: On average, 70% of the world’s freshwater is used in agriculture, with farmers transitioning
to electrical irrigation systems to increase productivity, reduce climate uncertainties, and decrease
water consumption. In Brazil, where agriculture is a significant part of the economy, this transition
has reached record levels over the last decade, further increasing the impact of energy consumption.
This paper presents a methodology that utilizes the U-Net model to detect flooded rice fields using
Sentinel-2 satellite images and estimates the electrical energy consumption required to pump water
for this irrigation. The proposed approach involves grouping the detected flooded areas using
k-means clustering with the electricity customers’ geographical coordinates, provided by the Power
Distribution Company. The methodology was evaluated in a dataset of satellite images from southern
Brazil, and the results demonstrate the potential of using U-Net models to identify rice fields.
Furthermore, comparing the estimated electrical energy consumption required for irrigation in each
cluster with the billed energy values provides valuable insights into the sustainable management of
rice production systems and the electricity grid, helping to identify non-technical losses and improve
irrigation efficiency.

Keywords: neural networks; image processing; irrigated rice crops; energy consumption

1. Introduction

Remote sensing plays a crucial role in understanding the Earth and its various systems.
It provides a unique perspective, allowing us to observe and gather information about the
planet from a distance. This technology has a wide range of applications, including environ-
mental monitoring [1], resource management, disaster response [2], cropland expansion [3],
crop yield estimation [4], and urban planning. The importance of remote sensing cannot
be overstated as it provides crucial information for farmers to make decisions and plans,
and address global challenges such as sustainability.

Additionally, Deep Convolutional Neural Networks (DCNNs) are a pivotal component
of modern computer visions and have revolutionized the field with their remarkable ability
to learn hierarchical representations of visual data. These networks consist of multiple
convolutional and pooling layers, which are trained end-to-end on large datasets to extract
high-level features from raw input images. The effectiveness of DCNNs lies in their capacity
to learn and encode rich, discriminative features that capture both low-level and high-level
information, thereby enabling robust and accurate performances in various vision tasks,
such as image classification, object detection, and semantic segmentation. The importance
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of DCNNs stems from their wide range of applications in multiple domains, such as
autonomous driving, medical imaging, image processing, and biometrics, among others [5].

Remote sensing and DCNNs have been widely applied together in a variety of fields,
and electrical energy is no exception. In recent years, the combination of these two tech-
nologies has shown great potential for improving the accuracy and efficiency of electrical
energy monitoring and management [6]. The use of DCNNs in the electrical energy field
allows for improved automation and scalability, reducing the need for manual inspections
and enabling more efficient large-scale monitoring.

Manual inspections for detecting non-technical losses in energy consumption on farms
can be a challenging and time-consuming process. Non-technical losses refer to energy
losses that are due to theft, meter tampering, billing errors, and other factors that are not
related to the technical performance of the electrical system. To detect these losses, manual
inspections typically involve physically visiting each farm, checking meters and electrical
equipment, and interviewing farmers and other stakeholders. However, this process can
be difficult and prone to errors, particularly in large and geographically dispersed farming
operations, as in Brazil. Inspectors may face challenges such as harsh weather conditions,
limited access to electrical equipment, and resistance by farmers. Furthermore, manual
inspections are often labor-intensive and require significant resources, making them an
expensive and inefficient method for detecting non-technical losses. As a result, there is a
growing interest in exploring alternative methods for detecting non-technical losses, such
as remote sensing and machine learning techniques.

The electrical energy consumption of crops is an important aspect of modern agri-
culture that can significantly impact the sustainability and efficiency of food production.
Electricity is used for a variety of tasks on farms, such as powering irrigation pumping
systems, heating and cooling greenhouses, operating farm machinery, and providing
lighting. Especially in rice planting, irrigation plays a crucial role in plant growth and
productivity. Therefore, understanding and managing the electrical energy consumption
of crops is crucial for ensuring the long-term sustainability and competitiveness of agri-
culture [7]. In particular, the development of energy-efficient technologies and practices,
as well as the optimization of energy use through monitoring and control systems, can
help to decrease energy costs, improve energy efficiency, and reduce the carbon footprint
of agriculture [8–10].

Irrigated rice crops play a vital role in the agroindustry of southern Brazil, especially
in the Rio Grande do Sul State, where it accounts for 42.6% of the total production [11].
With an increasing demand for rice, it is crucial for a power distribution company to gather
precise and up-to-date information about the planted area to effectively plan and allocate
resources. This ensures a reliable supply of energy to farmers for optimal crop growth
and production. Moreover, accurate data on rice crop areas can offer valuable insights
to optimize energy usage of pumping systems, minimize waste, identify non-technical
losses, and support the transition towards a more sustainable agriculture industry [12].
However, the development of specific methodologies that consider regional variations
in rice cultivation practices and limited research on using remote sensing for monitoring
electrical energy usage in irrigated rice crops indicate a need for further investigation in
this field.

Remote sensing images collected from satellite-based platforms have become a valu-
able source of information for various applications in agriculture, including crop monitoring
and analysis. The mapping of irrigated areas through remote sensing can essentially be
divided into two approaches. The first one involves research that utilizes optical sensors,
such as [13–16]. The second approach utilizes microwave sensors, which include [17–19].
However, the majority of crop mapping studies are applied to areas that are small or have
a very low resolution, as in the case of [20].

The Sentinel-2 mission provides multi-spectral images with a high spatial and tem-
poral resolution. Hence, this paper aims to explore these satellite images to estimate the
electrical energy consumption in irrigated rice production. The study focuses on the pro-
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cessing and analysis of Sentinel-2 images using U-Net to extract relevant information for
electrical consumption, and the development of algorithms to accurately estimate energy
based on this information. The results of this study have implications for improving the ef-
ficiency of agricultural practices, reducing the carbon footprint, and supporting sustainable
agriculture practices.

This paper is organized as follows: the first section describes the method, the second
section presents the results and discussions, and the last section brings conclusions.

2. Materials and Methods
2.1. Study Area

The pilot study area, where the method was applied in a real-world scenario, is the
municipality of Uruguaiana, highlighted in Figure 1. It is a city located in the western region
of the state of Rio Grande do Sul, Brazil. The municipality has an area of approximately
5700 square kilometers and a population of around 126,800 people [21]. The region has a
predominantly flat relief, with a few hills and valleys in the surrounding areas. The local
economy is based on agriculture, with large plantations of rice, soybeans, and corn.

Figure 1. The area highlighted in red corresponds to the municipality of Uruguaiana, where the
study was performed.

This area was chosen because it is relevant to the study, as it is the largest rice producer
in the state of Rio Grande do Sul. In addition, the power energy distribution company
provided all the necessary data from electricity customers. These data were crucial to enable
the development and implementation of the proposed method and allowed a more accurate
assessment of the electricity consumption patterns of the different rice production units,
allowing the identification of areas of improvement and opportunities for energy savings.

2.2. Images

Sentinel-2 is an Earth observation mission developed by the European Space Agency
(ESA) as part of the Copernicus Programme. Launched in 2015, Sentinel-2 is equipped
with a multispectral imager that provides high-resolution optical images of the Earth’s
land surfaces, coastal zones, and inland waterways. The main objective of the mission is to
support a wide range of applications, such as land cover mapping, agricultural monitoring,
forest management, and disaster response. The satellite captures images in 13 spectral
bands, which allows for the identification and analysis of different types of vegetation,
water bodies, and urban areas [22].
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The images captured by Sentinel-2 have a high resolution, with a spatial resolution
of 10, 20, or 60 m, depending on the spectral band. This level of detail enables the de-
tection of small changes in land cover and the identification of individual objects on the
ground. The multispectral imager of the satellite captures data in the visible, near-infrared,
and shortwave infrared regions of the electromagnetic spectrum, which makes it possible
to distinguish between different types of vegetation, such as crops, forests, and grasslands.
The images by Sentinel-2 are also used for monitoring water quality, tracking the spread of
wildfires, and assessing the impact of natural disasters, such as floods and landslides.

The data generated by Sentinel-2 are freely available to the public, which makes it an
important resource for scientific research and environmental monitoring. The mission is ex-
pected to have a significant impact on global efforts to address climate change, by providing
accurate information on land use, deforestation, and carbon storage. The images captured
by Sentinel-2 are also used for urban planning, infrastructure development, and natural
resource management. As the mission continues to collect data, its images will provide
valuable insights into the changes taking place on our planet, and help us to make more
informed decisions about how to manage and protect the Earth’s resources.

Sentinel-2 has twin satellites in the same orbit but are phased as 180◦, which allows
5 days of revisit frequency at the Equator. The data from Sentinel-2 is split along fixed-size
scenes, 100 × 100 km2, which are ortho-images in a UTM/WGS84 projection. The study
region is covered by four scenes. Figure 2 shows all four scenes. Images 1C and 2A
are two of the data products generated by the mission, with 1C providing orthorectified
top-of-atmosphere reflectance data and 2A providing atmospheric correction and bottom-
of-atmosphere reflectance data. In this work, images 2A were used because they performed
better with the neural network.

In the analyzed area, the cycle of the flooded rice fields usually starts in September
and ends in March. It consists of four main stages: land preparation, seeding, growing,
and harvesting. In the land preparation phase, the fields are plowed, leveled, and flooded
with water, creating an environment suitable for the growth of rice plants. Then, the seeds
are sown and the plants begins to grow; they are irrigated and fertilized throughout the
growing phase. Harvest, usually performed by machines, takes place when the grains
reach the ideal degree of ripeness and humidity, and rice is then processed and stored
for commercialization.

Figure 2. Cont.
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Figure 2. Four Sentinel-2 scenes that covered the region of study (21JVG, 21JWG, 21JVH, and 21JWH).

To locate rice fields, January is considered the best month to acquire the images. This
is because rice fields are at the vegetative stage during this month, which means that they
can be better distinguished from other crops or land cover types [23].

In the municipality of Uruguaiana, there are 445 electricity customers classified as
irrigators. The local power distribution company uses this classification because these
customers have a different tariff for irrigation activity [24].

2.3. U-Net Topology

U-Net is a highly effective deep-learning architecture primarily used for image seg-
mentation tasks [25]. It was first introduced in 2015 and has since become a popular
choice among researchers in various fields, including medical imaging, satellite imaging,
and robotics. The architecture is symmetrical, with a contracting path and an expan-
sive path that allow for both high-level context and low-level detail to be captured and
processed. The U-Net structure is made up of multiple layers of convolutions, pooling,
and up-sampling, with skip connections between the contracting and expansive paths to
preserve spatial information from early layers.

One of the key advantages of the U-Net model is its ability to handle complex and
highly variable images. By incorporating skip connections, the model is able to preserve
fine-grained details that are often lost during the downsampling process of traditional
CNNs. This makes it particularly useful for medical imaging applications, where accu-
rate segmentation of tumors, organs, and other structures are critical for diagnosis and
treatment planning.

The U-Net model was chosen for this study because it is a highly effective and versatile
tool for image segmentation, with a fully convolutional network architecture, in which the
input image and the output mask have a one-to-one correspondence. This facilitates the
segmentation of satellite images, and consequently the identification of rice crops. Another
characteristic is the encoder–decoder topology, as illustrated in Figure 3, where z is a vector
representing what the neural network identifies when compressing the input image x.
Meanwhile, the decoding function y = f(z) represents the output y based on z. The vector z
stores the semantic information that the neural network deems most crucial for predicting
the output y. This feature reduces computational efforts as the image is reduced multiple
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times in the contraction stage to capture the context, achieved through convolutional and
pooling layers.

encoder decoder

g(x) f(x)
z

x y

Figure 3. Encoder and decoder topology.

The drawback of this topology is the loss of information owing to the loss of resolution
in this stage. However, for this study, this is not relevant since there is no need to identify
small objects. During the contraction stage, the neural network can identify patterns in
the images but loses information about location. Reconstruction of the area where the
main features were located is left to the expansion stage, which uses information from the
previous stage and is concatenated with the same level between the encoder and decoder.

In the expansion stage, transposed convolution layers are used for image reconstruc-
tion. These characteristics make the U-Net a suitable topology for this study because a
very large training dataset is not required. The ability of the U-Net to accurately segment
images of rice crops using a limited number of training samples is a significant advantage
in practice; therefore, it is a promising tool for the rice crop analysis and management.

To implement the U-Net topology for this study, the Python programming language
was used along with the TensorFlow [26] and Keras [27] libraries. These libraries are
popular for deep learning applications, as they provide a high-level interface for building
and training neural networks. TensorFlow is a widely-used open-source platform for
numerical computation and machine learning, while Keras is a user-friendly neural network
library written in Python. The combination of these two libraries allowed for the efficient
implementation of the U-Net topology, making it easier to build, train, and evaluate the
model for rice crop segmentation. Additionally, Python’s extensive ecosystem of scientific
computing libraries, such as NumPy and Matplotlib, enabled data manipulation and
visualization tasks, providing a comprehensive framework for the study.

2.4. Images Preprocessing

Before inserting the images into the neural network, some preprocessing steps need
to be performed. In this study, the images were first resized from 10,980 × 10,980 pixels
to smaller images of 512 × 512 pixels. This resizing step divided each scene of 100 square
kilometers into 1849 smaller images of 0.054 square kilometers. The size of each image was
chosen based on the number of layers used by the U-Net neural network topology and
the fact that it works with images of exponential multiples of two dimensions. In total,
11,094 images were used in this study, which were randomly divided into training and
validation datasets before being fed into the neural network. The images used for testing
the neural network consisted of 1849 images, which were manually selected to represent
both classes proportionally.

To balance the dataset, the classification of each pixel was analyzed using the gener-
ated labels. It was found that the final dataset consisted of approximately 20% of pixels
representing rice crops and 80% representing areas where no crops were present. Therefore,
training methods that took into account this class imbalance were necessary.
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2.5. Labels

One of the main challenges posed by Artificial Intelligence— AI applications—is the
construction of the training dataset. The lack of available datasets also affects applications
that utilize satellite images, as this is a recent area of AI utilization. The construction
of a quality dataset requires significant effort, as it involves the collection, annotation,
and preparation of large amounts of data. This process is further complicated in the case
of satellite imagery owing to factors such as cloud cover, changing lighting conditions,
and the presence of shadows. Addressing these challenges requires novel approaches
to data collection and preparation, as well as the development of advanced algorithms
capable of handling complex and diverse datasets [28,29].

In this study, the maximum likelihood classification method [30] was employed in
combination with visual photo interpretation by experts. The first method considers
the weighting of average distances using static parameters. The training sets define the
scatter plot of classes and their probability distributions, considering the normal probability
distribution for each training class. Thus, the probability of each pixel belonging to a
specific cultivar type is generated. Subsequently, experts classified the crops through
photo interpretation.

Figure 4 displays the classified crops in two scenes in the year 2021. The yellow
polygons represent rice crops, the purple ones show soybean crops, and the blue polygons
indicate water bodies. These pre-labeled scenes were divided into 512 × 512 images and
used to train the U-Net model.

Figure 4. Classified Crops of two Sentinel-2 scenes.

These two scenes were selected for this study owing to the abundance of rice crops,
which provided a substantial number of labels for training purposes. By selecting regions
with a high concentration of rice cultivation, the dataset can be enriched with a greater
diversity of rice plant types, growth stages, and environmental conditions, which are
all important factors for accurately training machine learning algorithms to recognize
and classify rice crops. As a result, these scenes were deemed suitable for acquiring a
comprehensive and diverse dataset to aid in the development of more robust and accurate
computer vision models for the rice crop analysis.
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2.6. Metric

Selecting the appropriate evaluation metric to measure the performance of a neural
network is essential [31]. In this study, due to the imbalanced nature of the dataset,
the choice of metric is even more critical. For example, in an image with only 10% rice
fields, if the neural network fails to detect any of them, it would still have an accuracy of
90% if the metric were based on the number of pixels. In refs. [32,33], the authors presented
a review of several popular metrics, including Precision, Recall, F-Measure, Area Under
Curve, Intersection Over Union (IoU), Dice Coefficient, and Warping Error. Among these
metrics, IoU emerged as the most reliable and precise for diverse applications.

Therefore, this study used the IoU [33] method, which involves calculating the ratio of
the intersection of the predicted segmentation and the ground truth label to the union of
the predicted segmentation and the ground truth label. This index ranges from 0 to 100%
and compensates for the unbalanced distribution between the rice fields and other areas in
an image. The IoU metric has become increasingly popular in computer vision applications,
particularly in object detection and segmentation tasks. It provides a more comprehensive
evaluation of the network’s performance by taking into account both false positives and
false negatives and it is robust to class imbalance issues.

2.7. Crop Allocation

The regional Power Distribution Company responsible for the study area has provided
the geographic coordinates of the electricity meters of all farms and their corresponding
billed energy. The region of study encompasses a total of 524 customers’ farms.

Allocating each crop to its corresponding meter posed a challenge since the metric of
the smaller distance between them was not feasible, as illustrated in Figure 5. The blue
markers represent meters, and the light green regions represent the detected crops. The two
crops shown in the figure belong to the meter highlighted in red. Notably, the distance
between these crops is not smaller than the distance between the crops and the other meters.
Furthermore, 15.07% of the meters have the same geographic coordinates as at least one
other meter. This phenomenon mainly arises from the extensive distances between farms;
as a result costumers share costs for energy infrastructure and metering points that are
located at the same site.

Figure 5. Some crops (light green) and their corresponding meter (blue marker in red circle).
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To address the challenge of allocating crops to their corresponding meters, clusters
had to be created. This was achieved by using the k-means method [34], which involves
partitioning data points into k distinct clusters based on their proximity to the centroid of
the cluster. Additionally, the database of the Rural Environmental Registry, known as the
CAR in Brazil, was used. This is a nationwide electronic public record, mandatory for all
rural properties, with the purpose of integrating environmental information from rural
properties and possessions for control, monitoring, environmental and economic planning,
and combat against deforestation.

The CAR requires farmers and landowners to provide detailed information about
their properties, including location, area size, land use, and environmental conservation
measures, among others. This database contains the geographical boundaries of rural
properties, which are illustrated in Figure 6, depicting the farms within the study region.
The system enables better monitoring and enforcement of environmental regulations, and it
serves as a tool for developing public policies for sustainable land use and rural develop-
ment. Overall, the CAR is an essential instrument for advancing Brazil’s environmental
and social sustainability goals.

Figure 6. Border of rural properties in Uruguaiana.

2.8. Estimation of Energy Consumption

The methodology used in this work to estimate energy consumption in irrigated rice
crops is presented in [35]; the author studied the area and presents the average value for all
the necessary parameters. The energy consumption is calculated using Equation (1).

E =
qAH

η
t (1)

where q is the Flow Rate, i.e., the quantity of water per time that is pumped to the crop.
For this work, 1.5 L per second per hectare is used. A is the Irrigated Area (m2) and
accounts for the total irrigated area of rice crops; H (Head) represents the necessary energy
to raise the water from the reservoir to the higher point of the crops. According to [35],
the average head in Uruguaiana is 10 m. The System Efficiency η is defined as 65% by [35],
and lastly, t corresponds to the time during which the pump remains working on average,
which is 21 h per day and 100 days per crop period.

3. Results
3.1. Topology

After training the neural network for 30 epochs in the mentioned areas, with a loss
function close to 0.26 on the test dataset, a precision of 90% and an IoU of 68.84% were
achieved. These results suggest that the trained model has a high level of accuracy in
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predicting the target variable, and also indicates a good overlap between the predicted
and actual values. Figure 7 compares RGB images with images generated through photo
interpretation and by the neural network implemented in this study, where in white are the
detected rice fields and in black are other areas.

Figure 7. Comparison between RGB images with images generated through photointerpretation and
by the neural network implemented.

While the neural network may not detect small details in the crop, it exhibited an
overall strong performance in our study. For calculations of area, these small details become
less relevant and the network’s ability to accurately identify and classify larger features is
critical. Therefore, we believe that our neural network approach holds great potential for
improving crop monitoring and management practices.
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As an example, Figure 8 displays the complete image of scene 21JVG and its cor-
responding mask generated by our implemented neural network. The mask effectively
identifies and segments the relevant features within the image, demonstrating the net-
work’s ability to accurately classify and distinguish between different objects and regions.
The image on the left depicts the scene with real colors captured by the satellite, while the
image on the right represents its mask, where the detected rice crops are depicted in white.

Figure 8. Scene 21JVG and its mask.

For the purpose of comparison, Table 1 shows the IoU percentages of the current
study, another relevant study utilizing the same metric from the literature, and a baseline.
This comparison allows for a clear assessment of the effectiveness and superiority of our
proposed method, and it provides valuable information for future research in this area.

Table 1. Summary of studies utilizing the same topology and evaluation method for comparison in
this work.

Year Method IoU Work

- Maximum Likelihood 59.00% Baseline
2018 U-Net + m46 encoder 62.40% [36]
2023 U-Net 68.84% Present study

3.2. Energy Consumption Estimation

By employing the proposed method described in Table 2, the expected consumption
of each cluster was calculated based on the total area of rice fields associated with each
cluster. Table 3 presents an example of the cluster number, the number of customers farms
within the cluster, the total area of rice fields, the estimated energy consumption, and the
billed energy consumption provided by the Power Distribution Company. Considering the
mean and standard deviation of the approximation errors, we conclude that a difference
of up to 50% is acceptable. However, when there is a significant discrepancy between the
calculated and billed energy consumption values, further inspection and investigation are
required, as shown in Table 4.
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Table 2. Steps of the proposed methodology.

Number Step Description

1 Colletion of
Satellite Images Acquire satellite images from reliable sources.

2 Pre-processing Clean, enhance, normalize and standardize image data.

3 Crop Detection Utilize U-net to identify crop types and planted areas.

4 Crop Information
Extraction Extract relevant information about crop fields.

5 Clustering Perform cluster-identification of crops with respective consumer units or geographical regions.

6 Data Compilation Gather and organize data related to crop types, areas, and consumer units.

7 Estimate
Consumption Make an estimate energy consumption for each crop-consumer unit cluster.

8 Comparison Estimated vs. Billed Energy Comparison

Table 3. Approved Clusters.

Cluster Number of Meters Area (ha) Estimated Energy (kWh) Billed Energy (kWh) Difference (%)

26 4 861.54 430,155 333,893 −28.8%
40 4 189.34 91,620 77,149 −18.8%
54 15 1110.24 560,211 497,515 −12.6%
7 11 4447.74 2,446,136 2,411,419 −1.4%

17 3 308.27 149,439 160,255 6.7%
32 10 1341.95 670,195 820,174 18.3%
21 7 425.04 209,876 277,676 24.4%
27 11 992.17 497,994 686,065 27.4%
24 3 331.35 161,398 237,009 31.9%
20 7 1595.97 877,737 1,456,666 39.7%

Table 4. Clusters that should be inspected.

Cluster Number of Meters Area (ha) Estimated Energy (kWh) Billed Energy (kWh) Difference (%)

44 12 902.22 450,468 2040 −21,982%
53 10 763.84 381,376 12,529 −2944%
42 10 3360.51 1,848,189 76,793 −2307%
30 9 1562.44 859,299 51,758 −1560%
38 5 768.78 383,843 56,731 −577%
36 5 961.06 479,846 123,987 −287%
48 12 2143.18 1,178,693 339,711 −247%
9 5 1699.17 934,497 323,378 −189%

28 15 2299.50 1,264,665 473,766 −167%
34 4 1244.75 684,581 274,904 −149%

4. Discussion

The two groups of rice farms in Tables 3 and 4 provide a comprehensive evaluation of
the electricity consumption on the farms. The average of the study area is 578.86 kWh/ha.
The results demonstrate that 26.5% of the clusters presented significant differences be-
tween the estimated energy and the amount that was billed. This indicates the need for
further investigation.

These discrepancies in energy consumption may have occurred for various reasons,
including the use of data provided by malfunctioning energy meters, theft of electricity,
crops that have distributed energy generation, human error in data collection or entry,
or variations in weather conditions affecting crop growth and water needs. Some farms in
the dataset may have implemented energy-saving measures or crops that use gravity-based
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irrigation systems, resulting in a lower energy consumption than expected. Nonethe-
less, these potential factors only highlight the complexity of accurately estimating energy
consumption in the agricultural sector.

Addressing these factors will be crucial to ensure the development of more reliable
and accurate methods for estimating energy consumption, which can have significant
implications for energy planning and sustainability in the agriculture industry. As such,
future studies should consider a wider range of variables and potential factors that could
impact energy consumption in agricultural settings. By utilizing these findings, electricity
consumption can also be compared across clusters, thereby generating efficiency indi-
cators that assist farmers in making informed decisions regarding the upgrade of their
electrical equipment.

However, these results already provide valuable insights into the sustainable manage-
ment of rice production systems and the electricity grid in southern Brazil. They can be
used as input for an AI network in conjunction with other variables, such as meteorological
data, soil characteristics, and productivity, in future studies.

The methodology developed in this study not only provides valuable insights for
optimizing resource management in the context of the specific crop and region analyzed,
but it also holds the potential for broader applications across various other crops and
regions. By adapting and tailoring the framework to suit the unique characteristics and
requirements of different agricultural systems, this methodology could serve as a versatile
tool to enhance more efficient food production systems worldwide.

5. Conclusions

It was shown that the U-Net model can effectively segment satellite images to identify
rice plantations, with a precision of 90% and an IoU of 68.84%. Then, the k-means algorithm
was utilized to group the meters of customers farms and estimate electrical energy usage
for irrigation purposes.

Comparing the estimated consumption with the energy billed by the utility, properties
with very different patterns could be distinguished: in particular, five clusters with more
than 500% less consumption than expected. This method can be a powerful tool for
promoting more efficient electricity usage and reducing inspection costs, with applications
in other fields as well. Additionally, these techniques can be applied for energy management
and planning.

The findings of this study can be used to feed another AI system, along with new data
such as meteorological information, soil data, and other relevant factors. This integration
of additional data can further enhance the accuracy and refinement of the findings.
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