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Abstract: This paper presents results from a physical and numerical study of a new type of axial
hydraulic turbine with oscillating blades, which is used to utilize wind waves energy. The pilot studies
were conducted on a test bench constructed in one of the labs of the “Department of Hydrodynamics
and Hydraulic Machines” in the Technical University of Sofia. The numerical computations were
performed with the commercial software package Ansys Fluent 2022. The flow has been modeled
with the k-ω (SST) turbulence model, whose main advantage is to resolve the viscous sublayer in
over refined meshes. A pressure-based solver was used since the fluid is incompressible and the flow
velocity is low. The study investigated several different pitch angles of the blades ranging between
0 and 80 deg at prescribed upstream flow velocities from 0.15 m/s to 2.0 m/s. The dependencies
of the torque coefficient, power coefficient, and the optimal tip speed ratio on the flow velocity are
presented and discussed.

Keywords: wave energy; oscillating blade turbine; numerical study

1. Introduction

Sea wind waves are an important renewable energy source, as they show large energy
resources in vast geographical areas. According to the current state of the art, it is estimated
that ocean waves have the capacity to generate a substantial two terawatt-hours (TWh) of
energy annually worldwide [1,2]. The development of wave energy converters (WECs) has
been an ongoing endeavor for many years, resulting in a variety of device models and sizes.
However, this diversity often translates into expensive and complex processes, especially
for larger and more sophisticated WECs.

Interestingly, unlike some other renewable energy sources like wind power, where
increasing energy output can be achieved by expanding the swept area, WECs face limita-
tions when it comes to enhancing energy generation. Only a limited number of WECs have
demonstrated the capability to effectively improve their energy output, as discussed in [3,4].
This limitation stems from the fact that WECs tend to have an optimal size from the early
stages of development, making significant further advancements challenging [1,2,5–7].

Coastal power plants more often use water chambers, in which crushing sea waves
periodically change the water column level. The energy of the oscillating water column
can be harnessed with low head turbines. Axial bi-directional turbines are the most
popular. The blade cascade of these turbines works on the principle of the lift force. It
has hydrodynamically shaped, symmetrical-profiled blades that can maintain the runner’s
rotational direction when the axial flow reverses. A typical example is the Wells turbine,
which is one of the most used turbines for utilizing the kinetic energy of reversing axial
flows. Wells is a low-pressure air turbine used to absorb the kinetic energy of the incoming
airflow, injected into the chamber by the oscillating water column. The main disadvantage
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of the Wells turbine is the low starting torque. Incoming waves push the airflow into the
chamber through the turbine with different intensities and amplitudes. The acceleration
and velocity of the incoming flow will differ. Despite its good efficiency, the Wells turbine
will not produce sufficient electric power due to the inability to self-start at too-low
flow velocities.

The water turbine with oscillating blades (WTOB) is a new type of water turbine
invented at the Technical University of Sofia. A characteristic feature of this turbine is that
it is subjected to variable axial hydraulic flow. This forces the working blades to oscillate
around their longitudinal axis. The hydraulic pressure, as a force, is applied at the static
center of the blade. This force creates a variable moment around the longitudinal axis of
the blade. This moment is balanced by a moment created by a spring force applied to the
oscillating blade. The considered WTOB is still in the process of research, testing, and
improvement of the construction. WTOB is designed to harness kinetic energy directly from
the motion of the sea waves. It can be utilized in coastal power plants or submerged in the
sea. This new type of axial turbine works with higher efficiency due to the movable blades
that can occupy an optimal pitch angle in relation to the turbine’s rotational speed and flow
velocity. Figure 1 shows the scheme of the turbine’s runner. The oscillating blades (4) are
attached to the hub (1) via water-lubricated sliding bearings (2). The blades are positioned
at a specific pitch angle (at which they generate high starting torque) and fixed at the upper
end by mechanical tension springs (17) to the axis (18) via cranks (6) and bolts (5). A fairing
(12) is mounted to the hub via studs (7) and nuts (8 and 9). The lower end of the springs are
attached to the plate (11). When the water column rises, the flow passes through the runner
and accelerates the turbine. When the water column starts to fall down, the hydrostatic
pressure and peripheral forces push the blades against the rotor plane at a specific pitch
angle (maintained by the springs) at which the turbine works with maximum efficiency.
Thus, the presented scheme combines two different runners that mutually eliminates their
disadvantages. The first one has high starting torque and low efficiency; the second one has
low starting torque and high efficiency. Moreover, considering the density of the salt water
(which is about 875 times bigger than that of the air), the hydraulic turbine with oscillating
blades should provide much more electric power than the Wells turbine. A 3D model of
the turbine is presented in Figure 2. The design of the blades, which can oscillate around
their horizontal axis, allows the conversion of the vertical motion of the seawater relative
to the impeller into a unidirectional rotary motion of the vertically located turbine shaft.
The expected mechanical efficiency of the turbine is 35%. Although this turbine is intended
to operate with a vertical shaft, it is possible, after minor design changes, to operate stably
with an inclined and even a horizontal shaft. It can be used as a subsystem for converting
sea wave energy into rotary motion in wave energy conversion (WEC) machines that use
different concepts [8–10]. To utilize the present concept, it is planned to use a buoy on the
water surface to which the blade wheel shall be attached with a Cardan shaft or some other
type of universal joint.
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Figure 1. Scheme of WTOB: 1—hub, 2 and 3—sliding bearings, 4—blades, 5—bolts, 6—cranks, 7—
studs, 8 and 9—nuts, 10—cylindrical corpus, 11—plate, 12—fairing, 13—pin, 14—supporting 
washer, 15—washer, 16—pin, 17—tension springs, 18—axis, 19—shaft. 

  

Figure 2. Three-dimensional model and picture of the hydraulic turbine: 1—blades, 2—fairing, 3—
forks. 

2. Test Bench 
The first pilot physical study of the hydraulic turbine with oscillating blades is con-

ducted on the test bench, shown in Figure 3. The illustrated components are as follows: 
1—hydraulic motor, 2—crank (through which the amplitude of the wave is determined), 
3—supporting frame, 4—scale for load settings on the turbine, 5—flywheel, 6—RPM sen-
sor, 7 and 9—couplers, 8—torque meter, 10—cardan coupling (which moves the runner 
smoothly along the three axis), 11—turbine shaft, 12—supporting frame. The driving 
mechanism of the turbine consists of a hydraulic motor, eccentric pulley, mobile platform, 
and steel rope. The hydraulic motor rotates the pulley and simulates sea wave motion by 
moving the turbine’s runner in a vertical direction. To conduct the experiment, it is essen-
tial to affix the following measuring devices to the stand. These instruments will measure 
the specific quantities and parameters required for our research. 

Figure 1. Scheme of WTOB: 1—hub, 2 and 3—sliding bearings, 4—blades, 5—bolts, 6—cranks,
7—studs, 8 and 9—nuts, 10—cylindrical corpus, 11—plate, 12—fairing, 13—pin, 14—supporting
washer, 15—washer, 16—pin, 17—tension springs, 18—axis, 19—shaft.
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Figure 2. Three-dimensional model and picture of the hydraulic turbine: 1—blades, 2—fairing,
3—forks.

2. Test Bench

The first pilot physical study of the hydraulic turbine with oscillating blades is con-
ducted on the test bench, shown in Figure 3. The illustrated components are as follows:
1—hydraulic motor, 2—crank (through which the amplitude of the wave is determined),
3—supporting frame, 4—scale for load settings on the turbine, 5—flywheel, 6—RPM sen-
sor, 7 and 9—couplers, 8—torque meter, 10—cardan coupling (which moves the runner
smoothly along the three axis), 11—turbine shaft, 12—supporting frame. The driving
mechanism of the turbine consists of a hydraulic motor, eccentric pulley, mobile platform,
and steel rope. The hydraulic motor rotates the pulley and simulates sea wave motion
by moving the turbine’s runner in a vertical direction. To conduct the experiment, it is
essential to affix the following measuring devices to the stand. These instruments will
measure the specific quantities and parameters required for our research.

A shaft speed sensor, often referred to as a wave frequency or amplitude sensor, is
installed on the drive shaft of the hydraulic motor. A digital tachometer is connected to the
turbine’s shaft to monitor and record its rotational speed or revolutions. The torque of the
turbine’s shaft is measured by a digital torque sensor.

The test bench is located in one of the labs of the Department of “Hydroaerodynamics
and Hydraulic Machines” at the Technical University of Sofia. The aim of the experiment is
to test the functionality of the water turbine runner with oscillating blades and to collect
some preliminary data about it. The operational range at various wave levels extends



Energies 2023, 16, 6744 4 of 13

from −90 deg to 90 deg. In order to obtain the influence of the blade’s pitch angle on the
turbine’s power, experiments are conducted with fixed pitch angles.
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3. Results from the Pilot Physical Study

Results from the conducted physical experiments are presented in Table 1 and Figure 4
in dimensionless form for pitch angles ϕr = 20, 25, 30, and 35 deg. Every test is conducted
following the subsequent procedure: (1) Activate the hydraulic system. (2) Adjust the
revolutions of the hydraulic motor to the desired value as per our requirements. (3) Com-
mence measuring the revolutions of the turbine shaft following the adjustment. (4) Display
and monitor the torque measurement on the torque meter. (5) The load (brake) applied
to the turbine can be modified; for this test, it is configured to a specific load as per our
requirements. (6) When needed, the amplitude of the wave can be adjusted using the crank.

Table 1. Results from the conducted physical study.

Pitch Angle
№

1 2 3 1 2 3 1 2 3
Angular Velocity Torque Power on the Shaft

ϕr nt/nmax Mt/Mt max P/Pmax
deg -

20 0.135 0.675 0.846 0.753 0.711 0.644 0.089 0.480 0.638
25 0.154 0.684 0.932 0.845 0.776 0.724 0.111 0.531 0.788
30 0.173 0.751 0.984 0.927 0.921 0.809 0.140 0.692 0.913
35 0.211 0.769 1.000 1.000 0.934 0.828 0.175 0.719 1.000
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Figure 4. Performance characteristics of the turbine at different pitch angles of the blades.
(a) Mt/Mt max = f(nt/nt max). (b) P/Pmax = f(nt/nt max).

According to the data from the pilot studies, rotational speed, power, and torque
increase with the pitch angle of the blades ϕr. In order to reduce the number of further
physical experiments and to obtain a more detailed picture of the efficiency of the tur-
bine, the Department of “Hydroaerodynamics and Hydraulic Machines” has developed a
numerical computational model, described in Section 4, based on the finite element method.

4. Details of the Numerical Computational Model

The present numerical model aims to improve the results obtained from previous
numerical investigations of WTOB and to provide more information about its efficiency
and estimated dependences for the main parameters of such a turbine [11]. The results
from the current study will be used for the final design of the WTOB.

To overcome the difficulties related to the computational mesh, these earlier investiga-
tions made considerable compromises regarding the geometry of the turbine wheel and
the computational domain size. The mesh density around the blades was decided based
on the possibilities of the available hardware and the restrictions on the simulation time.
Computational fluid dynamics (CFD) can be successfully applied to determine integral
performance characteristics for different turbines. This allows for conducting in-depth
analysis without physically changing the geometry of the turbine. Figure 5 presents the
geometry of the turbine wheel of the studied hydraulic turbine. The goal of the study
is to determine the effective power using several operating modes at fixed blade angles
(measured between the blade chord and the plane of rotation) of ϕr = 0, 10, 15, 20, 25, 30,
50, 60, and 80 deg and a constant upstream velocity Cw = 0.15, 0.25, 0.5, 1.0, and 2.0 m/s.
The turbine wheel, with an external diameter of D1 = 500 mm, consists of 6 profiled blades
(1) with height H = 180 mm [4]. The chord of the airfoil is l = 130 mm and the maximum
thickness is δ = 7.5 mm. The blades are attached to a hub (2) with forks (3), which can rotate
around their axis.

The methodology used to mesh the turbine wheel requires removing the openings
and fixtures from the construction and filling in the cavities of the blades (Figure 5). To
calculate the torque of the turbine, the Multiple Frame of Reference method (MFR) and the
sliding mesh technique were used. The K-omega SST [12] turbulence model was chosen
due to its better accuracy when resolving boundary layer flow. Several characteristics for
different values of the upstream flow velocity Cw in the range 0.1 ÷ 2 m/s are calculated.
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The geometry and computational domain, as well as the assigned boundary conditions,
are shown in Figure 6. The domain is subdivided into two regions. The first has the shape
of a cube and contains the outer flow region. The second, with the shape of a cylinder with
a radius of 380 mm and a height of 400 mm, contains the turbine blade wheel. The assigned
boundary conditions are velocity at the inlet, outflow from the outlet (which fixes the
gradient of flow variables to zero), and smooth walls for the other surfaces of the domain
where the viscous friction at the walls is evaluated. The computational data are exchanged
between the two regions through a so-called interface, which represents the contact surface
along which the rotating together with the turbine wheel cylindrical region slides.
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The geometrical properties of the meshes, corresponding to the two regions, are shown
in Table 2.
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Table 2. Computational grid properties.

Max. Cell Size Min. Cell Size Max. Growth Ratio Number of Cells

Outer fixed region
2048 mm 16 mm 7.35 86,760

Internal rotating region
16 mm 0.7 mm 190.2 49,480,859

Boundary layer region around the wheel blades
0.7 mm 0.5 mm 66.0 121,550,976

Mesh is presented in Figure 7. The influence of the mesh refinement (of the dimen-
sionless wall distance y+ [13]) over the torque is determined by changing the wall distance
of the first layer of blade cells in the range 10–2000 µm. Calculations are performed using
the iterative procedure of Gauss–Seidel [14] of the discretized partial differential equations
of Navier–Stokes [15] closed mathematically with the k-ω turbulence model:

∂(ρK)
∂t

+
∂(ρKui)

∂xj
= µt

[
∂ui
∂xj

+
∂uj

∂xi

]
∂ui
∂xj

− ξρωK +
∂

∂xj

[
(µ + ξKµt)

∂K
∂xj

]
(1)

∂(ρKω)

∂t
+

∂(ρωui)

∂xj
=

y
υt
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[
∂ui
∂xj

+
∂uj

∂xi

]
∂ui
∂xj

− ξβρω2 +
∂

∂xj

[
(µ + ξω1µt)

∂K
∂xj

]
+ 2(1 − B1)

ρξw2

ω

∂K
∂t

∂w
∂xj

(2)

where µt (Pa.s) and υt (m2/s) are the dynamic and kinematic eddy viscosity; u is the
time-averaged velocity (m/s); ρ is the density of salty water equal to 1025 kg/m3; K is the
turbulent kinetic energy (J/kg); ω is the specific turbulent energy dissipation rate (1/s);
µ is the dynamic viscosity of the fluid (Pa.s); t is the time; and xi is the space coordinate
(m). Indices “i” and “j” refer to the vectors of the Cartesian coordinate system (X, Y, Z); B1
is a linear function, which converts the k-$ SST turbulence model into a k-ε turbulence
model outside of the boundary layer region; ξτw, ξβ, ξk, ξω, and ξω2 are constants. The
computations were performed on Ansys Fluent 2022 commercial software package. A
pressure-based solver was used since the fluid is incompressible and the flow velocity
is low.

The numerical setup calculates the detachment of the boundary layer from the turbine
blades with better accuracy and removes, to a great extent, the influence of the outer region
on the flow parameters through the blade wheel.
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5. Results and Discussion

The influence of the mesh on the operational characteristics of the turbine at an
upstream velocity of Cw = 2 m/s is presented in Figure 8 and Table 3. According to the
data, a decrease in y+ under 9.5 does not significantly affect the results; so, this value can
be viewed as a threshold in the grid sensitivity study and, thus, the corresponding mesh
is further used for numerical computations. The torque exerted on the blade wheel was
calculated at the end of computation by integrating the vector product of force and position
vector for all cell faces that constitute the blade wheel surface. The power was then obtained
by multiplying the torque by the blade rotational speed. The maximum discrepancy in the
torque and power are 3 Nm and 6 W, respectively, at an angular speed of 20 min−1. The
increase in y+ to 180 enhances the torque (resp. the power) with the decrease in angular
speed n. The maximum discrepancies are 19.5 Nm at 10 min−1 (Figure 5a) and 8.1 W at
30 min−1 (Figure 5b). Further coarsening of the mesh around the blades (y+ = 350) does not
lead to a noticeable change in the characteristics.
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Figure 8. Performance characteristics of the turbine at different mesh densities. The values refer to
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Table 3. Computed values of power and torque of the turbine wheel at different mesh densities.

y+ = 3.8 y+ = 9.5 y+ = 180 y+ = 350
TSR CT CP CT CP CT CP CT CP

0.130 0.361 0.047 0.850 0.044 0.567 0.070 0.847 0.072
0.262 0.296 0.078 0.661 0.070 0.379 0.090 0.660 0.089
0.393 0.211 0.083 0.522 0.083 0.237 0.093 0.507 0.092
0.524 0.154 0.081 0.392 0.081 0.157 0.082 0.387 0.079
0.654 0.101 0.066 0.236 0.067 0.096 0.064 0.235 0.063
0.785 0.045 0.036 0.123 0.038 0.037 0.032 0.127 0.032

Figures 9 and 10 show the distribution of dimensionless velocity and pressure along
the blade wheel at an upstream velocity of 2 m/s in two streamwise planes, one of them
coincident with the blade leading edge. It is seen that the maximum velocity pertains to the
leading edge of the blades. This is because of the local increase in the velocity due to the
formation of vortices from flow separation. The flow velocity around the runner is uniform.
The velocity matches the far-field velocity because the surrounding walls have no effect on
the flow parameters, which would affect the operating characteristics of the turbine.
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Figure 9. Velocity magnitude and pressure distribution through the hydrokinetic turbine at pitch
blade angle ϕr = 80 deg.

Figure 11 and Table 4 show the effect of the flow velocity on the torque coefficient,
maximal power coefficient, and optimal tip speed ratio at different flow velocities and
pitch angles of the blades. The calculations are performed for upstream flow velocities of
0.15 m/s, 0.25 m/s, 0.5 m/s, 1 m/s, and 2 m/s. The relationship resembles a straight line
between values:

• CT = 0.377 ÷ 0.387 and Cp = 0.074 ÷ 0.083 at ϕr = 60 deg;
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• CT = 0.308 ÷ 0.318 and Cp = 0.231 ÷ 0.239 at ϕr = 30 deg;
• CT = 0.288 ÷ 0.298 and Cp = 0.250 ÷ 0.268 at ϕr = 25 deg;
• CT = 0.238 ÷ 0.248 and Cp = 0.272 ÷ 0.280 at ϕr = 20 deg;
• CT = 0.189 ÷ 0.199 and Cp = 0.260 ÷ 0.272 at ϕr = 15 deg;
• CT = 0.109 ÷ 0.119 and Cp = 0.231 ÷ 0.239 at ϕr = 10 deg.
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Figure 11. The impact of the flow velocity and blade’s pitch angle (a) on the torque, (b) on the power,
and (c) at y+ = 9.5.
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Table 4. Computed values of torque, maximum power, and optimal angular velocity at different
upstream flow velocities and pitch angles of the blades.

ϕr = 60 Deg

CW/CW Max CT CP Max TSR Opt

0.075 0.376 0.073 0.342
0.125 0.371 0.073 0.342
0.250 0.356 0.081 0.372
0.500 0.366 0.077 0.382
1.000 0.386 0.082 0.392

ϕr= 30 deg

0.15 0.308 0.230 1.455
0.25 0.303 0.230 1.455
0.5 0.288 0.238 1.485
1.0 0.298 0.234 1.465
2.0 0.318 0.239 1.505

ϕr= 25 deg

0.15 0.288 0.249 1.718
0.25 0.283 0.249 1.718
0.5 0.268 0.257 1.748
1.0 0.278 0.253 1.728
2.0 0.298 0.268 1.768

ϕr= 20 deg

0.15 0.238 0.271 1.913
0.25 0.233 0.271 1.913
0.5 0.218 0.279 1.943
1.0 0.228 0.275 1.923
2.0 0.248 0.280 2.094

ϕr= 15 deg

0.15 0.188 0.259 2.044
0.25 0.183 0.259 2.044
0.5 0.168 0.267 2.074
1.0 0.178 0.263 2.054
2.0 0.198 0.272 2.094

ϕr= 10 deg

0.15 0.109 0.230 2.306
0.25 0.104 0.230 2.306
0.5 0.089 0.238 2.336
1.0 0.099 0.234 2.316
2.0 0.119 0.239 2.356

Figure 12 presents the dependence of the maximum power and torque on the blade’s
pitch angle at the studied flow velocity interval.

Changing the blade’s pitch angle has a significant effect on the efficiency and self-
starting capability of the wheel. At ϕr = 50 deg, the turbine rotates with lower power and
the highest torque, making it easier to operate under alternating flow conditions. This is due
to the streamlined surface of the blades, their shape, and the relative flow velocity W. With
an increase in ϕr from 0 to 50 deg, the blades are oriented with their leading edge to the flow,
which results in a decrease in the drag force FD (which is collinear to the W), an increase in
the lift force vector FL (which is perpendicular to FD and W), and its shift to the peripheral
velocity vector of the wheel U. The torque of the turbine increases. At ϕr > 50 deg, the
working frontal area of the blades perpendicular to the flow is reduced, which adversely
affects the lifting force and the wheel’s torque. The highest power is achieved at pitch angle
ϕr = 20 deg. The blade cascade works with less peripheral resistance at smaller values of



Energies 2023, 16, 6744 12 of 13

ϕr, which allows the reaching of higher values of the angular speed. The obtained results
can be used for an indicative assessment of the efficiency of the blade cascade.
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6. Discussion

The presented results are a sample of the performed calculations. Around 200 cal-
culations for analysis of the blade wheel characteristics at different rotational speeds and
upstream flow velocities were performed. Each calculation consumed, on average, 10 h of
computational time. A substantial number of computational meshes to study the effect of
domain size and the mesh density on the calculated performance of the blade wheel were
generated. Grid sensitivity analysis was performed to estimate the necessary dimensionless
wall distance. The torque and power as a function of the angular velocity of the blade wheel
were determined. In addition, the maximum extractable torque and power as a function of
the upstream flow velocity were computed as well. It was demonstrated that turbines of
this type could be arranged in staggered formation without affecting each other too much.

The estimated dependencies of the torque, power, and the optimal angular speed on
the flow velocity can be used for development of an analytical mathematical model, which
can describe the interaction of the sea waves with the blade cascade of the hydrokinetic
turbine. The power and the absorbed energy can be approximately calculated by assuming
that sea waves change the height of the water level in a given section based on sinusoidal
law and the maximum speed of the oscillating water column falls within the studied
interval (0 ÷ 2 m/s). In future work, the cyclic nature of the sea surface motion will be
acknowledged by unsteady inlet conditions.
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