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Abstract: Using carbon dioxide as a gasification agent for underground coal gasification (UCG)
can not only reduce carbon dioxide emissions but is also expected to lead to a new natural gas
technology revolution and ensure national energy security. To explore the effect of the oxygen content
in oxygen-enriched carbon dioxide gasification agents on the results of gasification experiments,
underground gasification experiments under different oxygen-enrichment conditions were designed,
and quantitative parameters were used to analyze and evaluate the gas produced in the gasification
experiments. The results showed that as the oxygen content in the oxygen-enriched carbon dioxide
gasification agent increased, the CO and H2 in the combustible gas gradually increased, and the
calorific value of the combustible gas also slowly increased, reaching a peak value under the gasifi-
cation condition of 60% oxygen concentration, and then decreased slightly; the product formation
rate and the gas production per unit mass of coal fluctuated. The coal consumption rate increased
with time and was relatively stable. According to theoretical calculations for the gasification energy
recovery evaluation system, the overall energy recovery rate was 56.34%, and the energy utilization
rate was relatively high. Research on quantitative indicators based on gas production data has good
practical significance for evaluating the gasification efficiency of UCG, which can be used to better
evaluate and control the reaction process of UCG.

Keywords: underground gasification; gasification agent; gasification components; oxygen-enriched
carbon dioxide; energy recovery evaluation; gasification efficiency

1. Introduction

With the continuous development of China’s economy, the demand for oil and gas
is increasing, the dependence on foreign oil and natural gas is increasing year by year,
and the supply security situation is severe [1]. China is rich in coal resources, but coal
mining causes great pollution to the environment, and good clean development methods
are lacking. As a subversive technology, underground coal gasification (UCG) enables the
controlled combustion of coal by creating appropriate process conditions underground and
generates hydrogen, carbon monoxide, and methane through coal pyrolysis and a series
of chemical reactions between coal, oxygen, and water vapor. It is a clean coal utilization
technology integrating the three major processes of well construction, coal mining, and
gasification. UCG technology can ensure sufficient oil and gas production and reduce
carbon emissions from coal mining and is expected to lead to a new natural gas technology
revolution [2]. According to estimates, China’s onshore coal resources buried at a depth of
1000–3000 m are 3.77 × 1012 t, and the equivalent methane resource is 272–332 × 1012 m3
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based on a gasification production rate of 40%, which is a conventional natural gas resource.
This is three times the amount of natural gas, which is greater than the total amount of
natural gas resources that have been put into development (210 × 1012 m3). Calculated
with a coal seam thickness of 5 m, the abundance of coal gasifiable resources is as high as
112 × 108 m3/km2 [3].

The development of UCG technology was initiated more than 150 years ago when the
German scientist William Siemens creatively proposed the underground gasification of coal
in 1868 [4]. A large number of field experiments have been carried out in many countries,
including the former Soviet Union, the United States, the United Kingdom, Poland, Belgium,
Spain, Australia, and China [5]. There have also been many new developments and
understandings in UCG in terms of technology, cost, and environmental impact [6,7].
Although there have been small breakthroughs, it is still in the stage of industrial testing,
has not yet been fully commercially developed, and has not formed a complete industrial
chain [8–10]. Therefore, exploring cost-effective gasification processes will be one of the
key directions for commercial development. Using indoor simulation experiments to
simulate the gas production of different gasification agents and mastering the gasification
operation rules will provide guidance for the exploration of high-efficiency gasification
processes. Researchers have also carried out gasification simulation experiments on air,
oxygen, oxygen-enriched air, oxygen-enriched CO2, and pure oxygen water vapor [11]. Air
is used as a gasification agent, which eliminates the cost of air separation when the initial
gasification agent is inflated; however, air gasification leads to a lower temperature, reaction
intensity and gasification efficiency in the UCG reaction zone, especially in coal seams
with a high ash content, and air gasification produces gas with a low calorific value [12,13].
Oxygen-enriched air as a gasification medium can reduce the operating cost of gasification
agent separation and further ensure the stability of the flame in the UCG process. However,
the generated gas still contains nitrogen, which must be separated in a subsequent process.
It is generally believed that pure oxygen gasification is suitable for coal with a high ash
content, but pure oxygen gasification requires an expensive gasification agent and is
difficult to control [14,15]. Pure oxygen water vapor is used as a gasification agent. It
reduces the temperature in the gasification chamber. However, due to the temperature
reduction, some of the water vapor condenses into droplets; hence, the gasification agent
cannot be evenly distributed onto the surface of the coal seam, which leads to gasification
process instability and decreased gasification efficiency [16,17]. O2/CO2 is a better choice
as a gasification agent; it can avoid the problem of transporting superheated steam to deep
coal seams and can also resolve the carbon dioxide utilization issue. Chen et al. [18] found
experimentally that compared with the existing oxygen-enriched underground gasification
model test results, adding CO2 to the gasification agent can inhibit the formation of CO2
in the process of underground gasification, and the temperature field under O2/CO2
gasification is relatively low, with a coal seam maximum temperature during gasification
of only 1200 ◦C, which is favorable for generating effective components of coal gas. Zhao
et al. [19] compared the O2/CO2 and O2/air gasification methods and found that the
presence of a high concentration of CO2 can prolong the gasification time and make the
temperature field in the furnace distribute in the vertical direction. However, the high
concentration of the CO2 gasification agent can cause the flame to cool down or even
extinguish in the combustion air area of the underground gasifier. Therefore, in the process
of oxygen-enriched gasification, maintaining the optimal O2/CO2 ratio in the gasification
agent delivery process seems to be especially critical. Moreover, the gasification efficiency
under different ratios has been rarely evaluated quantitatively.

In this paper, on the basis of previous studies, experiments on carbon dioxide gasi-
fication under different oxygen-enrichment conditions were conducted, and the optimal
O2/CO2 injection ratio was determined. The gasification experimental method was com-
pared and evaluated in stages to identify the influence laws of the oxygen concentration,
gas-to-oxygen ratio, gas injection flow rate, and other parameters on the changes in the gas
production components. Based on stoichiometric theory, the coal consumption, gas yield,
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combustible gas volume, calorific value of the gasification products, and energy recovery
rate were evaluated by calculation. This study provides a theoretical basis for underground
gasification field tests.

2. Experiments and Methods
2.1. Sample Information

The coal seam used in this experiment was mined in the northern part of the Ordos
Basin. Before the start of the experiment, industrial analysis and elemental analysis were
performed on the experimental coal. The results are shown in Tables 1 and 2. The proximate
analysis and elemental analysis results show that this area is of medium high volatile
content and extremely low ash content, and has similar coal quality conditions to Swan
Mountain [20], which is suitable for underground gasification experiment.

Table 1. Coal industry analysis.

Moisture
(%)

Ash
(%)

Volatile
Component

(%)

Fixed Carbon
(%)

Calorific Value
(MJ/kg) Fuel Ratio

Ash Melting
Point
(/◦C)

8.19 4.2 33.06 63 25.736 1.09 1350

Table 2. Analysis of coal elements.

Calorific Value Elemental Analysis (%)
H/C O/C

MJ/kg C H N S O

25.736 79.745 4.42 1.005 0.185 10.445 0.891 0.092

2.2. Experimental Setup

The equipment used in the experiment was self-developed equipment, including
an oxygen generator, steam generator, gasifier, temperature sensor, filter box, and gas
chromatograph. Figure 1 is a structural diagram of the device, and Figure 2 is a physical
diagram. The size of the coal filling was 2150 mm long, 600 mm wide, and 550 mm high.
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Figure 2. Physical map of the underground gasification simulation device.

2.3. Experimental Design

In this experiment, oxygen-enriched carbon dioxide was used as the gasification
agent. The volume fraction of oxygen and carbon dioxide was adjusted with the same
total injection rate. Under the same condition, we investigate to the composition of the
gas generated by the corresponding gasification process and the pattern of changes in
the result under different oxygen and carbon ratios. Compared with the conventional
oxygen-enriched coal UCG process, the main significant difference of the oxygen-enriched
carbon dioxide UCG process is the addition of CO2 to the conventional oxygen-enriched
gasification agent, which not only changes the balance of the three-zone reaction in the
gasification zone but also promotes the reduction reaction, which in turn affects the gas
composition of the gasification product. The variation in the experimental gasification
agent injection flow rate is shown in Figure 3. The total gasification agent injection flow
rate was 25 m3/h, and six kinds of oxygen-rich carbon gasification agents with different
oxygen-to-carbon ratios with oxygen concentrations of 30%, 40%, 50%, 60%, 70%, and
80% were used for the gasification experiment. These gasification agents were utilized in
sequence for 2 h, and the total length of the experiment was 12 h.
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2.4. Experimental Procedure

After the experiment started, the gasification agent was blown into the gasifier, and
the ignition device was turned on. After successful ignition, the experiment was carried
out according to the experimental parameter settings of each experimental stage, and the
data for each experimental subsystem were recorded regularly. Throughout the gasification
process, the generated gas was collected and stored regularly, the temperature of the
gasification area was monitored in real time, and the gas composition of the gasification
product was tested using a gas chromatograph.

By comparatively evaluating each stage of the experiment, the influence laws of
parameters such as the oxygen concentration, gas-to-oxygen ratio, and gas injection flow
rate on the produced gas components were obtained. Based on stoichiometric theory, an
improved method for calculating the calorific value of the gasification gas was developed,
which was used to obtain the pilot experimental parameters and evaluate the gasification
efficiency. The coal consumption, gas yield, combustible gas volume, calorific value of the
gasification products, and energy recovery rate were evaluated by calculation.

3. Experimental Results

The content of each component of the gas produced by oxygen-enriched carbon
dioxide gasification is shown in Figure 4. The main gas components of the gasification coal
gas included H2, CO, CH4, and CO2. With increasing oxygen concentration injected by the
gasification agent, the CO2 content gradually decreased from 78.09% and reached its lowest
value at approximately 8 h, at which time the CO content in the generated gas also reached
its peak value of 29.73%. The H2 content reached its peak value of 27.63% at approximately
8.5 h, and the CH4 content was relatively stable without obvious fluctuations.
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During the gasification process, due to the low oxygen concentration in the initial
period, the oxidation reaction intensity in the gasification reaction was also low, and
the high concentration of CO2 hindered the forward progress of the oxidation reaction.
Therefore, the production temperature of the oxidation reaction in the early stage did not
reach the temperature required for the reduction reaction in the later stage, and the intensity
of the entire gasification process was relatively weak, resulting in low levels (approximately
10%) of all major gas components except for CO2 in the initial stage. With increasing
oxygen concentration, the contents of CO and H2 gradually increased and peaked under
the gasification condition of 60% oxygen concentration. As the oxygen concentration
continued to rise, the CO2 content began to increase, and the H2 content began to decrease.

The calorific value is an index for measuring the quality of the produced gas, and it
also indirectly reflects the quality of the gasification effect [20]. The change in the calorific
value of the gas produced in this experiment is shown in Figure 5. The average calorific
value was 6.17 MJ/m3. During the initial period of this stage (oxygen concentration of 30%),
the calorific value of the generated gas began to increase slowly, rising from 3.23 MJ/m3 to
4.32 MJ/m3 within 2 h. At 2 h, the oxygen concentration of the injected gasification agent
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was adjusted to 40%, and the calorific value of the generated gas began to rise rapidly,
increasing by 1.96 MJ/m3 over 2 h, and increased nearly twice as much as that under the
gasification condition of 30% oxygen concentration. In the subsequent 4 h gasification
process, with increasing oxygen concentration, the calorific value of the generated gas
also increased continuously, but the rate of increase gradually decreased. When the O2
concentration in the gasification agent component reached 60%, the flow of the combustible
gas in the generated gas reached its peak value. At 8 h, the oxygen concentration changed
from 60% to 70%, and the calorific value of the generated gas began to decrease slowly.
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4. Discussion
4.1. Generation Rate of the Product Gas

The gas generation rate of UCG reflects the activity of the gasification process [21].
Figure 6 shows that the product generation rate fluctuated, mainly due to the change in
the dominance of the oxidation reaction and the reduction reaction during the gasification
process. When the oxidation reaction was dominant, the gas production was larger, and
when the reduction reaction was dominant, the gas production decreased. In the early stage
of the experiment (oxygen concentration of 30%), the production rate of the product gas was
low and slowly increasing. Due to the low concentration of O2 injected into the gasification
agent in the initial stage, the oxidation reaction in the gasification reaction was relatively
gentle, and consequently, the overall temperature in the gasifier was low, resulting in the
inability of CO2 to effectively participate in the reduction reaction; moreover, because the
gasification process was relatively weak, the amount of gas generated at this time was low.
At 2 h, the oxygen concentration of the injected gasification agent increased to 40%. At this
time, the production rate of the product gas increased rapidly, rising to 39.11 m3/h within
0.5 h, and then began to decline. The decline stopped at 4 h, and within the following 4 h,
the generation rate of the product gas had two large fluctuations again, decreasing overall.
This overall decrease occurred because when the O2 concentration in the gasification agent
reached 40%, the oxidation reaction in the gasification reaction was enhanced, resulting in
an increase in the overall temperature in the gasifier; in addition, CO2 participated in the
reduction reaction more effectively, and the gasification process was relatively active. The
amount of gas produced by the gasification reaction peaked. Under oxygen concentrations
of 40–70%, the gas volume of the generated gas decreased overall because the reduction
reaction intensity at this time continued to increase, and the participation of CO2 in the
reduction reaction decreased the generated gas volume. When the O2 concentration in the
gasification agent exceeded 70%, the oxidation reaction in the gasification reaction was
enhanced, the amount of CO2 gas in the generated gas increased, and then the amount of
generated gas appeared to rebound, so the product gas generation rate started to increase
after 8 h. The average production rate of the product gas was 34.65 m3/h.
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4.2. Coal Consumption Rate

The coal consumption rate, as a basic variable for evaluating the gasification effect,
directly reflects the coal consumption in the gasification process and indirectly reflects
the coal gasification rate [22]. The overall coal consumption rate of the experiment fluc-
tuated minimally, the coal consumption rate increased with time, and the average coal
consumption rate was 15.46 kg/h (Figure 7). During the initial 2 h of the experiment, the
coal consumption rate was stable at approximately 13.7 kg/h without a significant change,
because in the early stage of the experiment, under 30% oxygen concentration gasification,
the oxidation reaction was weak, the temperature field in the gasification zone was low, and
the reaction intensity was low. At 2 h, the oxygen concentration of the gasification agent
rose to 40%, the oxidation reaction in the gasification reaction began to increase in intensity,
and the coal consumption rate began to rise slowly. In the subsequent gasification process,
with the continuous increase in the injected oxygen concentration of the gasification agent,
the oxidation reaction became increasingly intense, and the coal consumption per unit
time also increased continuously. When the oxygen concentration of the gasification agent
exceeded 70%, the coal consumption rate also increased correspondingly under gasification
conditions with an excessively high oxygen concentration; thus, the coal consumption rate
started to increase rapidly after 8 h.
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4.3. Gas Production Per Unit Mass of Coal

As an important index for evaluating the quality of UCG, the gas production per
unit mass of coal can indirectly reflect the change trend of the gasification efficiency in
the gasification process [23]. The gas production rate per unit mass of coal fluctuates but
is generally in the range of 2–3 m3/kg. In this experiment, the average gas production
rate of coal was 2.35 m3/kg. Figure 8 shows that at the initial stage of the reaction, since
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the oxygen concentration of the injected gasification agent was not high at this time, the
oxidation reaction intensity was low, and the gas production per unit mass of coal was
low. When the oxygen concentration of the injected gasification agent was adjusted to
40%, the gas production per unit mass of coal increased rapidly to a maximum value of
2.82 m3/kg and then began to decline due to the increase in the oxygen concentration of
the gasification agent, which provided more oxygen for the oxidation reaction. As the
oxidation reaction intensified, the temperature of the gasification zone increased, and the
concentration of CO2 also increased, which further promoted the reduction reaction. As
the reduction reaction intensity increased, the temperature field in the gasification zone
became increasingly low and could not provide the temperature environment required for
the reduction reaction, which in turn promoted the intensification of the oxidation reaction.
Thus, the gas production per unit mass of coal declined. Therefore, in the gasification
process, there is a cyclic process in which the gas production initially increases, then
decreases, and finally increases again.
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4.4. Energy Recovery Rate

As an important indicator in the gasification energy recovery evaluation system, the
gas production per unit mass of coal can indirectly reflect the quality of the gasification
effect in the gasification process. In this paper, it is proposed that the energy recovery rate
is the ratio of the actual gas energy produced to the heat generated by the coal itself. This
experiment was evaluated according to the theoretical calculation of the gasification energy
recovery evaluation system [24,25]. The calculated energy recovery rate was 56.34%. The
energy utilization rate was high.

5. Conclusions

(1) In the oxygen-enriched carbon dioxide gasification experiment, with increasing oxy-
gen content, the effective product and calorific value of the gasification product
increased. The best gas production effect was obtained when the oxygen concentra-
tion was 50–60%. The content of active components in the generated gas was the
highest under gasification conditions, with a hydrogen content of 25.1%, CO content
of 29.6%, and calorific value of 7.3 MJ/m3, indicating that the redox reaction in the
gasification reaction was close to equilibrium.

(2) The gas production rate and the gas production per unit mass of coal fluctuated,
mainly due to the change in the dominance of the oxidation reaction and the reduction
reaction during the gasification process. When the oxidation reaction was dominant,
the gas production was larger, and when the reduction reaction was dominant, the
gas production decreased. The overall coal consumption rate in the experiment fluctu-
ated minimally, the coal consumption rate increased with time, and the average coal
consumption rate was 15.46 kg/h. The gas production rate of coal in this experiment
showed a cyclic process of gas production increasing first and then decreasing, and
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then increasing again, with an average value of 2.35 m3/kg. According to the theo-
retical calculation of the gasification energy recovery evaluation system, the overall
energy recovery rate was 56.34%. The energy utilization rate was high.

(3) Various quantitative parameters, namely, the product generation rate, coal consump-
tion rate, gas production per unit mass of coal, and energy recovery rate, have good
practical significance for evaluating the gasification efficiency of UCG. The energy
recovery evaluation method of the gasification process can be used to better evaluate
the reaction process of UCG.
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