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Abstract: Realising an ideal lithium-ion battery (LIB) cell characterised by entirely homogeneous
physical properties poses a significant, if not an impossible, challenge in LIB production. Even the
slightest deviation in a process parameter in its production leads to inhomogeneities and causes a
deviation in performance parameters of LIBs within the same batch. The greater the number and/or
intensity of inhomogeneities, the more they need to be avoided. Severe inhomogeneities (defects),
such as metal particle contamination, significantly impact the cell’s performance. Besides electrical
measurements, image-based measurement methods can be used to identify defects and, thus, ensure
the production quality and safety of LIBs. While the applicability of computed tomography (CT)
as an image-based measurement method for detecting defects has been proven, the limitations of
this method still need to be determined. In this study, a systematic analysis of the capabilities of
CT imaging was conducted. A multilayer pouch cell without an electrolyte was reassembled with
several defects on one of the middle anodes. To investigate the boundaries of CT, defects such as a
partial and complete removal of the coating, a cut, or a kink, as well as particle contaminations of
various sizes and materials (aluminium, copper, iron) were chosen. By comparing the CT images of
the cell using laser scanning microscope images of the defective anode, it could be proven that all
selected defects except the kink were detectable.

Keywords: inhomogeneity; defect detection; computed tomography; lithium-ion batteries; laser
scanning microscope

1. Introduction

The lithium-ion battery (LIB) cell performance at beginning-of-life (BOL) and during
its lifetime is highly dependent on the cell’s manufacturing process. Since battery cell
manufacturing can be out of the scope of battery system suppliers, incoming goods in-
spection is carried out in addition to the cell suppliers’ process quality supervision and
end-of-line testing. Due to long testing times and resulting costs, not all inspection methods
can be used for 100% of produced or incoming LIBs. Methods like computed tomography
(CT) imaging, which enables the non-destructive detection and investigation of inhomo-
geneities, can be carried out on a random basis. While several authors [1–12] have shown
the general applicability of CT imaging to detect manufacturing defects such as foreign
matter contamination (FMD) or anode–cathode misalignments, further investigations are
needed to determine the limits of defect detectability. The aim of this work is the controlled
reproduction of typical cell production defects in different gradations and the assessment
of detectability, with the help of CT imaging.
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1.1. Terminology of Inhomogeneities

In the literature, the terms inhomogeneity [13,14], defect [13,15], error [16], flaw [17,18],
imperfection [19–21], disparity [22] or impurity [15] are often assigned the same meaning.
In this work, the two terms inhomogeneity and defect (as a subset of inhomogeneities)
were used. A mixture of substances or a surface is inhomogeneous if there is an uneven
distribution of an observed property. This can be due to accumulations of particles [23] or
fluctuations in the surface quality [24]. Common to both examples is a gradual transition
of the observed property, such as a continuous increase in particle density or a wave crest
on uneven surfaces. The term defect appears in battery production when there is a discrete
transition from a desired to an undesired property rather than a gradual one.

According to this principle, an FMD, like a metal chip on the graphite surface, would
be a defect, and a deviation in the pore density of the graphite coating would be an
inhomogeneity. This approach allows a rough classification into defect and inhomogeneity.
However, some examples, such as a large pore in an otherwise uniform, small-pored coating
or a very large increase in the surface profile due to a kink, cannot be clearly classified. To
be able to distinguish between the two terms inhomogeneity and defect more clearly, two
definitions are introduced below and used in this paper.

Inhomogeneity: Inhomogeneities in battery cell components (e.g., electrode, separator,
electrolyte, case) describe all deviations in physical properties from a theoretically ideal
definition.

Defect: Defects are local inhomogeneities that differ significantly from their homoge-
neous surroundings due to their shape, size or intensity and usually have a significant
impact on the performance of the battery cell.

Figure 1 is intended to clarify both definitions. Defects, as a subset of inhomogeneities,
tend to have a stronger impact on cell quality. In general, it can be stated that the greater
the number and/or intensity of the inhomogeneities, the more the cell’s performance is
affected. Even the smallest deviation from a theoretically ideal property can be defined as
inhomogeneity. According to [22], inhomogeneities do not automatically lead to poor cell
quality, but the inevitable statistical distribution of process parameters causes cells from
the same batches to age differently [25–28]. Therefore, zero-defect manufacturing in battery
production would mean to produce exclusively high-quality cells but no theoretically ideal
cells.
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If the tolerance limits specified by the manufacturer for the considered properties of a
battery component are not met within a process step, the component leaves the process as
scrap (e.g., exceeding the number of divots per area after the coating process). Even though
the LIB component lies within the tolerance limits in all process steps, the quality of the
finished LIB will differ and can be classified as low, intermediate and high [29–31] due to
accumulations of minor deviations or non-critical inhomogeneities.
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1.2. Intrinsic Inhomogeneities

According to [25], inhomogeneities can be divided into intrinsic (occurrence: produc-
tion) and extrinsic inhomogeneities (occurrence: after production due to external influences
such as insufficient temperature management, voltage fluctuations or inhomogeneous cell
pressure). This paper refers to intrinsic inhomogeneities only.

Scrap or rejects emerge during the switch-on of production and operation [16]. In a
survey by Kehrer et al., 250 experts from industry and research voted independently on
which five process steps within battery production (electrode production, cell assembly,
formation and testing) cause the highest rejection. The most votes went to electrode
production, especially during coating (68%) followed by the cell assembly, especially the
stacking (44%) and electrolyte filling (40%). This evaluation can be backed by the review
of du Baret de Limé et al., who found metal contaminations and line defects which occur
during the coating as typical and significant intrinsic inhomogeneities [22].

Typical metal contaminations as a part of FMD are copper from the anode and alu-
minium particles from the cathode substrate, as well as iron, often combined with zirconium
or zinc mainly from machine abrasion. Positioned on the electrode’s surface, foreign parti-
cles can penetrate the separator in the assembled LIB and can cause higher self-discharge
rates or even short circuits and, therefore, lower the LIB performance and safety drasti-
cally [15,22,32,33].

Other implications of the existence of metal particles on or within the electrodes are
alloy formations with lithium and other parasitic reactions, resulting in a decrease in their
capacity and coulombic efficiency [34]. Metal contaminations are, therefore, a very critical
defect and must be detected during production.

Line defects can emerge as intrinsic and extrinsic inhomogeneities in many forms.
According to [13] line defects are stripe-like uncoated areas caused by obstructions in the
slot-die coater, causing severe capacity fades during cycling when occurring on the cathode.
In a review paper addressing the impact of defects, [22] added cracks as another form of
line defect. Cracks, as one of the most researched inhomogeneities [35–40], can be classified
into intergranular [37] and intragranular [35] cracks [38]. While intergranular cracks appear
along grain boundaries, such as mud cracks, intragranular cracks appear within the grains
of the active material and can be distinguished into bisects, micro-cracks, multi-prong,
prong and shatter cracks [41]. The majority of the named cracks are initiated during
production and become more severe during operation, especially at high voltages [35,41].

Other terms and types of elongated defects found in the literature are scratches,
streaks, stripes, kinks and tears [20,42–45]. Even though kinks mainly occur in the centre
of jelly rolls in winded cells due to volumetric changes in operation, their positioning is a
result of inhomogeneous core geometry [20,46]. Similarly, the bending of electrodes in the
production line (bending around rolls or shafts during handling) can cause delamination or
cracks due to tension on the inside and compression on the outside of the bent electrode [47].
Schilling et al. demonstrated the severe impact of when electrodes were bent on a radius
less than r = 1.5 mm and below.

Due to the simplicity of reproduction and their criticality, this paper will investigate
metal-particle contamination in different sizes and a variety of line defects. For the metal-
particle contamination, aluminium, iron and copper were investigated. The choices for
line defects were a completely uncoated stripe, a partially uncoated stripe with spallings
(small areas with fully removed coating), a scratch through the active material, a cut as a
simplified tear and an unfolded 90-degree kink around a sharp edge with a small diameter
(d = 1 mm) as a representation of high bending stress. These choices were also made due
to the impact on the electrical performance of the cell and their possible occurrence in
production [13,47]. Therefore, the detection of the defects is critical, to achieve safe and
well-performing cells.
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1.3. Measurement Methods

Two measurement approaches have been demonstrated to identify the inhomogeneities
mentioned above. Electrical measurement methods (EMMs) aim to identify defects by
their negative impact on electrical performance. In contrast, non-electrical measurement
methods (NEMMs) aim to directly identify defects based on changes in physical properties
of the LIBs due to the defects e.g., the geometry or material. The defects investigated in
this work are metal particles (copper, aluminium and iron) and line defects (partly and
fully uncoated strips, cut, tear and kink). Both their impact on the electrical performance
of the cell and the underlying geometrical and physical changes offer perspectives for
non-destructive identification or indication.

EMMs can indicate defects if cell properties substantially differ from the cell batch av-
erage. The impact of inhomogeneities on the electrical performance of battery cells has been
investigated [10,12,13,15,17,22,34,48]. Thus, EMMs with potential applications in battery
cell production and system assembly include a variety of methods such as self-discharge
measurements, capacity measurements, recording of open circuit voltage (OCV) curves,
differential voltage analysis (DVA) and incremental capacity analysis (ICA), internal resis-
tance testing based on alternating (AC-IR) and direct currents (DC-IR), and high-potential
(Hi-Pot) testing, as well as electrochemical impedance spectroscopy (EIS) [29,49–53]. An
overview of the measurement methods and their potential fields of application are shown
in Figure 2.
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tion of battery cells and battery system assembly [5,9,10,12,15,29,49–57].

Unfortunately, the identification and localisation of inhomogeneities based on EMMs
are usually complicated due to the variety of potential sources. However, several authors
have shown the ability of EMMs to detect specific defects. Roth et al. and Sazhin et al.
highlighted the potential of self-discharge measurements to identify short circuits, e.g.,
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caused by particle contamination and other small inhomogeneities [52,53]. An alternative
approach for the detection of FMD was shown by Pan et al. and is based on Hi-Pot test-
ing [51]. Ank et al. investigated the behaviour of coin cells with various inhomogeneities
(e.g., particle contamination, electrolyte and moisture deviations) [12]. The authors evalu-
ated the detection quality of the characterisation methods and concluded that DVA at low
currents (compared to capacitance screening, DC-IR, EIS and OCV tests) showed the high-
est robustness in detecting and distinguishing the investigated inhomogeneities. Besides
the potential for improvement regarding the detection of inhomogeneities via EMMs, such
as investigations on larger cell formats, the ability to localise inhomogeneities within an
LIB has not yet been shown.

NEMMs include image-based/optical inspections and dimension and weight tolerance
checks [12]. While EMMs can indicate the occurrence of inhomogeneities, image-based
methods can detect and localise inhomogeneities directly. Thus, they are widely used in the
electronics industry for in-line quality control and off-line analysis. Image-based inspection
methods applied to battery cells include widely used 2D X-ray and 3D X-ray or CT, neutron
imaging, scanning acoustic microscopy (SAM), current density imaging based on magnetic
fields, XRD (X-ray-diffraction) and XRD-CT [5,9,10,15,54–58]. These methods can be used
for non-destructive analysis, as the cell must not be opened for investigation [6,11]. Two-
dimensional X-ray and conventional CT imaging have already been applied to industrial
applications and rely on material-specific differences in X-ray absorption. CT scanners
for industrial applications are often based on a static X-ray source and detector while the
inspected object is rotated in the X-ray beam [6]. To improve the object’s magnification and
pixel resolution, the rotation axis is moved towards the X-ray source. As demonstrated by
Kruth et al., this may lead to blurring of the object [11].

X-ray-based methods have been used for the visualisation of inhomogeneities (e.g.,
particle contamination, the misalignment of the anode and cathode, tab burrs, delamina-
tion, electrode gapping and a non-uniform cathode thickness), electrolyte filling in fully
assembled cells and for quality assessment during cell manufacturing [5,10,15,55,56]. Gom
et al. investigated the main capabilities of 3D X-ray to evaluate batteries based on the
imaging technique. The authors summarised that micro- and macro-CT with a typical
resolution between 10 and 500 µm can be used to conduct cell- and module-assembly defect
analysis depending on the cell size and type. The analysis of electrodes (e.g., to characterise
the morphology or tortuosity of coatings) and particles are in the scope of technologies
with higher resolution (sub-micrometre and nanoscale X-ray microscopy) [5]. Due to the
limited probe size of technologies with higher resolution, the potential of micro-CT with a
lower resolution is further investigated in this work. It allows the non-destructive analysis
of complete battery cells (e.g., large prismatic and pouch cells) with a single scan. The
potential to identify defects with a single scan is beneficial as it does not require knowledge
of the exact location of the local defect prior to the CT scan. However, the visibility of
selected inhomogeneities (e.g., scratches, uncoated regions) and limitations of the method
for inhomogeneity detection (e.g., size and material of particles) still need to be determined.

2. Experimental
2.1. Cell Specifications

To analyse the limitations of CT imaging, the visibility of defects in a pouch cell was
investigated. The manipulated cell was a nickel manganese cobalt oxide/graphite pouch
cell without an electrolyte for better handling and transport to the CT imaging facilities.
As the electrolyte has a comparably low density, the impact of its absence on the visibility
of the defects was expected to be low. The cell was based on a z-folded stack of eight
anodes and seven cathodes. Anodes and cathodes were coated double-sided, except the
outer anodes, which were coated one-sided. The dimensions of the cell components are
summarised in Table 1.
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Table 1. Summary of anode and cathode dimensions and specifications.

Component Thickness
in µm

Dimensions
in mm × mm × mm

Anode (double-sided) 110.0
116 × 99 × 0.110Anode substrate 20.0

Anode coating 45.0

Cathode (double-sided) 115.0
115 × 98 × 0.115Cathode substrate 30.0

Cathode coating 42.5

2.2. Preparation and Manipulation of the Cell

For preparation of the cell, the pouch case was opened and disassembled. The stack
was separated from the positive and negative tabs for easier handling of the cell components.
The z-folded electrode–separator compound was unwound. After insertion of the defects,
laser scanning microscope (LSM) measurements were performed. The anode was placed
in its original position within the stack. After the manual reassembly, the cell got sealed
and evacuated.

As shown in Figure 3, several defects were added to the anode. The use of a template
increased the reproducibility of the insertion. To analyse the visibility of coating defects,
the active material of the predefined areas was partially and entirely removed. Due to the
low adhesive force, the graphite layer was easily removed using a spatula (Figure 3b). To
ensure that the substrate was not penetrated, the anode needed to be placed on a hard, even
and clean surface such as glass. To analyse if slight changes to the surface of the anode were
visible in the CT imaging, a second stripe with the spatula was scratched with reduced
pressure. The partially removed area showed parts with a reduced coating thickness due
to the removal and compression of the active material as well as the thin spallings. On
the right side of the electrode, the coating was scratched, cut and kinked. To induce a thin
scratch, the thin side of the spatula could be used (Figure 3c). For the cut, a razor blade was
used. The anode was bent around a defined edge with a small diameter (d = 1 mm) and
unfolded to recreate a kink.
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Several particles were inserted into the cell (Figure 3d) to analyse defects at the cell
level. Table 2 gives an overview of the particles regarding their material, estimated volume
and shape. While the 2.5D volumes of each contamination were measured (bottom structure
was estimated to be the lowest plane since it was not detectable from the top view), the 3D
volumes were approximated. The particle materials were aluminium, copper and iron and
each had a theoretical density of 2.70, 8.92 and 7.87 g/cm3, respectively. Each particle was
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fixated to the anode with instant adhesive to prevent movement of the particles during the
handling and evacuation of the cell.

Table 2. Inserted particles, material and size based on CT and LSM measurements.

No. Material Area (LSM)
(in 103 µm2)

Volume (2.5D)
(in 106 µm3)

Volume (3D)
(in 106 µm3) Shape

A1 Al 6951.02 738.02 139.02 Punched disk
A2 Al 1578.13 75.62 ~50.00 Unspecific (-)
A3 Al 687.12 96.74 ~50.00 Needle-shaped
A6 Al 408.86 45.80 ~30.00 Needle-shaped
A4 Al 304.06 34.91 ~28.00 -
A7 Al 107.67 8.25 ~8.00 -
A8 Al 100.40 9.18 ~5.00 -
A9 Al 99.32 5.75 ~5.00 -
A5 Al 82.88 5.13 ~2.00 -
F1 Fe 7322.46 857.80 732.25 Punched disk
F2 Fe 547.94 134.16 ~100 -
F7 Fe 547.87 31.63 ~28.00 Swarf cluster
F4 Fe 392.02 19.67 ~18.00 -
F9 Fe 177.56 18.47 ~16.00 Needle-shaped
F3 Fe 311.66 9.30 ~9.00 -
F8 Fe 90.57 6.63 ~6.00 -
F5 Fe 139.66 5.82 ~5.00 -

F11 Fe 93.37 5.03 ~4.50 -
F10 Fe 25.87 1.28 ~1.00 -
F6 Fe 12.95 0.55 ~0.50 -

F13 Fe 12.54 0.35 ~0.30 -
F14 Fe 5.03 0.09 ~0.08 -
C1 Co 7260.82 1119.88 217.82 Punched disk
C2 Co 927.96 100.69 ~100.00 -
C4 Co 434.54 39.59 ~28.00 -
C3 Co 679.53 28.49 ~25.00 -
C5 Co 371.86 15.04 ~13.00 Needle-shaped
C7 Co 310.15 16.26 ~13.00 Swarf cluster
C8 Co 162.46 16.36 ~13.00 -
C9 Co 102.34 8.06 ~7.00 -

C10 Co 9.72 0.30 ~0.25 -
C6 Co 9.60 0.09 ~0.08 -

2.3. CT, 2D X-Ray and LSM Measurements

The CT measurement was conducted with the device Metrotom 1500/225 kV by the
company Zeiss, and based on a single scan of the LIB. Analysis of the CT images was
performed using the software myVGL 3.5. The voxel resolution of the scan was 74 µm.
To ensure the comparability of the measurements, the same setup was used for the 2D
X-ray imaging of the probe. The contrast settings were manually adjusted to maximise the
visibility of the defects and remained unchanged during the investigation. For the LSM
measurements, the LSM VK-X250 and the VK analysing module by the company Keyence
were used. The LSM measurements were conducted in a glove box. For better visualisation,
the height magnification of the following LSM figures was individually adjusted between
×150 and ×1500.

3. Results and Discussion

In the following chapter, the CT measurements are compared with the LSM images
and a 2D X-ray image to analyse the visibility of the defects. Due to the scan resolution, it
is not possible to see a difference between the anode and cathode (Figure 4).
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Figure 4. (a) 3D CT representation of the analysed cell. (b) Position of section A-A. (c) Section of the
cell A-A to visualise the cell thickness.

3.1. Defects on Electrode Level

A comprehensive analysis was carried out on multiple defects on the electrode level,
including a fully and partially uncoated area, a scratch, a cut, a kink and metal particle
contaminations.

Figure 5 shows a section of the anode that was fully decoated and a second section that
was partly decoated. The edges of the uncoated stripe appear darker than the surrounding
area. As a result, a contrast between the uncoated stripe and the coated area of the anode is
visible. Dark edges indicate voids that result from a height difference between the coated
and uncoated anode areas. The partly uncoated areas are only visible due to spallings
caused by the preparation of the anode that allowed a localisation in the CT image. In the
LSM image, a clear difference between the partly decoated area and the original structure
of the anode is visible.
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Figure 5. (a) CT image of the position of the analysed area with fully (A) and partly (B) uncoated
stripe. (b) Detailed view of the area. (c) Side view of entirely decoated area. (d) Side view of partially
decoated area. (e–f) LSM images and profiles of the partially and fully decoated areas.

Figure 6 shows the section of the anode prepared with a scratch, a cut through both
the coating and substrate, and an area subject to high bending stress resulting in a kink.
While the visible defects (scratch and cut) appear darker, the bent area cannot be identified
in the CT image. In the LSM measurement, the kink is visible due to its shape before
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being flattened out in the assembled cell. Cracks or small areas of delamination due to
the bending stress are not visible with the utilised lenses (utilised lens: 50×; maximum
available zoom: 250×).
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In addition to defects placed on the anode as part of the study, grooves are visible dur-
ing CT investigation and create a wave-like pattern (Figure 7). These are also visible during
the preparation of the cell. This indicates that some minor changes in the coating (e.g.,
structure, thickness, homogeneity) may be detectable in the CT imaging. In contrast, other
changes remain undetected (e.g., partially removed coating in areas without spallings).
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3.2. Metal-Particle Contamination on Cell Level

The cell was contaminated with aluminium, copper and iron particles of different
sizes and shapes. Figure 8 shows the inserted aluminium particles.
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The contrast between the particle and the cell compound is comparatively low. How-
ever, the visibility is increased by the gap between the anode and cathode created by the
particle. This also contributes to the visibility of smaller particles, such as particle A8. Due
to the low resolution, it is not possible to identify the exact position of the particles (layer)
as a visual separation of the anode, cathode and separator is not possible.

The size of the inserted particles is listed in Table 2. To ensure comparability of the CT
analysis, the contrast settings remained unchanged during the study. The iron particles are
shown in Figure 9.
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Compared to the aluminium particles, the visibility of iron and copper particles
(Figure 10) is improved due to the higher difference in the grey value between the particle
and the surrounding cell. Even if particles are small (e.g., particles F5, C8), the visibility
is better compared with bigger particles made of aluminium (e.g., particle A2). Despite
limitations in the resolution, copper and iron contamination are clearly visible.
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3.3. Analysis of the Potential of CT Imaging

The potential of CT imaging to aid the identification of defects depends on the defect
type. Most defects can be identified and localised based on the CT images. Only the
sharp-bend and partly decoated areas without spallings remained undetectable under
the study conditions. An aspect that both defects had in common was that the changes
regarding neither the mass and density (impact on radiation absorption) nor the geometry
were high (below the CT resolution).

The impact of the resolution and density of the particles is also visible in the analysis
of FMD. The visibility of iron and copper particles (Figure 11) is higher than the aluminium
particles. However, even the detectability of particles with a higher density decreases if the
particles are too small. In the study, this was the case if the particle volume became close
to the voxel volume of the scan. The detectability of all defects was increased by the void
created either by the absence of material (e.g., scratch and edges of decoated areas) or the
additional material (e.g., particles). In the case of fully assembled LIBs, these voids would
be filled with an electrolyte. Thus, the contrast and visibility of the analysed defects and
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the potential for detectability with CT imaging could be reduced. However, due to the low
density of the electrolyte, the impact on the visibility was expected to be low.
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(resolution) of the scan for comparison.

The detection of defects below the resolution (74 µm) was not possible unless the
defect had a very high density in comparison to the surrounding material. However, even
the detection of copper and iron particles below this resolution was hardly possible (as
shown in Figures 9–11). If the defect had a low density, such as the aluminium particle, the
detectability was further reduced and dependent on the created void. The scratch (width of
400 µm) was still visible due to the created void; therefore, the minimum detectable defect
size for a scratch lay between 74 µm and 400 µm (for the used CT scanner). Defects in a
range of several micrometres or in the sub-micrometre range, such as intragranular particle
cracking because of a sharp bend of the anode, are far below the resolution of the CT scan
used in the study.

Improvement in the resolution of a CT scan with a given CT scanning set-up requires
the movement of the probe towards the X-ray source. As the movement is limited by a
minimum distance to allow the rotation of the probe, detecting defects becomes even more
challenging for large prismatic and pouch cells e.g., for automotive applications. These
require a larger distance between the rotation centre and the X-ray source. LIBs that need
less space for rotation, such as cylindrical battery cells, allow a higher CT scan resolution
with comparable CT scanning devices [59]. This could enable the detection of smaller
defects without damaging the LIB. Smaller defects could also potentially be detected if only
sections or fractions of the LIB were analysed. This would, however, require damaging the
LIB and is, therefore, out of the scope of this study.

3.4. Comparison of 3D CT Imaging and 2D X-Ray Image

A CT inspection is based on multiple X-ray images. As a result, the probe inspection
time usually exceeds the acceptable time for an inline inspection of the cells. Figure 12
compares a slice of the 3D CT image and a single 2D X-ray image of the cell.
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Figure 12. (a) 3D CT slice shows good visibility of defects. (b) The 2D X-ray image of the cell with
a box indicating the position of (c) enlarged section of 2D X-ray image showing iron (F4–F14) and
copper (C4–C10) particles.

The 2D X-ray image shows higher image noise than the 3D CT slice. A possible
explanation is that the CT device was not optimised for single 2D X-ray imaging. Copper
and iron particles remain visible in the 2D X-ray image. Other defects could not be
identified within the study but could be visible in an optimised X-ray imaging setup. Also,
it is not possible to localise the particles on a specific electrode, as depth information is not
captured in 2D X-ray imaging. Therefore, 3D CT shows a higher potential for in-depth
analysis that is not time crucial, whereas 2D X-ray shows a higher potential for specific
time-crucial applications.

4. Conclusions

This work focused on possible methods to detect inhomogeneities within LIBs. Due to
the literature review and the presented difficulties of state-of-the-art electrical methods to
identify and localise specific inhomogeneities, X-ray-based methods were further investi-
gated. Five defects were chosen and placed on an anode of a multilayer pouch cell without
an electrolyte. CT imaging was assessed by analysing the chosen defect’s visibility, and
was compared with LSM imaging. Furthermore, CT imaging results were compared with
2D X-ray images from the same CT inspection setup.

The results showed that almost all defects on the manipulated anode were visible in
CT imaging. This included entirely decoated areas, a scratch through the active material,
and a cut through the anode and metal particles. A partly decoated stripe was only visible
in areas with spallings. An unfolded kink after a sharp bend was not visible. In addition to
the defects intentionally placed on the anode by the authors, grooves were visible within
the anode coating. The visibility of particles was highly dependent on the material and
size of the inserted particles and the void created by the particles. The visibility of copper
(theoretical density of 8.92 g/cm3) and iron (theoretical density of 7.87 g/cm3) particles
was better than the aluminium particles with a theoretical density of 2.70 g/cm3. Replacing
aluminium with steel parts could be considered in battery-cell production machinery if a
contamination risk is given. If the shape of the particle creates a large void, visibility in
CT imaging is improved. In 2D X-ray, the copper and iron particles could still be detected.
Localising the particle on a specific electrode and identifying other defects with the used
2D X-ray setup was not possible. In general, the visibility of defects below the resolution
of the CT scan is only possible if the defect has a very high density such as copper and
iron FMD.

The authors suggest further research regarding the analysis of the inhomogeneities
using imaging setups specifically designed for 2D X-ray imaging and the transferability of
X-ray-based methods to other battery formats, sizes and cases, as well as fully assembled
cells with an electrolyte. For an industrial implementation of CT detection, an economic
analysis with other detection methods, as well as the automation of CT particle detection,
is recommended.
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