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Abstract: This article presents a planar transformer design and optimization method for high power
density on-board chargers (OBCs) utilized in electric vehicles (EVs). Owing to considerations of
electrical safety, OBCs require an isolated converter, leading to a substantial increase in volume due
to the inclusion of a transformer. To address this issue and achieve high power density, a planar
transformer is used, and an optimized design method is proposed for pattern arrangement, width,
and core shape. The feasibility of the design is verified through the development of a 3.3 kW OBC
prototype. Consequently, when compared to conventional transformers, the design method in this
article results in a 27% reduction in the transformer’s height and a 20% reduction in its overall volume.
This reduction is advantageous for meeting the requirements of high power density OBCs.

Keywords: electric vehicle; high power density; LLC resonant converter; on-board charger;
planar transformer

1. Introduction

Nowadays, nations worldwide are strongly supporting research activity towards
hybrid electric propulsion and renewable fuels both to decrease dependency on fossil fuels
and to reduce dangerous air pollutants [1]. Among these, the field in which the most
research is being conducted is automobiles. Recently, demand for electric vehicles (EVs)
has been increasing because they have the advantage of higher energy conversion efficiency
and lower greenhouse gas emissions than internal combustion engine-powered vehicles.
There are many areas of research on EVs, including motors, autonomous driving, charging,
and batteries. Among these, on-board chargers (OBCs) take an important role for battery
charging in EVs, and to date, various circuit topologies and control algorithms have been
studied to achieve reliable operation and high efficiency of OBCs [2–10]. Recently, with the
aid of high switching frequency characteristics of wide band gap (WBG) devices, such as
SiC and GaN, power density has been dramatically enhanced to over 4 kW/L [11–15]. As
illustrated in Figure 1, a typical single-phase OBC comprises a power-factor correction (PFC)
circuit and DC–DC converter. The DC–DC converter performs battery charging control
while satisfying electrical isolation conditions. Among the various DC–DC converter
topologies, LLC resonant converters have recently been widely utilized as strong candidates
for high power density OBCs owing to the absence of an output filter [11–17]. In order to
maximize the advantages of LLC converters, special attention should be paid to reducing
the size of high-frequency transformers, and this leads to the design and development of
planar-type transformers [16–22]. A planar transformer can achieve a low-profile design
because the windings can be implemented inside a printed circuit board (PCB). However,
they inherently generate parasitic capacitance, which can cause output voltage distortion,
increased loss, and electromagnetic interference (EMI) [23].
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Figure 1. Single-phase OBC system with planar transformer.

Therefore, previous planar transformer studies have focused on the minimization of
the parasitic capacitance via the PCB pattern arrangement [10,18–23] and the control and
utilization of the parasitic capacitance [24–26]. Various core shapes and matrix configu-
rations with fractional turns for current distribution have also been researched [22–30].
In addition, recent studies applying planar transformers to achieve a high OBC power
density have not addressed the optimal design of planar transformers [5,31,32]. When
planar transformers are designed, insulation gaps should be installed between the multiple
layers of the PCB to ensure insulation, resulting in an increase in the core window area. In
the case of a transformer core with low height, the required area increases. Previous studies
on planar transformer design were conducted with the goal of achieving high efficiency or
improving performance rather than increasing power density.

In this paper, each design parameter is analyzed to achieve the minimum volume
of the planar transformer to achieve high power density. Additionally, a design guide is
proposed that allows for achieving high power density using a single PCB rather than using
multiple PCBs. For this purpose, planar transformers are analyzed in detail in terms of pat-
tern arrangement, width, core shape, size, and heat dissipation. In the pattern arrangement,
the parasitic capacitance according to the arrangement is analyzed using magnetic analysis
simulation, and the effect on the system is confirmed via actual fabrication. The optimal
design is proposed considering the pattern width, core shape, and size considering heat
dissipation conditions and performance. The validity of the proposed design guidelines
is experimentally verified using a 3.3 kW LLC converter prototype for an OBC. The re-
mainder of this paper is organized as follows: Section 2 proposes the system configuration,
specifications, and optimal design method for planar transformers. Section 3 verifies the
validity via experimental results, and Section 4 concludes the paper.

2. Design of the Planar Transformer
2.1. Initial Design of Planar Transformer

The specifications of the resonant converter and planar transformer parameters
adopted in this study are summarized in Tables 1 and 2. Similar to general Litz wire
transformers, planar transformers first select the core size using the WaAc product of (1),
which represents the transformer capacity.

Table 1. Specification of the LLC resonant converter.

Parameters Value

DC link voltage, Vdc 500 V
Battery voltage, Vbatt 440–820 V

Rated output power, Po 3.3 kW
Switching frequency, fsw 200–450 kHz
Resonant frequency, fres 300 kHz
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Table 2. Parameters of the LLC resonant converter.

Parameters Value

Magnetizing inductance, Lm 79.3 µH
Leakage inductance, Lr 25.8 µH
Resonant capacitor, Cr 10.91 nF

Turns ratio, n 10:12

Wa Ac=
PoutDcma

KtBmax fmax
, (1)

Pout is the output, Dcma is the current density, and Kt is a topology constant. The full-
bridge structure uses a value of 0.0014, where Bmax is the maximum magnetic flux density,
and f max is the maximum operating frequency. Furthermore, the number of primary
and secondary windings is calculated such that Bmax satisfies 300 mT via the effective
cross-sectional area Ac of the core selected using (2) [33].

Bmax=
Lm ILm,peak

NAc
, (2)

Finally, when the number of windings on the primary and secondary sides is calcu-
lated, an air gap is obtained to match the transformer parameters.

The basic planar core shape is a PEE-shaped core that is easy to manufacture, and the
initial design utilizes a PEE 5821 core made of Hitachi’s ML27D material that satisfies the
WaAc design conditions. For the number of transformer turns, the primary and secondary
windings are designed as two four-layer PCBs. The current density of the initial PCB
pattern is designed to be 30–40 A/mm2, and the initial planar transformer is shown in
Figure 2. In addition, because planar transformers have low leakage inductance Lr, a
separate inductor is added to satisfy the resonance parameter.
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Figure 2. Initial designed planar transformer.

2.2. Pattern Design Considering Parasitic Capacitance

Because the planar transformer has multiple layers of thin copper plates of PCB with turns,
various studies on parasitic capacitance in the PCB pattern have been conducted [8,16–20].
Therefore, the operating characteristics of the planar transformer of the manufactured LLC
converter are examined according to the pattern arrangement. Figure 3 illustrates a conceptual
diagram of the parasitic capacitance according to the pattern arrangement inside the planar
transformer. Parasitic capacitor components are divided into the intra-winding capacitance
generated between the same side and the inter-winding capacitance generated between the
primary and secondary sides.

In this study, because the number of turns on the primary and secondary sides is not
arranged to alternate, the inter-winding capacitance is very small, and the intra-winding
capacitances on the primary and secondary sides are equalized with the equivalent ca-
pacitance Ceq, as shown in Figure 4. In this case, if the parasitic capacitance component
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increases, the resonance curve of the LLC converter becomes distorted as shown in Figure 5,
making it difficult to control the desired output power [10].
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The pattern layout of the initially designed planar transformer is shown in Figure 6a
with maximum overlap between the patterns, and is illustrated in Figure 6b so that the
interlayer patterns overlap to the minimum to reduce the parasitic capacitance. The
parasitic capacitance is measured using JMAG, a finite element method (FEM) analysis
simulation tool.

The simulation results are presented in Figure 7 and Table 3. When the patterns are
arranged without overlapping, it can be observed that the parasitic capacitance is the
smallest. Based on these results, planar transformers with patterns are manufactured under
various conditions.
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Table 3. Parasitic capacitance simulation results according to PCB pattern arrangement.

Pattern Arrangement Maximum Capacitance Minimum Capacitance

Maximize overlap 8.14 pF 0.77 pF
Minimize overlap 2.70 pF 0.68 pF

Figures 8 and 9 illustrate planar transformer windings under various manufacturing
conditions and their internal layouts. Case 1 considers the maximum pattern overlap. Case
2 minimizes the overlap of each layer, and Case 3 allows an intermediate overlap compared
with Cases 1 and 2. To measure the parasitic capacitance of the manufactured PCB pattern
illustrated in Figure 9, the resonance frequency is checked using an LCR meter, and the
results are illustrated in Figure 10. Table 4 presents the equivalent parasitic capacitance Ceq
of each PCB calculated using the measured resonance frequency.
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Figure 8. PCB internal pattern layout under various conditions. (a) Maximum pattern overlap.
(b) Minimum pattern overlap. (c) Intermediate pattern overlap.
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Figure 9. Manufactured PCBs under various conditions. (a) Maximum pattern overlap. (b) Minimum
pattern overlap. (c) Intermediate pattern overlap.
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Figure 10. Impedance characteristic curve according to frequency of various PCBs. (a) Maximum
pattern overlap. (b) Minimum pattern overlap. (c) Intermediate pattern overlap.

Table 4. Parasitic capacitance measurement results according to PCB pattern arrangement.

Case Lm fres Ceq

Case 1 78.3 µH 0.7 MHz 676 pF
Case 2 74.2 µH 1.82 MHz 103 pF
Case 3 74.0 µH 1.88 MHz 96.7 pF

Figure 11 illustrates the voltage gain curve of the LLC converter by reflecting the para-
sitic capacitance values calculated in Table 4. Accordingly, although the size of the parasitic
capacitance affects the voltage gain curve of the LLC converter, the change in gain is negligi-
ble within the operating range of use; thus, the issue is verified via actual experiments.
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Figure 12. Experimental setup of the LLC resonant converter with planar transformer.

Table 5. Operation verification experimental condition.

Parameters Value

DC link voltage, Vdc 500 V
Battery voltage, Vbatt 600 V

Rated output power, Po 3.3 kW
Resonant frequency, fres 300 kHz

Figure 13 illustrates the experimental waveforms and efficiencies of the conventional
Litz wire and planar transformers designed for each case. The following conclusions can
be drawn from the experimental results for each case:
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types. (a) Conventional Litz wire. (b) Case 1 planar transformer. (c) Case 2 planar transformer.
(d) Case 3 planar transformer.
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(1) When using a planar transformer, the efficiency is reduced by approximately 1%
compared to the conventional Litz wire transformer.

(2) The number of turns of a planar transformer is implemented through copper on
the PCB, so optimizing the pattern width is important for PCB heat dissipation and
realizing the number of turns.

(3) Because the resonant frequency caused by the parasitic capacitance of the PCB pattern
differs significantly from the operating frequency in this system, it does not have a
significant effect on the overall operation.

(4) Because the difference in efficiency and operation according to the parasitic capac-
itance of the planar transformer of the LLC converter is insignificant, as in Case
1, which minimizes the required window area of the core, it is advantageous for
achieving a high power density.

Therefore, in the remainder of this study, the pattern arrangement is designed using
the Case 1 method to increase the power density.

2.3. Selection of Planar Core Shape

The core shape determines the pattern structure and overall volume of the planar
transformer. Commercially utilized planar transformer cores include an E-shaped PEE
core and a UI core; in this study, an additional core shape called an H core is proposed to
increase the power density. The shape and characteristics of each core shape are presented
in Figure 14 and Table 6, respectively.
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Figure 14. Various cores for the planar transformer. (a) PEE core. (b) UI core. (c) H core.

Table 6. Characteristics of planar transformer core shape.

Planar Transformer PEE Core UI Core H Core

Advantage Low height Wide pattern heat dissipation area Low height
Narrow area required Implementing a large number of turns Minimum volume

Disadvantage Narrow pattern heat dissipation area Wide area required Difficult pattern heat dissipation
Implementing a large number of turns High height Implementing a large number of turns

The PEE core can be implemented with a low profile; however, if a large number of
turns are required, two or more PCBs must be utilized. In this case, heat dissipation of
the planar transformer pattern becomes difficult. The UI core can implement the number
of turns with two core pillars; therefore, the system can be implemented with a single
PCB compared with the PEE core, and the current density can be increased owing to the
large heat dissipation area. However, because the height of the core doubles compared
with that of the PEE core according to the effective cross-sectional area, and the required
area also increases, it is inefficient in terms of volume. The H core is a structure that can
further reduce the height while reducing the PCB area exposed to the outside of the PEE
core. However, heat dissipation is difficult because the entire PCB is located inside the core.
Figure 15 and Table 7 present the manufactured planar transformers and their parameters,
respectively. All three planar transformers have the same effective cross-sectional area, and
the operation is verified by manufacturing a PCB according to each core shape.
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Figure 15. Planar transformers manufactured in various core shape. (a) PEE core. (b) UI core. (c) H core.

Table 7. Specifications for each planar transformer core shape.

Planar Transformer PEE Core UI Core H Core

Size [W × D × H] [mm] 60 × 100 × 22 96 × 55 × 41 64 × 74 × 14
Area 6000 mm2 5280 mm2 4992 mm2

Volume 132,000 mm3 216,480 mm3 69,888 mm3

Magnetizing inductance 78.32 µH 78.90 µH 77.56 µH
Leakage inductance 3.98 µH 0.73 µH 4.67 µH

Figure 16 illustrates the experimental results, system efficiency, and maximum PCB
temperature. Accordingly, a slight difference in efficiency occurs depending on the core
shape; however, the PCB temperature difference occurs the most. Under air-cooling
conditions, it was confirmed that the PEE core increased to 112 ◦C, the UI core increased
to 72 ◦C with a large dissipation area, and the H core did not dissipate heat inside the
PCB; therefore, it increased to 133 ◦C. In general, for stable operation of the system, the
temperature of the PCB is limited to 110 ◦C. Therefore, the PEE and UI cores, excluding the
H core, are selected as cores suitable for stable operation. Consequently, the core size must
be determined for an optimal design. To achieve this, the width and number of turns of the
pattern must be determined before the pattern can be selected. The width of the pattern is
determined as described in the following section.
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Figure 16. Experimental waveforms and efficiency of the LLC converter with different transformer
core types. (a) PEE core. (b) UI core. (c) H core.

2.4. Design of Pattern Width

In planar transformers, the width of the printed PCB pattern determines the size and
current density of the window area of the core. As the width of the pattern increases, the
size of the window area of the required core and overall volume increases. An optimal
current-density design for the PCB pattern is required to design the optimal power density
of the planar transformer. Accordingly, a PCB pattern with various current densities is
manufactured to measure the temperature during actual operation to select an optimal
pattern width. Figure 17 illustrates the system for the planar transformer water cooling.
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Figure 17. Planar transformer system with water cooling. (a) Planar transformer. (b) Bottom cooling
water passage.

In the previous section, the pattern width was selected based on the UI core shape
because it has a large heat dissipation area. Table 8 presents the current densities based
on the copper thickness and pattern width used in the PCB. Figure 18 illustrates the PCBs
designed based on pattern width. The experiment is conducted under the experimental
conditions of Table 5, coolant temperature is adjusted to 25 ◦C, and finally, the pattern
width is selected considering the 65 ◦C coolant temperature of the actual OBC.

Table 8. Current density according to pattern width.

Parameters Value

Current 9.8 Arms
Thickness 3 oz

Width 2 mm 2.5 mm 3 mm 4 mm
Current density 46.3 A/mm2 37 A/mm2 30.9 A/mm2 23.1 A/mm2
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pattern over time. According to the experimental results, if the current density is more than
30 A/mm2, the pattern temperature rises more than 110 ◦C when the pattern temperature
is considered the actual coolant temperature; therefore, the width of the pattern is finally
selected as 3 mm, which is the current density 30 A/mm2. In addition, as illustrated in
Figure 19, because the temperature of the core is very high, it is necessary to increase Ac for
an optimal design.
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Figure 19. Thermal image of the planar transformer. (a) 3 oz/2 mm. (b) 3 oz/2.5 mm. (c) 3 oz/3 mm.
(d) 3 oz/4 mm.
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Figure 20. Transformer pattern temperature measurement results over time. (a) 3 oz/2 mm.
(b) 3 oz/2.5 mm. (c) 3 oz/3 mm. (d) 3 oz/4 mm.

2.5. Design of Core Dimension

Because the core shape, pattern arrangement, width, etc. have been determined via the
previous process, a core dimension design for increasing the power density is performed.
As explained in Section 2.4, because the core Ac is low, a large amount of heat is generated
in the core. Increasing Ac changes the number of turns and optimal core size. In this study,
when using the UI core, when Ac increases, the height is doubled compared to the PEE
core. Therefore, it is determined that it is limited to increasing Ae, and finally, the planar
transformer is designed using the PEE core. To reduce the loss of the existing core, Bmax
is lowered to 200 mT in (2), and the turn ratio is changed to 1 to facilitate variation in
the number of turns. Table 9 presents the required Ac calculation results according to the
number of turns under the Bmax 200 mT condition, and Table 10 presents the PCB spacing to
ensure insulation and distance from the core when manufacturing the planar transformer.
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Table 9. Effective area according to the number of turns.

Parameter Value

Np 4 turns 5 turns 6 turns 7 turns 8 turns 9 turns 10 turns
Ac 1250.0 mm2 1000.0 mm2 833.3 mm2 714.3 mm2 625.0 mm2 555.6 mm2 500.0 mm2

Table 10. Spacing distance conditions for planar transformer.

Parameters Value

Spacing distance between patterns, DP-P 0.6 mm
Spacing distance between pattern and core, DP-C 3 mm
Spacing distance between PCB and core, DPCB-C 1 mm

The PCB utilizes a single eight-layer PCB for heat dissipation, and the windings on the
primary and secondary sides are divided into four layers, respectively. For the width of the
pattern, the 3 mm selected in Section 2.4 is applied. The dimensions of the PEE core utilized
in the final design are illustrated in Figure 21. The PEE core is designed using (3)–(8) to
satisfy all of the above conditions.
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N1-Layer represents the number of turns per PCB layer, and the decimal point is rounded
up. WPCB represents the width of the actual PCB including the pattern width and PCB
separation distance as illustrated in Figure 22 and is calculated using (10).
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Figure 22. Parameters for planar transformer design.

In (11), k represents the horizontal-to-vertical ratio of the planar core. As k increases,
the area of the PCB exiting the core widens; thus, the PCB heat dissipation area increases.
In this study, k = 3 is selected via the experiments. Table 11 lists the PEE core planar
transformer design results according to the number of turns calculated based on (3)–(8),
and Figure 23 illustrates the area and volume analysis results based on Table 11. Finally, a
planar transformer is designed based on eight turns to minimize the area and volume of
the transformer while maintaining the pattern and core temperature at an operable level.

Table 11. Design results of PEE core parameters according to the number of turns.

Parameter Value

Np 4 5 6 7 8 9 10
Ac 1250.0 mm2 1000.0 mm2 833.3 mm2 714.3 mm2 625.0 mm2 555.6 mm2 500.0 mm2

A 96.6 mm 92.4 mm 85.8 mm 80.6 mm 76.4 mm 77.6 mm 74.8 mm
B 46.6 mm 40.6 mm 37.3 mm 34.7 mm 32.6 mm 29.6 mm 28.2 mm
C 32.4 mm 30.8 mm 28.6 mm 26.9 mm 25.5 mm 25.9 mm 25.0 mm
D 58.6 mm 59.9 mm 56.5 mm 53.9 mm 51.8 mm 56.0 mm 54.6 mm
E 38.6 mm 32.6 mm 29.3 mm 26.7 mm 24.6 mm 21.6 mm 20.2 mm
F 8 mm 8 mm 8 mm 8 mm 8 mm 8 mm 8 mm

Area 63 cm2 65 cm2 59 cm2 54 cm2 50 cm2 56 cm2 54 cm2

Volume 294 cm3 264 cm3 218 cm3 186 cm3 162 cm3 167 cm3 151 cm3
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3. Verification

The final system designed to verify the optimally designed planar transformer is
illustrated in Figure 24. The operation is verified until temperature saturation occurs under
the experimental conditions of a coolant temperature of 25 ◦C and a load of 3.3 kW. The
time-dependent temperature measurements, as illustrated in Figure 20, are depicted in
Figure 25. When compared to the existing temperature measurement results, it is evident
that the temperature remains constant for up to 30 min after operation. Furthermore, there is
no observable increase in pattern temperature attributed to the core. Finally, it is confirmed
that the pattern temperature of the planar transformer stabilizes at approximately 72 ◦C,
while the transformer core temperature stabilizes at approximately 89 ◦C.
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Figure 24. Optimally designed planar transformer. (a) 3D model. (b) Manufactured transformer.
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Figure 26 illustrates the operation waveform of the LLC converter for each battery
voltage. The results indicate no adverse effects from parasitic capacitance, and normal
operation is observed at each voltage level. This validates the feasibility of the final planar
transformer design, demonstrating a 27% reduction in height and a 20% reduction in
volume compared to the conventional PQ core transformer.
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Figure 26. Experimental waveforms and efficiency of the LLC converter according to the battery
voltage. (a) Vbatt = 440 V. (b) Vbatt = 600 V. (c) Vbatt = 820 V.
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4. Conclusions

Owing to the increasing demand for electric vehicles, the development of high power
density on-board chargers is imperative to enhance vehicle mileage and fuel efficiency. In
OBCs, DC–DC converters require the use of transformers for electrical safety reasons. Power
density can be augmented by employing planar transformers, and this study proposes a
method for designing such transformers.

For planar transformer design, analysis was conducted on pattern arrangement, pat-
tern width, core size, and shape selection. Through simulation and production of various
planar transformers, the planar transformer design method suitable for high power density
was proposed. The pattern arrangement was selected based on an analysis of the actual
operating frequency range and parasitic capacitance resonance frequency. The pattern
width was determined considering heat dissipation conditions and actual experiments, and
the final core shape and size were designed based on the previously selected parameters.
Through this approach, it was confirmed that compared to conventional transformers, it
was possible to reduce the height by 27% and the volume by 20%. To validate the feasibility
and performance of the final planar transformer design, experiments were conducted using
a prototype of the LLC converter for a 3.3 kW OBC.

The plan is to conduct experiments in the near future to confirm whether the high
power density planar transformer design method proposed in this study can be mounted
on an actual OBC. These experimental tests aim to verify the feasibility of implementing
the design proposed in this paper, thereby demonstrating the potential for developing a
high power density OBC by installing the planar transformer in the actual OBC.
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