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Abstract: The intensive development of photovoltaic (PV) micro-systems contributes to increased
interest in energy efficiency and diagnosing the condition of such solutions. Optimizing system energy
efficiency and servicing costs are particularly noteworthy among the numerous issues associated with
this topic. This research paper addresses the easy and reliable diagnosis of PV system malfunctions.
It discusses the original PV system energy efficiency simulation model with proprietary methods
for determining total solar irradiance on the plane of cells installed at any inclination angle and
azimuth, as well as PV cell temperature and efficiency as a function of solar irradiance. Based on this
simulation model, the authors developed procedures for the remote diagnosis of PV micro-systems.
Verification tests covered two independent PV systems over the period from April 2022 to May
2023. The obtained results confirm the high credibility level of both the adopted energy efficiency
simulation model and the proposed method for diagnosing PV system functional status.

Keywords: standardized energy efficiency coefficient; PV cell power mathematical model; diagnosing
photovoltaic micro-systems

1. Introduction

The global capacity of PV systems has exceeded 1 TWp and continues to rapidly grow,
with a significant share of micro-systems. For example, the Institute for Renewable Energy
report claims that the PV capacity in Poland installed at the end of March 2023 exceeded
13 GW, including a 74% share of prosumer micro-systems. Furthermore, studies indicate
a reduced micro-system efficiency relative to professional PV power plants. Research
conducted in France and Belgium on more than 10,000 systems has demonstrated lower
micro-system efficiency by 16% [1]. Therefore, optimizing the energy efficiency of PV
micro-systems, which should be taken into account not only at the engineering stage but
also during operation, is an important aspect [2–4]. Maintaining the highest efficiency
level of PV systems throughout their operation requires reliable and rapid servicing and
diagnosing [5–7]. In light of the territorial dispersion of micro-systems (with most of
them located on buildings), methods that involve systematic human-conducted equipment
inspections are costly [8–10]. Therefore, remote diagnosis is the basic technique [11–14].

Remote diagnosis primarily employs measurement data from devices built into photo-
voltaic systems, such as inverters and power optimizers. In addition, it also utilizes data
from temporarily or permanently installed auxiliary equipment. This includes weather
stations and cameras. The source literature contains publications that preview various diag-
nostic methods, which analyse thermal imaging camera images [15–21]. The article reviews
methods of identifying mismatch errors related to photovoltaic modules based on analysing
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temperature distribution obtained through thermography [15] or identifying hot spots,
penumbra and other minor defects. There are also mixed methods that combine thermal
imaging with machine learning. This enables distinguishing between visual damage that
hinders the operation and reduces PV module durability or automatic system inspections
throughout its entire life cycle. Because the maintenance-free version of these methods
requires cameras monitoring all PV system cells, they are relatively expensive. Moreover,
they primarily enable the detection of hot spots, allowing to determine an energy efficiency
deterioration to a lower degree. There have also been studies based on the method of com-
paring neighbouring systems [22], large-scale dispersion [23] or referring to such numerous,
different models [24]. The largest group includes papers describing the diagnosis of pho-
tovoltaic systems based on inverter and weather station data using artificial intelligence,
particularly machine learning methods [25–36]. They are widely discussed in the source
literature and usually provide good diagnostic results; however, they require a specific
set of training data for each PV system unit. In the latest literature, you can also find the
use of mathematical models for: the optimization of renewable energy systems taking into
account several sources [37,38], business models facilitating decision-making in the field of
PV microgrids [39], the modeling of photovoltaic cells as semiconductor materials [40–42]
or maximum power point optimization (MPPT) [43,44]. The aforementioned numerous
studies are aimed at developing methods for the remote, rapid and reliable diagnosis of
actual photovoltaic micro-systems, which is economically justified.

Therefore, the authors of the article proposed a diagnostic method based on comparing
the actual PV micro-system efficiency provided by inverter applications with the theoretical
efficiency, calculated using an original simulation model. The parametric simulation model
would only employ meteorological data (solar irradiance, temperature, wind speed), as
well as PV system technical and structural parameters. This led to an attempt at developing
a standardized energy efficiency coefficient (SEEC), which is universal for each PV system.
This means that making a reliable diagnosis of the occurrence of a failure that reduces the
energy efficiency of a given PV system will not require previous tests of this device in a
state of fitness. The coefficient employed within the tests may spread over custom time
periods, with daily periods adopted for the study.

The individual chapters of the article discuss:

• The PV system efficiency simulation model;
• description of the tests covering two PV systems;
• application of the standardized energy efficiency coefficient for diagnosing a PV system.

The objective of the publication is to demonstrate the usefulness of the presented
method for remote energy efficiency assessment and diagnosing actual photovoltaic
micro-systems, as well as its competitiveness in terms of credibility, costs and
deployment simplicity.

2. Mathematical Model of Solar Irradiance on PV System Cell Plane

The target parameter employed for the diagnosis process is the PV standardized
efficiency index (SEI). It requires accurately simulating the waveform of the theoretical
instantaneous power of a diagnosed PV system. The power of photovoltaic (PV) cells is
calculated as per the Formula (1) [45–49].

PPV = ηPV ·APV ·GPV , (1)

where PPV—power generated by a PV system [W], ηPV—PV module efficiency, APV—cell
active surface [m2], GPV—instantaneous values of solar irradiance on the surface of a
photovoltaic module [W/m2].

System area APV is known, while its efficiency depends on PV cell technical parameters
and weather conditions. This will be more thoroughly explored in the chapter. The
instantaneous power graph waveform is most impacted by solar irradiance of the cell
plane GPV and is the most variable factor. Furthermore, cell planes in building systems,



Energies 2023, 16, 6746 3 of 24

prosumer micro-systems in particular, are generally set at various inclination angles and
azimuths. A majority of basic meteorological devices only measure the total solar irradiance
of a vertical plane, parallel to the Earth’s surface, and determining GPV requires complex
computations [50]. A diagram in Figure 1 helps to illustrate a general model of solar
radiation after it passes the Earth’s atmosphere.
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Physical phenomena, mainly dispersion, diffraction and absorption within various
strata of the atmosphere, including clouds, lead to reduced intensity and a modification
of its structure. Therefore, total irradiance on a plane parallel to the Earth’s surface is
determined using the Formula (2) [51–53]:

GS = GB + GRI + GRO + GRH + GOD, (2)

where GS—total solar irradiance [W/m2], GB—direct solar irradiance [W/m2], GRI—diffuse,
isotropic solar irradiance [W/m2], GRO—diffuse, circumsolar solar irradiance [W/m2],
GRH—diffuse, brightening solar irradiance horizon [W/m2], GOD—reflected solar irradi-
ance [W/m2].

Calculating solar irradiance on the surface of a PV cell inclined relative to the Earth’s
plane using the Formula (2) would be complex and is not expedient. In addition to direct
irradiance (GB) of vector value, all other components are of isotropic nature and, therefore,
the Formula (2) can be simplified to the Formula (3).

GS = GB + GR, (3)
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where GS—total solar irradiance [W/m2], GB—direct solar irradiance [W/m2], GR—diffuse,
isotropic solar irradiance [W/m2].

The measurement results for total irradiance on a plane parallel to the Earth’s surface
GS and diffuse irradiance GR enable calculating direct irradiance on the plane parallel to
the Earth’s surface GB (4).

GB = GS − GR, (4)

Next, one can calculate direct irradiance on the plane inclined at any angle β and
rotated southwards at an angle γ using the Formula (5) [51,52], as shown in Figure 2.

GBP = GB
cos θ

sin α
, (5)

where: GBP—directional irradiance on an inclined and rotated plane [W/m2], θ—direct
solar radiation angle of incidence on a surface with any inclination relative to the horizontal
and any azimuth [◦], α—Sun’s angle of elevation [◦].
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This enables calculating total irradiance GPV on a plane inclined at an angle β and
rotated by an angle γ as per the Formula (6).

GPV = GBP + GR, (6)

By applying the Formulas (4)–(6), we obtain the Formula (7)

GPV = (GS − GR)
cos θ

sin α
+ GR, (7)

where: GPV—total irradiance on a plane inclined at an angle β and rotated by an angle γ
[W/m2],

Moreover, sin α is defined by the Formula (8) [52,53]

sin α = (cos ϕcos δcos ω + sin ϕsin δ), (8)

where: ϕ—latitude [◦], δ—solar declination [◦], ω—Sun’s hour angle [◦].
Whereas cos θ is defined by the Formula (9)

cos θ = sin δ(sin ϕcos β − cos ϕsin βcos γ) + cos δ·(cos ϕcos βcos ω+
sin βsin ϕcos γcos ω + sin βsin γsin ω),

(9)

where: β—plane inclination angle (angle between the horizon and receiver) [◦], γ—azimuth
angle (angle between the receiver and southwards direction) [◦].
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The solar declination appearing in Formulas (8) and (9) is calculated according to
Formula (10) and the Sun’s hour angle is calculated according to Formula (11)

δ = 23.45◦sin
360◦·(284 + d)

365
, (10)

where: d—numbered day of the year

ω = 15(t − 12) + λ − 30, (11)

where: t—time in hours, assuming that t = 0 is midnight in the UTC+02:00 time zone,
λ—longitude.

After applying Formulas (8) and (9), the instantaneous diffuse irradiance value remains
the only unknown in the Formula (7). Because diffuse irradiance is not usually measured,
it is calculated based on Formula (12) for the purposes of the simulation model.

f (x, y) = 2.9605494704543585 + 0.5377862858796892x+
0.06004726482252161y − 0.0026910268413485984x2+

0.0019042965793833588xy − 0.00017756733488081473y2+
3.042172248692004·10−6x3 − 3.178624909592273·10−6x2y+
8.214875913822176·10−7xy2 − 1.0830525365875006·10−7y3,

(12)

where: f (x,y)—GR diffuse solar radiation x—GCP, measured total irradiance [W/m2], y—
GCT, theoretical total irradiance [W/m2].

Formula (12) has been developed as part of work on the optimal method for calculating
diffuse irradiance based on the studies presented in [50], which also thoroughly describes
formulas for calculating theoretical total irradiance GCT.

By substituting the results of calculations from Formulas (8) and (9), and the instan-
taneous diffuse irradiance GR calculated using Formula (12) to Formula (7), the authors
obtained an instantaneous irradiance on the PV cell plane. The outcome was a mathemati-
cal model that enables calculating instantaneous irradiance on the PV cell plane GR based
on PV system structural data, its geographical location and measured total irradiance on
the plane parallel to the Earth’s surface. Therefore, only PV module efficiencies are missing
to calculate power waveforms according to the Formula (1).

3. PV Cell Efficiency Mathematical Model

Efficiency, defined as the ratio of energy produced to solar radiation energy falling
on a PV cell, depends on the temperature of the semi-conductor structure and the solar
irradiance value. Therefore, PV cell energy efficiency depends on the execution technol-
ogy, which is reflected by the technical parameters of the system structure and weather
conditions [51–53]. In addition to the technical conditions, which should be variable over
time, efficiency is also impacted by such physical phenomena as temperature and the inso-
lation of PV cells, which are variable over time. Therefore, instantaneous PV cell efficiency
can be expressed using the Formula (13).

ηPV = ηSTC·ηG(GPV)·ηt(t), (13)

where ηPV—instantaneous PV cell efficiency, ηSTC—nominal PV cell efficiency under STC
conditions, ηG—standardized PV cell efficiency function depending on solar radiation
intensity, ηt—standardized efficiency function depending on the temperature of the PV cell.

Nominal module efficiency ηSTC is determined by the manufacturer under STC (Stan-
dard Test Conditions); i.e., a solar intensity of 1000 W/m2 and a module temperature of
25 ◦C.

The standardized PV cell efficiency function ηG is dependent on solar
irradiance [54–56]. This relationship was determined based on the results of tests cov-
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ering five photovoltaic systems equipped with mono-crystalline cells. The approximate
function was determined by Formula (14), and its waveform is shown in Figure 3.

ηG = −6.103·10−18·GPV
6 + 2.527·10−14·GPV

5 − 4.262·10−11·GPV
4+

3.76·10−8·GPV
3 −−1.872·10−5·GPV

2 + 5.142·10−3·GPV + 0.4002,
(14)

where ηG—standardized PV cell efficiency function, GPV—solar irradiance.
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The last element to be determined in Formula (13) is ηt the standardized efficiency
function, depending on the temperature of the PV cell. The efficiency of all PV cell types
depends on temperature, while in the case of mono-crystalline cells, this relationship
is relatively strong and should be taken into account when simulating the efficiency of
photovoltaic systems [55–57]. It can be determined using the Formula (15).

ηt = 1 + βt(tPV − tSTC), (15)

where ηt—standardized efficiency function depending on the temperature of the PV cell,
βt—temperature coefficient of maximum PV cell power, tPV—PV cell temperature, tSTC—
temperature under STC (25 ◦C).

Formula (15) employs the maximum power temperature coefficient, since PV systems
should operate at a maximum power point (MPP). The coefficient βt is directly determined
by the manufacturer, and mono-crystalline silicon cells usually range from—0.4%/◦C
to—0.3%/◦C.

Formula (15) also includes tPV, which is the PV cell temperature, and more precisely,
the cell semi-conductor structure temperature. This temperature is not measured, and the
cell housing temperature is also usually not measured. This temperature can be measured
in the devices near PV cells (e.g., power optimizers), but in such a case, the devices
cooperating with PV cells provide plenty of diagnostic information and the application of
diagnostic methods presented herein is not expected. It was assumed that the developed
simulation model would only be applied in systems comprising PV cell chains without
optimizers or microinverters. In such a situation, the PV cell temperature should be
determined based on meteorological measurements in the vicinity of the system, as well as
on structural properties.

In order to determine the temperature, the authors analysed employed PV cell semi-
conductor structure temperature calculation models. One of the most popular among
them is the empirical formula described by Equation (16), which is based on basic climate
parameters; i.e., solar irradiance, wind speed and ambient temperature [58].

tPV = GPV ·ea+b·Vw + te, (16)
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where tPV—PV cell temperature ◦C, GPV—solar irradiance on the PV cell surface W/m2,
Vw—wind speed, te—PV system ambient temperature, a and b—empirical coefficients
depending on the PV system installation method and execution technology.

Examples of a and b coefficients for different PV cell types and installation models are
shown in Table 1.

Table 1. Values of a and b coefficients employed in Equation (16) [58].

PV Module Type Installation Method a b

Glass/cell/glass Full ventilation −3.74 −0.0594
Glass/cell/glass At the roof slope −2.98 −0.0471

Glass/cell/polymer coating Full ventilation −3.56 −0.0750
Glass/cell/polymer coating Rear surface insulation −2.81 −0.0455
Polymer/PV-thin film/steel Full ventilation −3.58 −0.1130

Another recognized model that enables estimating PV cell temperature is the Servant
temperature model, which takes into account parameters such as ambient temperature,
solar irradiance, module electrical efficiency or wind speed [59], and is described by
Equation (17).

tPV = te + αGPV(1 + βte)(1 − γVw)(1 − 1.053ηSTD), (17)

where tPV—PV cell temperature ◦C, GPV—solar irradiance on the surface of a PV cell
W/m2, Vw—wind speed, te—PV system ambient temperature, ηSTC—standardized PV cell
temperature under STC conditions, α, β, γ—constant, their values are α = 0.0138, β = 0.031
and γ = 0.042, respectively.

The Servant temperature model was determined based on analysing temperature-
dependent graphical correlations relative to solar irradiance. A correlation degree in the
range of 0.69 ÷ 0.89 was obtained. The values of the α, β and γ constants were empirically
determined by the model’s author under conditions of a constant wind speed of 1 m/s.
The accuracy may be lower for other speed values.

Another considered model is the Davis, Dougherty and Fanney model presented by
Formula (18) [59]. It is primarily based on the coefficients specified under NOCT conditions;
i.e., nominal operating cell temperature. Furthermore, it utilizes meteorological data such
as ambient temperature and solar irradiance.

tPV = te +
GPV

GNOCT
(tPVNOCT − teNOCT)

(
1 − ηSTC

τ·α

)
, (18)

where tPV—PV cell temperature ◦C, GPV—solar irradiance on the surface of a PV cell
W/m2, te—PV system ambient temperature, ηSTC—nominal PV cell efficiency under STC
conditions, GNOCT—solar irradiance under NOCT conditions [800 W/m2 ], tPVNOCT—PV
cell under NOCT conditions [◦C], teNOCT—ambient temperature under NOCT conditions
[20 ◦C], τ—transmittance, α—absorptiveness.

Formula (18) was developed based on tests involving photovoltaic modules within
free-standing systems, normally oriented to solar noon. There is also a more extensive
dependence (19), the so-called Homer formula based on similar data as Formula (18).
In addition, it only contains the temperature power coefficient and enables determining
instantaneous cell temperature based on the results of the test conducted under NOCT and
STC conditions [60].

tPV =

te + (tPVNOCT − teNOCT)
(

GPV
GNOCT

)[
1 − ηSTC(1−αptSTC)

τ·α

]
1 + (tNOCT − teNOCT)

(
GPV

GNOCT

)(
αpηSTC

τ·α

) , (19)
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where tPV—PV cell temperature ◦C, GPV—solar irradiance on the surface of a PV cell
W/m2, te—PV system ambient air temperature, ηSTC—nominal PV cell efficiency under
STC conditions, GNOCT—solar irradiance under NOCT conditions [800 W/m2], tPVNOCT—
PV cell temperature under NOCT conditions [◦C], teNOCT—ambient temperature under
NOCT conditions [20 ◦C], τ—transmittance, α—absorptiveness, αp—maximum power
temperature coefficient.

The David Faiman model, which determines the PV cell temperature based on the heat
exchange concept, was also considered [61,62]. The model is represented by Formula (20).

tPV = te +
GSTC

U0 + U1·Vw
, (20)

where tPV—PV cell temperature ◦C, GSTC—solar irradiance under STC conditions 1000 W/m2,
Vw—wind speed, te—PV system ambient air temperature, U0—heat transfer constant W/m2

K, U1—convective heat exchange constant W/m3sK.
The U0 and U1 constants were empirically determined by the author of the model

through measuring solar irradiance on the PV module surface, and the wind speed and
temperature of seven PV module types. The U0 constant values ranged from (23.5 ÷ 26.5)
W/m2 K and U1 (6.25 ÷ 7.68) W/m3 sK.

The last model taken into account was the one employed by PVsyst in their software
for modelling photovoltaic system efficiency. The implemented Formula (21) was very
similar to the one proposed in the Faiman model.

tPV = te + GSTC·
α(1 − ηSTC)

U0 + U1·Vw
, (21)

where tPV—PV cell temperature ◦C, GSTC—solar irradiance under STC conditions 1000 W/m2,
Vw—wind speed, te—PV system ambient air temperature, U0—heat transfer constant W/m2

K, U1—convective heat exchange constant W/m3sK, ηSTC—nominal efficiency of the PV
cell under STC conditions.

This model employs default values of the U0 and U1 constants, which are: for free-
standing systems: U0 = 29 W/m2 K, U1 = 0 W/m3 sK, while for systems located at the roof
slope: U0 = 15 W/m2 K, U1 = 0 W/m3 sK. It should be noted that default U1 = 0 W/m3

sK; therefore, the dependence of temperature on wind speed responsible for cooling PV
modules is not assumed.

Parallel meteorological and temperature measurements covering selected PV cells
were conducted for five systems in the years 2020–2023 to select the optimal dependence
on PV cell temperature. An indirect measurement of the cell semi-conductor structure
temperature was conducted using thermal imaging cameras or a four-channel tempera-
ture recorder. The measured temperature waveforms were adopted as references, and
the mean and mean square differences between the calculated and measured values
were calculated for all models defined by the Formulas (16)–(21). The analysis covered
50 time periods from 5 to 12 h. The best results were obtained for models defined by
Formulas (16) and (17). With appropriately selected coefficients, the authors obtained a
mean value of the waveform difference below 0.1 ◦C and a standard mean square deviation
of 2.5 ◦C. Examples of measured temperature value waveforms, calculated based on the
Sandia and Servant models, are shown in Figures 4 and 5.

When comparing temperature waveforms, one can notice the convergence of their
value trend, especially under continuous and good insolation. The differences between
instantaneous values under dynamically variable insolation conditions are significant
because all computational temperature models fail to take PV cell thermal inertia into
account. Despite the considerable difference in instantaneous values, the differences in
mean values for hourly or longer periods are small. Therefore, Formulas (16) and (17) can
be employed when simulating the daily energy efficiency and provide good accuracy.
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It should be noted that the aforementioned tests and analyses of different variants were
only aimed at comparing existing solutions and selecting an optimal PV cell temperature
computational model. Due to the accuracy, the criteria were satisfied by at least two
formulas, but Formula (16) was chosen to be applied in the PV cell energy efficiency
simulation model since it enabled simpler implementation. After substituting (15), the
authors obtained the final formula for standardized temperature efficiency (22).

ηt = 1 + βt

(
GPV ·ea+b·Vw + te − tSTC

)
, (22)

where ηt—standardized efficiency function depending on the temperature of a PV cell,
βt—PV cell maximum power temperature coefficient, GPV—solar irradiance on the surface
of a PV cell, Vw—wind speed, te—PV cell ambient air temperature, a and b—empirical
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coefficients depending on the installation method and execution technology, tSTC—PV cell
temperature under STC conditions (25 ◦C).

After substituting Formula (13), values calculated using Formulas (14) and (22) give
results in the PV cell instantaneous efficiency.

4. Simulating PV System Power Waveforms

In Section 2, the authors developed a mathematical model for calculating instantaneous
total solar irradiance on a PV cell plane. The end result GPV was obtained using Formula (7).
Whereas, in Section 3, the authors developed a mathematical model for instantaneous PV
cell efficiency. The end result ηPV was obtained using Formula (13). After substituting the
results from Formulas (7) and (13) into Formula (1), we obtained the final instantaneous
PV power value. Input data for the aforementioned formulas were, of course, developed
using the numerous supplementary formulas discussed in Sections 2 and 3. The graphical
interpretation of the mathematical model was demonstrated using a diagram for calculating
PV system instantaneous power in Figure 6.
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Figure 6. Diagram for calculating PV system instantaneous power in a mathematical model.

The input data for the mathematical model in the diagram is presented in circles of
different colours, namely, geographical data (blue), instantaneous data values measured
by the weather station (green) and PV system technical data (purple). The calculated
physical quantity with an indication of the employed formula is presented in rectangles
(the calculation of theoretical radiation to the ground plane under a cloudless sky is
presented in [50]]). The arrows between the figures represent data flow. The final, expected
result of employing the mathematical model in question is calculating the PV system’s
instantaneous power for measured meteorological data, such as total solar irradiance,
ambient temperature and wind speed.
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The mathematical model enables calculating instantaneous power. These calculations
are conducted on a regular and cyclic basis, in short time intervals (every 5 min as part of
the studies conducted by the authors). In turn, this creates a simulated power waveform
for a given PV system in the longer perspective. As indicated in the title of the paper, the
presented power waveform simulation model is to be employed for diagnosing PV systems.

The diagnostic method is based on comparing simulated and actual power waveforms.
Only the data from the inverter can be used as values of actual PV system power, assuming
remote data acquisition. Power determined using Formula (23) was adopted.

PPV = IPV ·UPV , (23)

where PPV—inverter input power [W], IPV—inverter input current [A], UPV—inverter input
voltage [A].

As a rule, simulation accuracy will have a significant impact on diagnostic credibility.
Error sources were therefore analysed.

One of the sources may be the difference between the calculated and actual diffuse
radiation intensity. Significant efforts were made for the calculation Formula (12) to be
optimal, as thoroughly discussed in [50], but the spread of diffuse radiation is high due
to its variable structure and changing ambient conditions. In addition, the accuracy of
calculating the total irradiance on the PV cell surface GPV is impacted by the assumption
that 100% of solar radiation originates from a point light source and that circumsolar
glow is not taken into account. Another important error source is the finite accuracy of
calculating the temperature of the semi-conductor cell structure tPV. Section 3 provides
the thorough rationale behind the selection of the optimal temperature model. However,
there may be differences between the calculated and actual values, depending on technical
and atmospheric conditions. The developed PV cell efficiency model, as a function of
solar irradiance βPV, can also be the source of calculation inaccuracies. Furthermore, the
model employs the technical parameters of PV cells and systems, such as efficiency under
STD conditions βSTD, the maximum power temperature coefficient βt, system angle of
inclination β and azimuth γ. Each of the parameters may constitute a bias source.

However, the source most significantly impacting power calculation accuracy is me-
teorological data measurement errors. At the same time, errors in measuring ambient
temperature and wind speed are of secondary importance. Errors in the measurement of
total irradiance on the plane parallel to the Earth’s surface have the greatest impact.

Error sources for a PV system’s power waveform treated as real power waveform
were also analysed. The current and voltage values of the inverter input (23) are burdened
with measurement errors.

In addition, a comparison of simulated and measured power waveforms is also im-
pacted by measurement time synchronization accuracy and the proximity of meteorological
sensors and PV systems.

The aforementioned theoretical analysis of a large number of potential error sources
became useful when developing and evaluating the mathematical model. However, its
practical usefulness is determined by the accuracy of reproducing actual PV system power
waveforms. Power waveforms were compared using data from five PV micro-systems
under various weather conditions. Figures 7–9 show three cases of daily theoretical power
waveforms Pt (blue) calculated using the presented mathematical model and the actual
power Pr (red). The graphs in Figures 7 and 8 refer to PV system strings and the Pr
waveforms are presented based on inverter measurements. The graph in Figure 9 refers to
a single cell and the Pr waveform shows recorded data from a power optimizer.

As evident, theoretical and actual power waveforms are very similar, especially under
conditions of good insolation (Figure 6). There are sometimes differences in the case of
fast-changing insolation conditions, which primarily result from inaccurate measurement
data acquisition time synchronization.
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The high degree of theoretical and actual power waveform convergence indicates a
good simulation model quality, but daily energy yields, calculated using Formula (24), are
the most important from the perspective of the research objective.

E = ∑i=N
i=2

Pi + Pi−1

2
(ti − ti−1), (24)

where E—energy generated by a PV system within a day [kWh], Pi—measured or calculated
power for time ti [kW], Pi−1—measured or calculated power for time ti−1 [kW], ti—data
measurement time for sample number i [h], ti−1—data measurement time for sample
number i−1 [h].

By substituting the power measured on the inverter or optimizer output to the
Formula (23), we obtain the actual energy generated by a PV system within a day Er.
Whereas, when substituting the power calculated using the mathematical model, we obtain
the theoretical energy Et that should be generated by a PV system within a day for actual
meteorological data. Daily theoretical and actual energy for waveforms from Figures 7–9
are shown in Table 2.

Table 2. Daily theoretical Et and actual Er energy for waveforms from Figures 7–9.

PV System Data Insolation Date Et [kWh] Er [kWh] Er/Et [%]

string, 11 PV cells, 325 W each very good 5 June 2022 8.962 8.976 100.15%
string, 10 PV cells, 350 W each moderate 1 April 2023 26.04 26.10 100.21%
a single PV cell, 340 W power variables 1 May 2022 1.818 1.811 99.64%

The presented cases show very similar values of daily energy acquired within a fit PV
system and energy calculated using the simulation model. Therefore, it can be assumed
that the discussed mathematical model will be useful for diagnosing malfunctions leading
to a PV system energy efficiency deterioration.

5. Application of the Simulation Model to Diagnose PV Systems

Energy efficiency deterioration is a manifestation of numerous PV micro-system
malfunctions. This is certainly the outcome of a PV cell failure. It can result from the
progressive shading, soiling or ageing of PV cells. Therefore, determining the energy
efficiency deteriorations of a string of serially connected cells is very desirable when
operating PV systems. However, it is a challenging task when performed on a remote basis
for micro-systems without power optimizers or other devices that monitor the parameters
of each PV cell. The high fluctuation of meteorological parameters that is inherent to
the Central European climate significantly hinders detecting even considerable drops in
energy efficiency. Comparable insolation cycles appear in an annual period and may
additionally be very diverse. To minimize the influence of cyclicity and fluctuations of
weather conditions, the authors suggested employing a standardized energy efficiency
coefficient (ξPV—hereinafter the interchangeably used SEEC) for PV systems, defined by
Formula (25).

ξPV =
Er

Et
(25)

where ξPV—PV system SEEC, Er—actual energy generated by a PV system over a pre-set
period of time [kWh], Er—theoretical energy calculated using a simulation model for a PV
system and actual meteorological parameters over a pre-set period of time [kWh].

Any time period could be used to calculate the coefficient defined by Formula (25), but
a period of one day was adopted as optimal, namely, from sunrise to sunset. The diurnal
ξPV will be further employed for such daily periods.

The procedure for diagnosing PV system unfitness conditions associated with their
reduced efficiency was developed using the daily SEEC. To start with, the procedure
requires developing a simulation model and data set for a fit system, through:



Energies 2023, 16, 6746 14 of 24

• entering necessary PV micro-system technical and structural parameters into the
simulation model;

• downloading data recorded by the inverter and calculating daily actual energy Er
generated by a fit PV system over a period of at least 20 days;

• downloading data recorded by the weather station (irradiance, temperature, wind
speed) for the same time period and calculating daily theoretical energy Et for the
PV system;

• calculating SEEC for at least 20 days;
• determining statistical parameters for the primary SEEC set of a fit system.

With a correctly configured simulation model and the statistical parameters of a set of
ξPV coefficients for a given PV system in a state of fitness, the diagnostic process will be
as follows:

• downloading data recorded by the inverter and calculating daily actual energy Er
generated by a fit PV system over a period of the last several days;

• downloading data recorded by the weather station for the same time period and
calculating daily theoretical energy Et for the PV system;

• calculating SEEC for the studied time period;
• diagnostic inference based on comparing SEEC sets from a current test and an SEEC

set from the primary test for a fit system;
• assessing PV system state and diagnosis credibility.

The correct functioning of the assumed diagnostic procedure was verified based on
experimental studies involving two photovoltaic micro-systems.

The first studied PV micro-system (I-1) comprised 11 string-connected solar modules
with an active area of 1.625 m2 each. According to the data of the PV cell manufacturer,
the maximum power under STC conditions is 325 W, with an efficiency of 20%, and
the maximum power temperature coefficient is—0.36%/◦C. PV cells were installed on a
building roof with an inclination angle relative to the ground of 26◦ and an azimuth of 15◦.
The geographical location of the system was: 52.63, 19.99.

The second PV micro-system (I-2) consisted of two strings, with only one of them used
for the analyses as part of this article, since the second one was subject to periodic shading.
The studied string comprised 10 modules with an active area of 1.823 m2 each. According
to the data of the PV cell manufacturer, the maximum power under STC conditions is 370 W,
with an efficiency of 20.3%, and the maximum power temperature coefficient is –0.35%/◦C.
PV cells were installed on a building roof with an inclination angle relative to the ground
of 40◦ and an azimuth of 15◦. The geographical location of the system was: 51.34, 21.90.

An overview of both systems can be seen in Figure 10.
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The inverter data for actual power were downloaded from databases made available
as standard by inverter manufacturers. In turn, the weather parameters required by the
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theoretical power simulation model were measured in direct proximity to the studied
systems [63,64], as shown in Figure 11.
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The first stage for each micro-system involved conducting tests aimed at determining
a sufficiently numerous primary SEEC set for a fit system.

The tests involving the I-1 system lasted for 36 days. The results are presented in
Table 3.

Table 3. Test results for a fit I-1 PV system.

Date Et [kWh] Er [kWh] ξPV = Er/Et [%]

22 May 2022 11.96 10.95 91.58
23 May 2022 18.01 18.54 102.93
24 May 2022 10.56 9.75 92.40
25 May 2022 3.52 3.85 109.32
26 May 2022 14.74 14.61 99.10
27 May 2022 11.51 11.06 96.11
28 May 2022 10.98 11.61 105.69
29 May 2022 10.90 10.51 96.42
30 May 2022 8.84 8.46 95.73
31 May 2022 18.53 19.77 106.69
1 June 2022 13.02 13.18 101.24
2 June 2022 13.68 13.86 101.28
3 June 2022 20.61 20.79 100.92
4 June 2022 18.17 17.62 96.96
5 June 2022 26.04 26.10 100.21
6 June 2022 20.64 19.91 96.47
7 June 2022 15.44 15.78 102.15
8 June 2022 10.63 10.00 94.08
9 June 2022 14.89 14.78 99.24
10 June 2022 8.73 8.85 101.38
11 June 2022 20.50 19.82 96.71
12 June 2022 17.04 16.65 97.67
13 June 2022 3.69 3.63 98.51
14 June 2022 14.14 12.29 86.92
15 June 2022 16.65 15.82 95.03

14 August 2022 15.32 15.44 100.77
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Table 3. Cont.

Date Et [kWh] Er [kWh] ξPV = Er/Et [%]

15 August 2022 13.08 12.76 97.52
16 August 2022 11.87 11.61 97.81
17 August 2022 9.79 9.87 100.80
18 August 2022 16.19 15.96 98.58
19 August 2022 16.92 16.91 99.93
20 August 2022 9.97 9.51 95.42
21 August 2022 11.06 10.92 98.73
22 August 2022 9.03 9.10 100.78
23 August 2022 9.80 9.42 96.16

Standardized energy efficiency coefficient ξPV values can be found in the last column of
Table 3 and constitute the primary SEEC set for the fit I-1 system. The set of 36 values should
be treated as a measurement sample that satisfies the conditions for normal distribution
and is sufficient to determine the statistical parameters of sample mean µ1 = 98.66% and
standard deviation σ1 = 4.14%.

Similar tests were executed for the I-2 PV system, for a period of 35 days. The results
are presented in Table 4.

Table 4. Test results for a fit I-2 PV system.

Date Et [kWh] Er [kWh] ξPV = Er/Et [%]

14 March 2023 13.47 13.04 96.77
16 March 2023 13.61 12.90 94.75
19 March 2023 18.98 18.21 95.92
20 March 2023 12.24 12.83 104.87
21 March 2023 3.79 3.77 99.54
22 March 2023 13.83 13.87 100.34
23 March 2023 8.81 8.56 97.15
24 March 2023 9.10 9.36 102.84
25 March 2023 8.33 7.92 95.06
26 March 2023 11.42 11.11 97.29
27 March 2023 3.34 3.27 97.90
28 March 2023 7.84 7.19 91.64
29 March 2023 26.45 26.21 99.09
30 March 2023 7.40 7.26 98.08
31 March 2023 10.11 9.81 96.98
1 April 2023 8.96 8.98 100.15
2 April 2023 2.95 2.99 101.05
3 April 2023 10.87 10.04 92.41
4 April 2023 11.90 11.43 96.09
5 April 2023 10.48 10.18 97.12
7 April 2023 4.90 4.92 100.29
8 April 2023 16.08 16.51 102.65
9 April 2023 12.47 12.37 99.25

10 April 2023 18.63 19.05 102.27
11 April 2023 19.96 20.20 101.17
12 April 2023 16.58 16.59 100.07
13 April 2023 25.61 26.01 101.54
14 April 2023 18.67 18.77 100.53
15 April 2023 11.74 11.59 98.73
16 April 2023 18.08 18.18 100.56
17 April 2023 6.24 6.18 98.98
18 April 2023 9.84 9.90 100.57
19 April 2023 8.69 8.78 101.08
20 April 2023 19.74 19.67 99.62
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The last column in Table 4 contains data that constitute a primary set of SEEC for the
I-2 fit system. The set of 35 values also satisfies conditions for normal distribution and is
sufficient to determine statistical parameters of: sample mean µ2 = 98.90% and standard
deviation σ2 = 2.81%.

In theory, mean values should amount to 100% for a perfectly configured simulation
model, fit PV systems and the absence of measurement sensor biases. However, please
note the initially adopted assumption that diagnosis is remotely conducted, with minimum
costs and under conditions that can be implemented in actual existing systems. Therefore,
the technical and structural parameters provided by the manufacturer and measurement
data from an inverter and a simple weather station are employed. The mean value can
be particularly impacted by PV cell soiling, the PV cell ageing process, minor overestima-
tion of efficiency under STD conditions by the manufacturer, inverter delay in tracking
the MPP (maximum power point) for dynamically variable insolation and measurement
sensor biases.

In turn, measurement uncertainty and the associated standard deviation are affected
by most of the factors described in Section 3. Bear in mind that the dominant factor is
the variability of weather conditions. The measurements involved radiation intensity,
temperature and wind speed, with other atmospheric parameters (e.g., particulate matter
level, precipitation, pressure) also having a certain impact. In addition, the solar irradiance
sensor had slightly different characteristics than PV cells.

Nonetheless, the obtained SEEC sets for the studied PV systems indicate a high
potential [58] for diagnosing deterioration of their energy efficiency. This can be seen
in the probability density function waveforms shown in Figure 12. Because the mean
values of both primary sets are similar, the figures also demonstrate a distribution of
a combined primary set for both systems that contains 71 samples and has the follow-
ing normal distribution parameters: sample mean µ = 98.78% and standard deviation
σ = 3.55%.
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However, an illustrative graphic interpretation does not constitute sufficient proof,
therefore, the authors presented an analytical interpretation. Mean value confidence
intervals for a pre-set significance level constitute analysis grounds. The authors adopted a
basic significance level of α = 0.01; i.e., a confidence level of 0.99. The confidence intervals
for primary sets are shown in Table 5.
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Table 5. Confidence intervals for primary sets at a significance level of α = 0.01.

Installation PV Sample Mean [%] Standard Deviation [%]
Confidence Interval [%]

Minimum Maximum

I-1 98.66 4.14 96.88 100.4
I-2 98.90 2.81 97.68 100.1

I-1 and I-2 98.78 3.55 97.69 99.87

The statistical data for primary sets indicate a possible, highly reliable diagnosis of
energy efficiency deterioration of already 2%.

The theoretical analysis of the possible diagnosis of energy efficiency deterioration
was verified through experimental tests. The authors simulated a failure of one or two
PV cells within a string, by tightly covering them with a material impervious to sunlight.
As a result, the covered modules were fully deactivated, and the current flowed through
bypass diodes.

Tests involving 17 days for one unfit cell and 7 days for two unfit cells were conducted
for the I-1 system. The results are shown in Tables 6 and 7.

Table 6. Test results for the I-1 PV system with one unfit module.

Date Et [kWh] Er [kWh] ξPV = Er/Et [%]

17 June 2022 19.19 17.05 88.84
18 June 2022 21.04 17.59 83.63
19 June 2022 24.48 21.24 86.75
20 June 2022 4.64 4.18 90.12
21 June 2022 12.09 10.57 87.43
22 June 2022 24.70 21.67 87.72
26 June 2022 26.09 22.71 87.05
27 June 2022 24.30 21.43 88.20
28 June 2022 18.33 15.74 85.87
29 June 2022 15.38 13.97 90.84
30 June 2022 23.05 20.51 89.01

27 August 2022 12.67 11.32 89.32
28 August 2022 11.88 10.80 90.95
29 August 2022 14.06 13.11 93.18
30 August 2022 5.17 4.51 87.21
31 August 2022 12.75 11.07 86.78

2 September 2022 12.41 11.16 89.87

Table 7. Test results for the I-1 PV system with two unfit modules.

Date Et [kWh] Er [kWh] ξPV = Er/Et [%]

23 June 2022 17.88 14.37 80.38
24 June 2022 24.78 19.40 78.29
25 June 2022 26.28 20.26 77.09

3 September 2022 19.23 15.20 79.05
5 September 2022 19.14 15.56 81.28
6 September 2022 20.23 16.10 79.59
7 September 2022 21.11 16.65 78.87

The respective statistical parameters are sample mean µ11 = 88.40% and standard
deviation σ11 = 2.18%.

The respective statistical parameters are sample mean µ12 = 79.22% and standard
deviation σ12 = 1.27%.

Thirteen-day tests for only one unfit cell were conducted for the I-2 system. The results
are shown in Table 8.
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Table 8. Test results for the I-2 PV system with one unfit module.

Date Et [kWh] Er [kWh] ξPV = Er/Et [%]

23 April 2023 25.03 23.01 91.91
24 April 2023 21.51 19.98 92.90
26 April 2023 12.25 11.48 93.79
27 April 2023 12.81 11.01 85.94
28 April 2023 17.56 15.49 88.25
29 April 2023 21.81 18.43 84.52
30 April 2023 19.84 16.76 84.49
1 May 2023 27.92 24.15 86.49
2 May 2023 17.63 15.86 89.94
3 May 2023 14.12 13.07 92.60
4 May 2023 27.80 24.29 87.37
5 May 2023 16.60 14.56 87.69
6 May 2023 9.97 8.68 87.03

The respective statistical parameters are sample mean µ21 = 88.69% and standard
deviation σ21 = 3.09%.

The confidence intervals for SEEC sets with a significance level of 0.01 were determined
for systems with one or two unfit PV cells. The confidence intervals are compared in Table 9
and presented in graphic form in Figure 13.

Table 9. Confidence intervals for primary sets at a significance level of α = 0.01.

Installation PV Sample Mean [%] Standard
Deviation [%]

Confidence Interval [%]

Minimum Maximum

I-1 98.66 4.14 96.88 100.4
I-11 88.40 2.18 87.04 89.76
I-12 79.22 1.27 77.98 80.46
I-2 98.90 2.81 97.68 100.1
I-21 88.69 3.09 86.48 90.9

I-1 and I-2 98.78 3.55 97.69 99.87
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Figure 13 contains confidence intervals for the following cases:

• I-1—PV system No. 1, fit;
• I-11—system No. 1 with one unfit PV cell;
• I-12—system No. 1 with two unfit PV cells;
• I-2—PV system No. 2, fit;
• I-21—system No. 2 with one unfit PV cell;
• I-1 and I-2—combined primary sets for both PV systems.
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Based on the data from Table 9 and Figure 13, it can be seen that the confidence levels
for systems with unfit PV cells are fully disjointed from confidence intervals for the fit
systems. This indicates a possibility of diagnosing a malfunction that involves a failure of
one PV cell.

The shown data represent sets with a sample population of at least 11. This is of little
significance in the case of primary sets for a fit system, since it is assumed that this will be a
one-off test at the initial stage of a system’s operation. Furthermore, in the case of systems
permanently fitted with weather stations, the SEEC will be systematically calculated and
data from the entire PV system operation period can be employed within the diagnostic
process. However, when diagnosing PV systems using mobile weather stations, it is
recommended for the test duration to be as short as possible in order to minimize costs.
The diagnosis duration expressed in days will be responsible for the sample population.

Therefore, the authors analysed data for systems with one unfit PV cell, which are
included in Tables 6 and 8. All possible subsets of three consecutive samples were consid-
ered, and confidence intervals with a significance level of 0.01 were determined for them.
Extreme cases for both systems are shown in Table 10 and Figure 14.

Table 10. Confidence levels for extreme cases of three-element SEEC subsets.

Installation PV Sample Mean [%] Standard
Deviation [%]

Confidence Interval [%]

Minimum Maximum

I-1 98.66 4.14 96.88 100.40
I-1 min 86.83 3.24 82.01 91.65
I-1 max 90.45 3.01 85.97 94.93

I-2 98.90 2.81 97.68 100.10
I-2 min 85.75 2.16 82.54 88.96
I-2 max 90.88 4.30 84.49 97.27
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Figure 14 contains confidence intervals for the following cases:

• I-1—PV system No. 1, fit;
• I-1 min—three-element subset of results for system No. 1 with one unfit PV cell, with

the lowest initial confidence interval value;
• I-1 max—three-element subset of results for system No. 1 with one unfit PV cell, with

the highest final confidence interval value;
• I-2—PV system No. 2, fit;
• I-2 min—three-element subset of results for system No. 2 with one unfit PV cell, with

the lowest initial confidence interval value;
• I-1 max—three-element subset of results for system No. 2 with one unfit PV cell, with

the highest final confidence interval value.
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Based on the data from Table 10 and Figure 14, it can be seen that the confidence
intervals for any subset of three consecutive SEEC samples for systems with one unfit
PV cell are disjointed from the confidence levels for fit systems. This evidences that even
three-day measurements enable a highly credible diagnosis of a malfunction that involves
a functional failure of one PV cell.

6. Summary and Conclusions

The article presents an original mathematical model that describes the PV system
power waveform based on measured meteorological values, as well as structural and
technical data. The high conformity of simulated waveforms with power waveforms
recorded for three actual PV systems differing in structural parameters and geographical
location was also demonstrated.

A standardized energy efficiency coefficient was developed based on the mathematical
model. Then, the daily (diurnal) SEEC was utilized as a diagnostic parameter for diag-
nosing failures of individual cells in the PV system or other failures leading to efficiency
deterioration. To verify the diagnostic capabilities based on SEEC, the authors conducted
tests involving two micro-systems with different parameters and geographical locations.

The conducted analysis of measurement results and conducted calculations enables
drawing the following conclusions:

1. It was confirmed that the functional mathematical model of a photovoltaic module
generates results consistent with the energy yield results obtained from an actual PV
system. This conformity is statistically confirmed for a significance level of α = 0.01.

2. The SEEC value, which is the quotient of actually generated energy and energy
calculated based on the generation process simulation model, taking into account en-
vironmental and weather conditions, is diagnostically sensitive. This means that this
value can be treated as a diagnostic signal that carries information on the functional
state of a PV system.

3. It was confirmed that SEEC diagnostic signal value sets exhibit statistically significant
differences, depending on the PV system functional state.

4. The described experiment involved testing a PV system in a state of full fitness and
in two states of incomplete functional fitness. States of incomplete fitness involved
isolating light falling on one or two PV cells. This physically means simulating a
failure. The authors identified a sensitivity of the proposed diagnostic signal value
to such malfunctions. It is sufficient from the perspective of a system user and
diagnostics specialist.

5. The test significance level employed in the analysis above (α = 0.01) means that the
maximum error of a statement that the compared mean value confidence levels do
not differ (when in reality they are significantly different), at 1%.

6. The conducted tests studying the sensitivity of SEEC values to a change in PV system
state as a function of the set population indicate that a state change can be credibly
already inferred with a set of three readings (Figure 14).

The presented diagnostic procedure, being implemented in the form of a computer
app, can be employed in PV micro-system monitoring centres. The occurrence of reduced
PV system energy efficiency can be identified with a high level of credibility based on
mean SEEC values calculated for at least three-day remote measurements. It will enable
shortening the time from the occurrence of a PV malfunction until its detection, and hence,
limiting energy losses. The application of the described SEEC determination model and the
proposed diagnostic procedure enables changing the PV system maintenance type—from
servicing by operation time to servicing by current condition [65].

The diagnosis method described in the article, which is based on the diurnal SEEC, is
characterized by its remote data acquisition ability, low equipment cost (with only a basis
weather station required), the relatively short time needed to determine a diagnosis and
high reliability. Diagnosis initiation requires introducing detailed technical and structural
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parameters, but it is also possible to automatically download them from the management
system related to a given PV system.

Referring to the methods based on other symptoms, one can infer that:

• methods based on thermal imaging require relatively expensive cameras and do not
offer the possibility to assess thermal effectiveness, but enable diagnosing other defect
types; e.g., hot spots;

• methods based on artificial intelligence usually require a relatively long learning time
but the diagnosis credibility in the case of high weather variability is problematic;

• methods utilizing statistical analysis may have reduced diagnosis credibility in the
case of high weather variability;

• methods based on comparing adjacent chains exhibit low effectiveness in diagnosing
micro-systems due to a frequent absence of close proximity to other PV systems.

Therefore, the SEEC-based diagnosis proposed by the authors comes with great poten-
tial application for remote PV micro-system condition monitoring.
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