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Abstract: Power distribution systems (PDS) comprise essential electrical components and infrastruc-
ture that facilitate the delivery of electrical energy from a power transmission system to end users.
Typically, the topology of distribution systems is radial, so that power goes from the substations to
end users through main lines or feeders. However, the expansion of new feeders to accommodate
new users and ever-growing energy demand have led to higher energy losses and deterioration of
the voltage profile. To address these challenges, several solutions have been proposed, including
the selection of optimal conductors, allocation of voltage regulators, utilization of capacitor banks,
implementation of distributed generation, and optimal reconfiguration. Although reconfiguring the
network is the most cost-effective approach, this solution might not be sufficient to completely mini-
mize technical losses and improve system performance. This paper presents a novel approach that
combines optimal distribution network reconfiguration (ODNR) with optimal conductor selection
(OCS) to minimize power losses and enhance the voltage profiles of PDS. The key contribution lies
in the integration of the ODNR and OCS into a single MILP problem, ensuring the attainment of
globally optimal solutions. The proposed model was tested with benchmark 33-, 69-, and 85-bus test
systems. The results allowed us to conclude that the combined effect of ODNR and OCS presents
better results than when any of these approaches are applied either separately or sequentially.

Keywords: power distribution systems; optimal reconfiguration; optimal conductors selection;
mixed-integer linear model

1. Introduction

In today’s electric power industry, the efficient and reliable operation of PDS has
become a predominant concern. The increasing demand for electricity, coupled with the
integration of renewable energy sources and the advent of smart grid technologies, increases
the complexity of PDS planning and operation. To address the challenges posed by this
complexity, researchers are turning their attention to advanced optimization techniques.
This paper explores a critical aspect of PDS optimization—the seamless integration of
ODNR and OCS through the application of mixed-integer linear programming (MILP).
By harnessing the potential of MILP, this study aims to improve voltage regulation and
mitigating power losses in PDS.

OCS plays an important role in ensuring the reliable and efficient operation of PDS.
Conductors distribute electrical energy from distribution substations to final customers
through principal feeders and laterals. With the increasing demand for electricity and the
integration of renewable energy sources, the need for OCS becomes crucial. The choice of
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conductors impacts various aspects of PDS, including power losses, voltage regulation, and
overall system reliability. An inefficient conductor selection may lead to elevated energy
losses, voltage drop issues, and increased operational costs. Conversely, OCS results in
reduced power losses, improved voltage profiles, and enhanced system longevity.

The primary objective of OCS is to replace the current conductors in a feeder with
different types of conductors. This replacement aims to decrease active power losses,
enhance the capacity of circuits, and raise voltage levels. The OCS is a highly complex
problem, which can be represented as a mixed integer nonlinear programming (MINLP)
problem. Researchers have employed exact techniques as well as heuristic and metaheuris-
tic approaches to tackle this optimization problem.

Heuristics are search techniques that prioritize speed over optimality and are often
used when dealing with complex or computationally challenging tasks [1,2]. Although
they may not always guarantee the global optimal solution, heuristic and metaheuristic
techniques are valuable tools in non-convex optimization and decision-making processes.
In the context of OCS, researchers have proposed various heuristic-based approaches. For
instance, in [3] the authors presented a methodology combining an economically driven
current density-based approach with a heuristic approach for optimizing the conductor
selection in radial PDS. In this case, a branching feeder approach without uniform load
distribution was used to approximate the real conditions of most PDS. Another study [4]
proposed a branch-wise minimization technique for selecting the optimum size of conduc-
tors in radial PDS. The conductors selected by the proposed approach maximized the total
savings in costs, including conductor material and energy losses while maintaining accept-
able voltage profiles. In [5], the authors considered financial and engineering factors as key
aspects of OCS. In this case, operating and capital costs were considered bearing in mind a
set of conductors with the most economic cost characteristics and enough thermal capacity
to meet high-demand scenarios. In [6], a general methodology for optimal conductor size
selection in PDS was presented aiming to minimize the total conductor and power loss cost.
The model includes diversity in load peaks, load factors, cost of power, load increments,
and cost of energy in the decision-making process.

A comparative study between an analytical method and a genetic algorithm (GA)
to solve the OCS problem was carried out in [7]. In this case, the analytical approach
was based on consecutive load flows. A two-phase methodology employing the branch-
wise minimization technique was proposed in [8] to solve OCS in radial PDS. In [9], the
authors presented an analytical approach comparing power flow results for distinct ACSR
conductors. It is important to note that heuristic optimization techniques cannot ensure a
solution that is globally optimal; instead, they offer a proper estimation. These methods
may encounter locally optimal solutions and can be computationally intensive, especially
when dealing with large-scale problems involving numerous variables.

Metaheuristics have also gained significant popularity in solving the OCS problem.
These approaches are inspired by natural and social phenomena such as evolutionary
processes or swarm intelligence. In evolutionary and genetic algorithms, a population
of potential solutions is evolved over generations through processes such as selection,
crossover, and mutation. OCS has been solved through genetic algorithms (GAs) [7,10],
adaptive genetic algorithm (AGA) [11], evolutionary strategies (ES) [12], differential evolu-
tion algorithm (DEA) [13], and discrete genetic algorithm (DGA) [14].

Particle swarm optimization (PSO) is a metaheuristic approach inspired by the social
behavior of some organisms such as schools of fish and flocks of birds. The OCS has
also been solved through PSO [15,16], selective particle swarm optimization (SPSO) [17],
discrete particle swarm optimization (DPSO) [18] and salp swarm optimization (SSO) [19].

In harmony search algorithms (HSAs), a set of candidate solutions, labeled as har-
monies, represent potential solutions to the optimization problem. The OCS problem
was solved using HSA with a differential operator (HSDE) in [20]. Other metaheuristic
approaches adapted for solving the OCS problem in PDS include crow search algorithm
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(CSA) [21], sine–cosine optimization algorithm (SCA) [22], Tabu search (TS) [23] and New-
ton’s metaheuristic algorithm (NMA) [24].

Even though metaheuristic approaches are suitable for solving complex optimization
problems, they may not consistently reach the absolute global solution. Moreover, they
often need significant adjustments to achieve acceptable results, and this can consume a
significant amount of time and necessitate specialized knowledge.

Exact techniques have been employed to a lesser extent in solving the OCS problem.
These techniques ensure convergence by utilizing existing optimization software. In the
literature review, few research studies were found where exact techniques were employed
for solving the OCS. Among these papers, one of them utilized a linear model. In the
study conducted by the authors of [25], a MILP problem was proposed, accompanied
by a heuristic approach to derive the Pareto front for the problem of optimal conductor
sizing. The authors of [26] presented a MINLP model for the OCS problem, which was
resolved utilizing the general algebraic modeling system (GAMS) with the aid of the
DICOPT optimization solver. In [27], the authors developed an exact nonlinear model
for the conductor selection, utilizing available MINLP solvers. Lastly, the authors of [28]
proposed a MINLP formulation for OCS in DC radial PDS.

Planning strategies, such as reconfiguration, conductor selection, capacitor placement,
and DG placement, are commonly studied separately. Nonetheless, the combination of two
or more of these techniques may lead to a better-planned system. The problem of OCS
has been integrated with capacitor placement in numerous research investigations, where
the researchers employed metaheuristic approaches to direct the exploration procedure.
However, from the review of existing literature, OCS has not been discussed in simultaneity
with optimal distribution network reconfiguration (ODNR) so far.

ODNR is carried out by altering the topology of the distribution network, considering
objectives such as minimizing power losses, improving voltage profile, and enhancing net-
work reliability. ODNR is executed by opening and closing tie and sectionalizing switches,
respectively, [29]. Due to the nature of its decision variables and constraints, ODNR can be
classified as a mixed-integer nonlinear (MINL) optimization problem, usually requiring the
aid of metaheuristic techniques for its solution. Early reconfiguration studies were limited
to small-sized PDS [30]. This is due to the fact that ODNR is a complex optimization prob-
lem that involves both discrete and continuous decision variables. Furthermore, ensuring a
radial topology is not a trivial task [31]. Basically, two optimization paradigms are applied
to solve the ODNR problem: mathematical programming methods and metaheuristic
techniques.

In [32], the authors proposed an optimal power flow and sensitivity analysis approach
to solve the ODNR problem, aiming to minimize active power losses. A heuristic approach
was implemented by closing all sectionalizing switches and then determining the ones
to be reopened to avoid loops in the system. PSO was implemented in [33–35] to tackle
the ODNR problem to minimize power losses. In [36–41], several variants of GAs were
tested to solve the ODNR problem. In this case, network topologies were represented by
binary strings representing the open or closed states of the switches. Then, other topologies
were created through both the selection and mutation stages of the GA. In each iteration,
the radial condition of the new solutions was verified. In [42,43], the authors solved the
ODNR problem through firefly optimization (FO). In this case, ref. [42] considered both
ODNR and optimal DG sizing, whereas [43] did not optimize the size of DG in the network;
nonetheless, a search space-reducing strategy is implemented to accelerate convergence.
The authors of [44,45] proposed an HSA to solve the ODNR problem for minimizing power
losses. The proposed approach in [45] also includes island detection to enforce radiality. The
TS metaheuristic technique was also applied in [46,47] to solve the ODNR problem. In [46],
the authors considered a mutation mechanism to escape from local optima, whereas [47]
implemented a random mechanism with the same purpose.

In [48], the authors developed a hybrid data-driven and model-based distribution
network reconfiguration approach. A hierarchical network recovery process was imple-
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mented to speed up the process. ODNR can also be implemented to enhance network
reliability. In [49], a column and constraint generation algorithm was proposed to minimize
load curtailments under failures of lines or generators. In [50], the authors presented a
reinforcement learning approach that resorts to ODNR to minimize load curtailment. The
distribution system is modeled as a graph and the ODNR is determined by searching for a
spanning tree that presents minimum curtailed power.

Multi-objective approaches have also been implemented in the reconfiguration prob-
lem. In [51], the authors developed an NSGAII approach that minimizes both active power
losses and voltage offset of distribution networks. In [52], a multi-objective PSO was
proposed to minimize total active power losses and maximize the absorption of renewable
DG through a time-varying ODNR. In [53], the authors carried out ODNR with four objec-
tives, namely, power loss minimization, voltage profile improvement, network reliability
improvement, and operation costs minimization. The literature on metaheuristics applied
to solve the ODNR is wide and varied, and a comparative study on this subject can be
consulted in [54].

Apart from heuristic and metaheuristic techniques, some mathematical approaches
have also been explored to tackle the ODNR problem. In [55], the authors presented a
mathematical model of path connectivity for ODNR. This model is based on the closed-loop
design and open-loop operation of DPS. In [56], the authors solve the ODNR problem
bearing in mind the power loss minimization and the improvement of reliability. The
epsilon-constrained method is used, and the proposed mathematical model is then solved
through the algebraic modeling systems (GAMS) software. In [57], a mixed-integer two-
stage formulation is proposed to solve the ODNR for minimizing power losses. The
master–slave methodology was modeled through a decomposition algorithm in AMPL
and subsequently resolved with the utilization of CPLEX.

In DPSs that feature fairly loaded feeders and poor voltage profiles, ODNR alone may
not be enough to minimize power losses. Furthermore, as the size and type of conductor
for each feeder segment are chosen based on the current carrying capacity of the feeder
configuration, and ODNR affects the system operational conditions, simultaneous ODNR
and OCS could lead to low-cost planning of PDS; nonetheless, this approach has not been
reported in the specialized literature Therefore, the main contribution of this paper lies
in the simultaneous formulation and resolution of ODNR and OCS in PDS; furthermore,
the proposed MILP model guarantees the globally optimal solution. Finally, the proposed
model is suitable for applications in real-size distribution systems through commercially
available software. Although a specific table of conductors was used for the test and results,
the model allows the use of any set of candidate conductors for OCS.

The remainder of this paper is structured as follows: In Section 5, a nonlinear mathe-
matical framework is presented to tackle the combined ODNR and OCS. Elaboration on
the linearization procedures employed to transform the initial model into a MILP problem
is provided in Section 3. The outcomes of implementing the suggested model on various
benchmark test systems are shown in Section 4. Lastly, the conclusions drawn from this
study are presented in Section 5.

2. Nonlinear Mathematical Model for the Integrated ODNR and OCS

This section presents the initial nonlinear mathematical model for the integration
of ODNR and OCS in PDS. This initial model presents integer and continuous variables;
nonetheless, there are some variable multiplications that will be later linearized to recast
this initial approach into a MILP model.

In [58], starting from a nonlinear model of the power flow in PDS, the authors propose
and validate a linear model of it. In this case, a comparative analysis was conducted
between a linear version of the power flow and the nonlinear power flow applied to seven
distribution test systems. The results revealed that the linear model had a maximum error
of 0.16%, demonstrating that this model accurately solves the load flow. The linear model
proposed by the authors in [58] is then adapted to solve the ODNR problem.
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On the other hand, in [59] a MILP for the OCS and the optimal capacitor placement in
PDS is presented by the same authors. In this case, the linear power flow proposed in [58]
is used for the optimal conductor selection. The models presented by the authors in [58,59]
are modified and adapted in this paper to have a single MILP model that solves the OCS
and ODNR problems jointly, separately or sequentially. The mathematical optimization
model implemented in this paper is designed for radial EDNs and considers the following
hypotheses: (i) the EDN is represented by a monophasic equivalent; (ii) Loads are repre-
sented as constant power injections; (iii) only an electric source (substation) is considered;
(iv) active and reactive power losses in distribution lines are concentrated in their sending
bus; and (v) the capacitive reactance of distribution lines is neglected.

2.1. Objective Function

The proposed objective function is formulated through Equation (1), comprising two
components. The initial component aims to minimize the cost of annual energy loss. Here,
Kp, Ke, T, and LF correspondingly stand for the annual demand cost averaged over time,
energy expenses, the annual time in hours, and the system loss factor. Ωl signifies the
collection of branches, whereas Ωc denotes the collection of available conductor types.
It is important to note that the nonlinearity in the first term of the objective function
arises from the multiplication of decision variables Wij,c and Isqr

ij , representing the selected
conductor type c for installation in branch ij (a binary variable) and the square of the
current magnitude in the same branch. The linearization of this product is detailed in a
subsequent section of this paper. Furthermore, Lij signifies the length of the conductor
linked with branch ij, and Rc represents the resistance of conductor type c (measured in
kΩ/km).

The second term of the objective function aims at minimizing the annual conductor
selection costs. In this case, CRF is the capital recovery factor related to the selection of a
new conductor, and Cc is the conductor cost of conductor type c.

Minimize f =
[
Kp + (Ke · T · LF)

]
∑
∀ij∈Ωl

∑
∀c∈Ωc

Lij · Rc ·Wij,c · I
sqr
ij + CRF ∑

∀ij∈Ωl

∑
∀c∈Ωc

Lij · Cc ·Wij,c (1)

2.2. Power Balance Constraints

Equation (2) expresses the balance of active power within every bus of the PDS. Pki
and Pij denote the active power transmission in branches ki and ij, respectively. Ps

i signifies
the active power provided from the substation at bus i. Pd

i represents the active power
requirement at bus i. Lastly, Ωb denotes the collection of buses within the PDS.

∑
∀ki∈Ωl

Pki − ∑
∀ij∈Ωl

Pij − ∑
∀ij∈Ωl

∑
∀c∈Ωc

(
Lij · Rc ·Wij,c · I

sqr
ij

)
+ Ps

i = Pd
i ; ∀i ∈ Ωb (2)

Equation (3) signifies the equilibrium of reactive power within each bus of the PDS. Qki
and Qij represent the reactive power flow in branches ki and ij, respectively. Xij,c denotes
the inductive reactance of branch ij related to conductor type c. Qs

i is the reactive power
provided from the substation at bus i. Qd

i stands for the reactive power demand at bus i.

∑
∀ki∈Ωl

Qki − ∑
∀ij∈Ωl

Qij − ∑
∀ij∈Ωl

∑
∀c∈Ωc

(
Lij · Xc ·Wij,c · I

sqr
ij

)
+ Qs

i = Qd
i ; ∀i ∈ Ωb (3)

Note that Equations (2) and (3) are nonlinear due to the multiplication of the decision
variables Wij,c and Isqr

ij . The linearization of this product is presented in a later section of
this paper.
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2.3. Voltage Drop in the Branches of the PDS

Equation (4) illustrates the voltage reduction within each branch of the PDS. In this
context, voltage magnitudes are given in relation to the electrical characteristics of the
branches and their load flow. Variables Vsqr

i and Vsqr
j represent the squared voltage mag-

nitudes at buses i and j, respectively. Z2
c = R2

c + X2
c is the square of the impedance of

conductor type c, and bij is a continuous auxiliary variable used to enforce Equation (4); it
may take different values depending on whether the circuit ij is open or closed.

Vsqr
i −Vsqr

j = 2 · Lij ∑
∀c∈Ωc

(
Rc ·Wij,c · Pij + Xc ·Wij,c ·Qij

)
+ L2

ij · Z2
c ·Wij,c · I

sqr
ij + bij; ∀ij ∈ Ωl (4)

2.4. Voltage and Current Limits

Equation (5) indicates the voltage magnitude limit at bus i. Note that V2
i and V2

i
represent the upper and lower squared voltage magnitude limits at bus i, respectively.

V2
i ≤ Vsqr

i ≤ V2
i ; ∀ i ∈ Ωb (5)

Equation (6) represents the current magnitude limit of the branch ij, where I2
ij,c is

the upper limit of the square current in branch ij of the conductor type c; y+ij and y−ij are
binary variables related to the power flow direction of the branch ij and are used in the
ODNR problem. If any one of these variables is equal to one, the switch in the respective
branch is closed; if both variables are zero, the circuit is open. Wij,c is used to select the
conductor type.

0 ≤ Isqr
ij ≤ ∑

c∈Ωc

(
I2

ij,c ·Wij,c

)
·
(

y+ij + y−ij
)

; ∀ ij ∈ Ωl (6)

2.5. Apparent Power Constraint

The left side of Equation (7) is the linearization of Vsqr
j times Isqr

ij ; furthermore, the right

side of this equation is the linearization of P2
ij plus Q2

ij which are carried out as indicated
in [58].(

V2 +
1
2

∆V
)
· Isqr

ij +
S

∑
s=1

Pc
j,s =

Y

∑
y=1

ms
ij,y · ∆Pij,y +

Y

∑
y=1

ms
ij,y · ∆Qij,y; ∀ ij ∈ Ωl (7)

In Equation (7), Y is the number of linearization blocks, ms
ij,y is the slope of the yth

block of the power flow at circuit ij; ∆Pij,y and ∆Qij,y represent the values of the yth block
of Pij and Qij, respectively.

Equations (8)–(12) are complementary expressions used in the linearization of the left-
hand side of Equation (7). Equation (8) indicates the minimum and maximum limits of Vsqr

j
taking into account the discretization steps. In this case, xj,s is a binary variable used in the
discretization of Vsqr

j , ∆V is the discretization step, and S is the number of discretizations.
Equation (9) represents the limit of the power discretization steps, where Pc

j,s is the correction
used in Vsqr times Isqr. Equation (10) indicates the limits of Pc

j,s, and Equations (11) and (12)
represent the limits of the binary variable xj,s and its nature, respectively.

V2 +
S

∑
s=1

(
∆V · xj,s

)
≤ Vsqr

j ≤ V2 +
S

∑
s=1

(
∆V · xj,s

)
+ ∆V; ∀ j ∈ Ωb (8)

0 ≤ ∆V · Isqr
ij − Pc

j,s ≤ ∆V · ∑
c∈Ωc

I2
c ·Wij,c ·

(
1− xj,s

)
; ∀ ij ∈ Ωl , ∀ s ∈ 1..S (9)

0 ≤ Pc
j,s ≤ ∆V · ∑

c∈Ωc

I2
c ·Wij,c · xj,s; ∀ ij ∈ Ωl (10)
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xj,s ≤ xj,s−1; ∀ j ∈ Ωb; ∀ s ∈ 2..S (11)

xj,s ∈ {0, 1}; ∀ j ∈ Ωb; ∀ s ∈ 1..S (12)

Equations (13)–(19) serve the purpose of linearizing the right-hand side of Equation (7).
In this instance, P+

ij and P−ij are applied to determine
∣∣Pij

∣∣, and Q+
ij and Q−ij are employed

to determine
∣∣Qij

∣∣, with ∆Sij denoting the upper limit for each load flow block on branch ij.
Equation (19) enforces the non-negativity of auxiliary variables Pij+, P−ij , Q+

ij , and Q−ij .

P+
ij − P−ij = Pij; ∀ ij ∈ Ωl (13)

Q+
ij −Q−ij = Qij; ∀ ij ∈ Ωl (14)

P+
ij + P−ij =

Y

∑
y=1

∆Pij,y; ∀ ij ∈ Ωl (15)

Q+
ij + Q−ij =

Y

∑
y=1

∆Qij,y; ∀ ij ∈ Ωl (16)

0 ≤ ∆Pij,y ≤ 4Sij; ∀ ij ∈ Ωl , ∀ y ∈ 1..Y (17)

0 ≤ ∆Qij,y ≤ 4Sij; ∀ ij ∈ Ωl , ∀ y ∈ 1..Y (18)

P+
ij , P−ij , Q+

ij , Q−ij ≥ 0; ∀ ij ∈ Ωl (19)

2.6. Constraints Associated with the ODNR

Equations (20) to (26) model the ODNR problem taking into account the OCS. The
upper limits of auxiliary variables P+

ij and P−ij are given by Equations (20) and (21), respec-
tively. The reactive power flow limit in branch ij is given by Equation (22). Equation (23)
indicates the limits of bij; which is zero if the circuit ij is closed; otherwise, the value of bij is
defined by Equation (23). Equation (24) defines the condition of radiality of the PDS, and
N is the number of buses of the PDS. Equation (25) indicates that if there is power flow in
branch ij, it must have only one direction. Therefore, if y+ij = 1, it follows that y−ij = 0 and

vice versa; otherwise, when y+ij = 0 and y−ij = 0, the circuit is open (there is no power flow).

Equation (26) denotes the binary nature of y+ij and +y−ij .

P+
ij ≤ V · Iij,c ·Wij,c · y+ij ; ∀ij ∈ Ωl ; ∀ij ∈ Ωl (20)

P−ij ≤ V · Iij,c ·Wij,c · y−ij ; ∀ij ∈ Ωl ; ∀ij ∈ Ωl (21)

|Qij| ≤ V · Iij,c ·Wij,c ·
(

y+ij + y−ij
)

; ∀ij ∈ Ωl (22)

|bij| ≤
(

V2 −V2
)(

1−
(

y+ij + y−ij
))

; ∀ij ∈ Ωl (23)

∑
∀ij∈Ωl

(
y+ij + y−ij

)
= N − 1; ∀ij ∈ Ωl (24)(

y+ij + y−ij
)
≤ 1; ∀ij ∈ Ωl (25)

y+ij , y−ij ∈ {0, 1}; ∀ij ∈ Ωl (26)

2.7. Constraints Associated with the OCS

Equations (27) and (28) are used in the OCS problem, and define, respectively, the
possible values of the variable Wij,c and its binary nature.

∑
c∈Ωc

Wij,c ≤
(

y+ij + y−ij
)

; ∀ij ∈ Ωl (27)

Wij,c binary; ∀ij ∈ Ωl , ∀c ∈ Ωc (28)
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The expressions given by Equations (29) and (30) are used to determine the input
parameters of the objective function. In this case, the constant parameters presented in
Equation (29) are taken from [8]. The system loss factor LF is calculated with the demand
factor (DF), as indicated in Equation (29), whereas CRF is the capital recovery factor, which
is calculated considering the interest rate (i) and the number of years (n) envisaged in the
distribution planning, as indicated in Equation (30).

LF = 0.16 · DF + 0.84 · DF2 (29)

CRF =
i(i + 1)n

(i + 1)n − 1
(30)

Constraints (31) and (32) define the upper and lower limits of each block’s contribution
to |Pij| and |Qij|, respectively, where ∆Sij is the upper limit of each block of the power flow
at circuit ij.

ms
ij,y = (2y− 1)∆Sij (31)

∆Sij = V · Iij/Y (32)

3. Integration of ODNR and OCS via Mixed Integer Linear Programming Model

Equations (1) to (28) represent a MINLP problem. The linearizations that allow
recasting this model into a MILP problem are presented in this section. Equations (1) to (4)
are nonlinear due to the multiplication of the variables Wij,c · I

sqr
ij . This product of a binary

and continuous variable is labeled as φij,c. The process of linearizing this expression can be
accomplished through the utilization of the big-M method (where M represents a suitably
large value), exemplified in Equations (33) and (34).

0 ≤ −φij,c + Isqr
ij ≤ M ·

(
1−Wij,c

)
(33)

0 ≤ φij,c ≤ M ·Wij,c (34)

The voltage drop in the branches of the PDS defined by Equation (4) is nonlinear due
to the multiplications of Wij,c · Pij and Wij,c ·Qij. These nonlinearities can be converted into
linear forms using the big-M approach, as illustrated in Equations (35) through (38). In this
case, the products Wij,c · Pij and Wij,c ·Qij are labeled as new continuous variables βij,c and
δij,c, respectively.

0 ≤ −βij,c + Pij ≤ M ·
(
1−Wij,c

)
(35)

0 ≤ βij,c ≤ M ·Wij,c (36)

0 ≤ −δij,c + Qsqr
ij ≤ M ·

(
1−Wij,c

)
(37)

0 ≤ δij,c ≤ M ·Wij,c (38)

Equations (6) and (20) to (22) are nonlinear due to the multiplication of binary variables
Wij,c · y+ij and Wij,c · y−ij . These multiplications are renamed using new binary variables

labeled as U+
ij,c and U−ij,c, respectively. The linearization of these expressions is indicated by

Equations (39) to (44).

0 ≤ U+
ij,c ≤Wij,c (39)

0 ≤ U+
ij,c ≤ y+ij (40)

Wij,c + y+ij − 1 ≤ U+
ij,c ≤ 1 (41)

0 ≤ U−ij,c ≤Wij,c (42)
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0 ≤ U−ij,c ≤ y−ij (43)

Wij,c + y−ij − 1 ≤ U−ij,c ≤ 1 (44)

Equations (9) and (10) are nonlinear due to the multiplication of binary variables Wij,c ·
xj,s. This multiplication is renamed using the binary variable Aij,c,s, and its linearization is
performed as shown in Equations (45) to (47).

0 ≤ Aij,c,s ≤Wij,c (45)

0 ≤ Aij,c,s ≤ xj,s (46)

Wij,c + xj,s − 1 ≤ Aij,c,s ≤ 1 (47)

Following the linearizations presented above, the objective function (see Equation (1))
is reformulated as shown in Equation (48).

Minimize f = kc ∑
∀ij∈Ωl

∑
∀c∈Ωc

Lij · Rc · φij,c + CRF ∑
∀ij∈Ωl

∑
∀c∈Ωc

Lij · Cc ·Wij,c (48)

The power balance constraints (Equations (2) and (3)) are also modified as follows:

∑
∀ki∈Ωl

Pki − ∑
∀ij∈Ωl

Pij − ∑
∀ij∈Ωl

∑
∀c∈Ωc

(
Lij · Rc · φij,c

)
+ Ps

i = Pd
i ; ∀i ∈ Ωb (49)

∑
∀ki∈Ωl

Qki − ∑
∀ij∈Ωl

Qij − ∑
∀ij∈Ωl

∑
∀c∈Ωc

(
Lij · Xc · φsqr

ij

)
+ Qs

i = Qd
i ; ∀i ∈ Ωb (50)

The voltage drops in branches (Equation (4)) are rewritten as follows:

Vsqr
i −Vsqr

j = 2 · Lij ∑
∀c∈Ωc

(
Rc · βij,c + Xc · δij,c

)
+ L2

ij · Z2
c · φij,c + bij; ∀ij ∈ Ωl (51)

The current limit given by Equation (6) is rewritten as indicated in Equation (52)

0 ≤ Isqr
ij ≤ ∑

c∈Ωc

I2
ij,c

(
U+

ij,c + U−ij,c
)

; ∀ ij ∈ Ωl (52)

Equations (9) and (10) are rewritten as indicated in Equations (53) and (54).

0 ≤ ∆V · Isqr
ij − Pc

j,s ≤ ∆V · ∑
c∈Ωc

(
I2

c ·Wij,c − Aij,c

)
; ∀ ij ∈ Ωl , ∀ s ∈ 1..S (53)

0 ≤ Pc
j,s ≤ ∆V · ∑

c∈Ωc

I2
c · Aij,c; ∀ ij ∈ Ωl (54)

Equations (55) to (57) indicate the linearization of Equations (6), and (20) to (22),
respectively.

P+
ij ≤ V · Iij,c ·U+

ij,c; ∀ij ∈ Ωl ; ∀ij ∈ Ωl (55)

P−ij ≤ V · Iij,c ·U−ij,c; ∀ij ∈ Ωl ; ∀ij ∈ Ωl (56)

|Qij| ≤ V · Iij,c ·
(

U+
ij,c + U−ij,c

)
; ∀ij ∈ Ωl (57)

Finally, using the proposed linearization approach, the initial MINLP model given by
Equations (1) to (28) can be represented as a MILP model as indicated below:

Minimize (48) (58)

Subject to: (49), (50), (51), (5), (7), (8), (11)–(19), (59)

(23)–(28), (33)–(47), (52)–(57)
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4. Test and Results

The simultaneous implementation of ODNR and OCS was simulated using AMPL
4.23 and solved using the standard settings in CPLEX 22.1.1.0. The effectiveness of the
proposed model is illustrated using 32-, 69-, and 83-bus test systems. Each of these test
systems is evaluated under six distinct scenarios:

• Initial scenario (base case).
• Optimal conductor selection (only OCS).
• Optimal distribution network reconfiguration (only ODNR).
• ODNR and then OCS (sequential approach).
• OCS and then ODNR (sequential approach).
• Simultaneous OCS and ODNR.

Table 1 presents the conductor types used for all test systems, taken from [22], and
Table 2 indicates the parameters adopted for the objective function, which are based on [8].

Table 1. Available conductor types for all test systems.

Conductor Name Area R X Imax Cost
Type mm2 [Ω/km] [Ω/km] [A] [US$/km]

1 Mole 6.5 2.7180 0.374 70 90

2 Squirrel 13 1.3740 0.355 120 170

3 Gopher 16 1.0980 0.349 130 210

4 Weasel 20 0.9116 0.345 150 260

5 Ferret 25 0.6795 0.339 175 340

6 Rabbit 30 0.5449 0.335 200 420

7 Mink 40 0.4565 0.353 250 500

8 Horse 42 0.3977 0.327 270 540

9 Beaver 45 0.3841 0.327 257 590

10 Raccoon 48 0.3656 0.329 260 630

11 Otter 50 0.3434 0.328 270 770

12 Cat 55 0.3020 0.327 290 760

13 Dog 65 0.2745 0.315 305 820

14 Leopard 80 0.2193 0.282 395 1010

15 Coyote 80 0.2214 0.268 380 1040

16 Tiger 80 0.2221 0.271 385 1130

17 Wolf 95 0.1844 0.266 425 1370

18 Lynx 110 0.1589 0.261 470 1590

19 Panther 130 0.1375 0.256 510 1840

20 Lion 140 0.1223 0.252 560 2060
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Table 2. Objective function parameters for all simulations.

Parameter Value

kp [U$/kW] 1.04

Ke [U$/kWh] 0.012

T (hours) 8760

DF 0.4019

i ( % ) 8

n (year) 20

There are several benchmark test systems used to evaluate the effectiveness of the
ODNR problem. However, due to the nature of ODNR, these systems only provide data
on the resistance and reactance of conductors. Crucial information such as the length of
feeder sections and conductor costs is not specified, which is necessary to solve the OCS
problem. To combine the ODNR and OCS problems, we use the information in Table 1,
reported in [22]; although other conductor-type tables that exist in the specialized literature
may also be used. The original conductors of the test systems were substituted with their
counterparts from Table 1, while adjusting the distances between nodes to ensure similar
results compared to those of the original systems. Following the conductor replacement,
a power flow analysis was carried out to assess the active power losses and minimum
voltage in the test systems.

Table 3 compares the original values of active power losses and minimum voltage
magnitudes for each test system with respect to those obtained after updating the conductor
types from Table 1. In both cases, the minimum voltage magnitudes were obtained at the
same buses for the original test systems. The new conductor types used in the test systems
are indicated in Appendix A. Notably, the errors with the new conductor data range from
0.03% to 3.58%, confirming the equivalence between the original and proposed system data.

Table 3. Base case results of the test systems considering conductors of Table 1.

Test System
Active Power Losses [kW] Minimum Voltage [p.u.]

Original Proposed Error [%] Original Proposed Error [%]

33-bus 202.67 203.23 0.27 0.9131 0.9128 0.03

69-bus 224.99 233.04 3.58 0.9092 0.8919 1.90

83-bus 531.99 515.77 3.04 0.9285 0.9514 2.46

4.1. OCS and ODNR for the 33-Bus Test System

The 33-bus test system comprises 37 branches, 32 normally closed tie switches, and
5 initially open interconnection switches. The system operates at a nominal voltage of
12.66 kV and has a total demand of 3715 + j 2300 kVA. A power flow was computed to
determine the initial state of the network. In the initial base case, the active power losses
amount to 203.23 kW, and the minimum voltage magnitude is 0.9128 p.u. at bus 18. For
reference, the voltage limits range from a minimum of 0.92 p.u. to a maximum of 1.00 p.u.

Table 4 displays the information of the base case as well as the solutions obtained for
only OCS, only ODNR, sequential ODNR and then OCS, sequential OCS and then ODNR
and simultaneous OCS and ODNR.
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Table 4. Proposed solutions for the 33-bus test system.

Description Base Case Only Only Sequential Sequential Simultaneous
ODNR OCS ODNR→ OCS OCS→ ODNR OCS and ODNR

Minimum voltage [p.u] 0.9128 0.9294 0.9500 0.9600 0.9658 0.9689

Active power losses [kW] 203.23 161.72 79.44 65.37 70.79 63.85

Active power losses cost [$] 4483.72 3567.91 1752.68 1442.23 1561.79 1408.68

Conductor cost [$/year] 661.49 692.98 1441.16 1431.81 1435.65 1277.24

Total cost [$/year] 5145.21 4260.89 3193.84 2874.01 2997.44 2685.92

Economic benefit [%] 0.00 17.18 37.92 44.14 41.74 47.80

Based on the findings presented in Table 4, it is evident that the simultaneous imple-
mentation of OCS and ODNR provides the highest economic benefit of 47.8%. Individually,
the ODNR yields an economic benefit of 17.18%, whereas the OCS achieves a benefit of
37.92%. Furthermore, when sequential strategies of the ODNR and then OCS or vice versa
are implemented, the economic benefits are 44.14% and 41.74%, respectively. Note that the
improvement of these strategies is superior with respect to any single strategy; nonetheless,
they are lower than the one obtained with the simultaneous strategy.

In terms of technical losses, the simultaneous implementation of OCS and ODNR,
once again, yields the highest reduction rate at 68.58%. Individually, ODNR and OCS result
in loss reductions of 20.43% and 60.9%, respectively. Regarding the voltage profile, the
initial scenario, referred to as the base case, presents a minimum voltage of 0.9128 p.u. The
most substantial enhancement in the voltage profile was attained by implementing the
simultaneous OCS and ODNR, contrasting with the base case. In this situation, there was a
5.47% increase in the minimum voltage.

It was then demonstrated that the simultaneous combination of the two optimization
approaches, OCS and ODNR, leads to a more optimized system (with minimal losses and
investment costs) than when any of them is solved either individually or sequentially.

Table 5 indicates the open switches used in the analyzed cases. It is important to high-
light that the open switches in the ODNR-only scenario are distinct from those employed
in the simultaneous OCS and ODNR case; nonetheless, they coincide with the sequential
scenario of ODNR and then OCS. The reason for this disparity lies in the impact of the OCS
on the most efficient reconfiguration strategy aimed at minimizing losses.

Table 5. Open switches for the 33-bus test system.

Case Open Switches

Base case 33 to 37

Only OCS 33 to 37

Only ODNR 9, 14, 32, 33, 37

Sequential ODNR-OCS 9, 14, 32, 33, 37

Sequential OCS-ODNR 9, 14, 28, 32, 33

Simultaneous OCS and ODNR 14, 28, 33, 35, 36

Table 6 presents the conductor types selected for the base case (A), only OCS (B),
sequential ODNR and then OCS (C) and simultaneous OCS and ODNR (D). Note that the
solutions differ significantly due to the impact of the ODNR. As the system reconfiguration
is optimized, there are changes in the OCS, and this leads to a decrease in the investment
conductor cost (see Table 4).
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Table 6. Selected conductors for all simulations carried out for the 33-bus test system.

Branch A B C D Branch A B C D Branch A B C D

1 15 20 20 20 14 2 2 – – 27 2 8 8 1

2 15 20 20 20 15 2 2 4 2 28 2 8 8 –

3 7 18 18 14 16 2 2 3 1 29 2 8 8 8

4 7 18 14 13 17 2 1 3 1 30 2 4 5 4

5 7 14 14 13 18 1 3 8 3 31 2 2 3 2

6 2 8 8 8 19 1 2 6 2 32 2 1 – 1

7 2 8 8 8 20 1 1 5 1 33 2 2 – –

8 2 8 5 6 21 1 1 4 1 34 2 2 5 2

9 2 6 – 3 22 2 8 8 14 35 2 2 3 –

10 2 5 1 3 23 2 8 8 14 36 2 2 1 –

11 2 5 1 2 24 2 4 4 14 37 2 2 – 8

12 2 5 2 2 25 2 13 13 1

13 2 3 1 1 26 2 13 8 1

A: base case; B: only OCS; C: sequential ODNR-OCS, and D: simultaneous OCS and ODNR.

Figure 1 depicts the optimal solution for the simultaneous OCS and ODNR problem,
where the conductor type of each branch is indicated in parenthesis in red, and the branch
number is indicated in blue. Note that the solution involved the use of conductor types 20,
14, 13, 8, 6, 4, 3, 2, and 1. Larger capacity conductors were selected for branches located
closer to the substation. Furthermore, Figure 1 also shows the specific switches that were
opened to achieve the optimal reconfiguration of the system.

S/S
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2 3 4 5 7 8 9 10 11 12 13 14 16 176 151
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19 20 21
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23 24

25

26 27 28 29 30 31 32
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(14)

(14) (14)

(20)(20)

Branch number

Open switches

Conductor type( )

Branch number

Open switches
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Figure 1. Simultaneous OCS and ODNR for the 33-bus test system.

Figure 2 illustrates the voltage profile of the 33-bus test system for the different cases
under study. Note that the simultaneous OCS and ODNR improves the voltage profile,
especially at buses far away from the substation.
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Figure 2. Voltage profile of the 33-bus test system for all simulations carried out.

According to Figure 2, buses 13 to 18 and 30 to 33 exhibit low voltage values in
the base case. However, this issue is effectively rectified through the implementation of
simultaneous OCS and ODNR (indicated by the green line). With this solution, all voltage
magnitudes are maintained above 0.96 p.u. Furthermore, the overall voltage profile is
significantly improved with the simultaneous implementation of OCS and ODNR.

4.2. OCS and ODNR for the 69-Bus Test System

The 69-bus test system has 73 branches, 68 normally closed tie switches, and 5 initially
open interconnection switches. The system operates at a nominal voltage of 12.66 kV with
a total demand of 3802 + j 2694 kVA. A power flow was calculated to find the initial state
of the network. In the initial state, active power losses are 230.78 kW, and the minimum
voltage magnitude of the system is 0.8973 p.u. at bus 65. Voltage limits are considered
between 0.95 and 1.00 p.u. Table 7 presents the results obtained with the 69-bus test system.

Table 7. Proposed solutions for the 69-bus test system.

Description Base Case Only Only Sequential Sequential Simultaneous
ODNR OCS ODNR→ OCS OCS→ ODNR OCS and ODNR

Minimum voltage [p.u] 0.8919 0.9123 0.9500 0.9500 0.9546 0.9725

Active power losses [kW] 233.04 174.61 71.00 69.84 64.22 34.4

Active power losses cost [$] 5141.40 3852.30 1566.47 1540.97 1372.72 759.97

Conductor cost [$/year] 880.11 873.90 2594.36 1878.94 2574.92 687.67

Total cost [$/year] 6021.51 4726.20 4160.83 3419.91 3947.64 1447.64

Economic benefit [%] 0.00 21.51 30.90 43.21 34.44 75.96

The results reported in Table 7 show that the simultaneous implementation of OCS
and ODNR provides the highest economic benefit of 75.96%. Individually, OCS yields an
economic benefit of 30.9%, whereas ODNR achieves 21.51%. Furthermore, the sequential
optimization of ODNR and then OCS and vice versa yield economic benefits of 43.21% and
34.44% respectively.

The simultaneous implementation of OCS and ODNR also presents the highest re-
duction in power loss. Note that the power losses of the base case amount to 233.04 kW,
whereas the ones obtained with the simultaneous optimization are 34.4 kW, representing a
reduction of 85.23%. Individually, ODNR and OCS result in loss reductions of 66.0% and
58.3%, respectively, whereas the sequential optimization resulted in power loss reductions
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of 70.03% and 72.44% for ODNR and then OCS, and vice versa, respectively. Regarding
the voltage profile, the initial scenario, referred to as the base case, presents a minimum
voltage of 0.8919 p.u. The most substantial enhancement in voltage profile was attained by
simultaneously implementing OCS and ODNR, with a minimum voltage of 0.9725 p.u. In
this situation, there was an 8.26% increase in the minimum voltage. Finally, the results for
this test system show that the combination of the two optimization approaches, OCS and
ODNR, leads to a more optimized system than when any of them are solved individually.

Table 8 indicates the open switches used in the analyzed cases. Note that the open
switches in the ODNR-only scenario are the same as the ones of the sequential ODNR-OCS
scenario, but different from those employed in the simultaneous OCS and ODNR scenario.
This is due to the impact of the OCS on the most efficient reconfiguration strategy aimed at
minimizing losses.

Table 8. Open switches for the 69-bus test system.

Case Open Switches

Initial base case 69 to 73

Only OCS 69 to 73

Only ODNR 13, 20, 61, 69, 72

Sequential ODNR-OCS 13, 20, 61, 69, 72

Sequential OCS-ODNR 12, 64, 69, 70, 72

Simultaneous OCS and ODNR 20, 56, 69, 71, 73

Table 9 presents the conductor types selected for the base case (A), only OCS (B),
sequential ODNR and then OCS (C) and simultaneous OCS and ODNR (D). The solutions
differ significantly due to the impact of the ODNR. As the system reconfiguration is
optimized, there are changes in the OCS, leading to a decrease in the investment conductor
cost. Consequently, integrating OCS and ODNR in an optimization problem results in a
more efficient and economically viable distribution system planning.

Figure 3 depicts the optimal solution for the simultaneous OCS and ODNR problem,
where the conductor type of each branch is indicated in parenthesis in red, and the branch
number is indicated in blue. Note that the solution involves the use of conductor types 20,
14, 8, 6, 3, 2, and 1. It was observed that larger capacity conductors are selected for branches
located closer to the substation. Furthermore, Figure 3 also shows the specific switches that
were opened to achieve the optimal reconfiguration of the system.

Figure 4 illustrates the voltage profile of the 69-bus test system considering the cases
described in Table 7. Note that in the base case buses 60 to 66 exhibit low voltage values.
However, this issue is effectively rectified through the implementation of OCS and ODNR.
An initial improvement in these voltages is obtained with only ODNR, as indicated in the
yellow line, these voltages are further improved with only OCS and with the sequential
implementation of both. Finally, it is observed that the best voltage profile is obtained
with the simultaneous OCS and ODNR. In this case, all voltage magnitudes remain above
0.97 p.u.
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Table 9. Selected conductors for all simulations carried out for the 69-bus test system.

Branch A B C D Branch A B C D Branch A B C D

1 14 20 20 20 26 1 1 3 1 51 1 1 1 1

2 14 20 19 20 27 1 1 1 1 52 6 20 14 1

3 14 20 20 20 28 1 1 1 1 53 6 19 14 1

4 14 20 20 8 29 1 1 1 1 54 6 20 14 1

5 14 20 20 8 30 1 1 1 1 55 6 19 14 1

6 14 20 20 8 31 1 1 1 1 56 6 19 14 –

7 14 20 19 8 32 1 1 1 1 57 6 19 14 1

8 14 20 19 8 33 1 1 1 1 58 6 19 14 1

9 2 8 8 8 34 1 1 1 1 59 5 19 14 14

10 2 8 8 8 35 1 2 3 2 60 5 19 14 14

11 2 6 8 6 36 1 1 3 1 61 1 8 – 3

12 2 3 5 3 37 1 1 3 1 62 1 10 1 3

13 2 3 – 1 38 1 1 3 1 63 1 8 1 3

14 2 3 1 1 39 1 1 3 1 64 1 4 2 1

15 2 3 1 1 40 1 1 2 1 65 1 1 1 1

16 2 3 1 1 41 1 1 2 1 66 1 1 1 1

17 2 2 1 1 42 1 1 2 1 67 1 1 1 1

18 2 2 1 1 43 1 1 2 1 68 1 1 1 1

19 2 2 1 1 44 1 1 2 1 69 1 1 – –

20 1 2 4 – 45 1 1 2 1 70 1 1 5 2

21 1 1 – 1 46 2 8 8 14 71 1 1 1 –

22 1 1 4 1 47 2 8 8 14 72 1 1 – 14

23 1 1 4 1 48 2 8 8 14 73 1 1 3 –

24 1 1 3 1 49 2 4 4 14

25 1 1 3 1 50 1 1 1 1

A: Base case; B: only OCS; C: sequential ODNR-OCS, and D: simultaneous OCS and ODNR.
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Figure 3. Simultaneous OCS and ODNR for the 69-bus test system.
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Figure 4. Voltage profile of the 69-bus test system for different scenarios.

4.3. OCS and ODNR for the 83-Bus Test System

The 83-bus test system comprises 96 branches, 83 normally closed tie switches, and
13 initially open interconnection switches. The system operates at a nominal voltage of
11.4 kV and has a total demand of 28,350.9 + j 20,700 kVA. A power flow was computed to
determine the initial state of the network. In the initial base case, the active power losses
are 531.91 kW, and the minimum voltage magnitude is 0.9378 p.u. In this case, voltage
limits are considered from 0.95 to 1.00 p.u. Table 10 presents the optimal solutions found
with the 83-bus test system for the different cases under study.

Table 10. Proposed solutions for the 83-bus test system.

Description Base Case Only Only Sequential Sequential Simultaneous
ODNR OCS ODNR→ OCS OCS→ ODNR OCS and ODNR

Minimum voltage [p.u.] 0.9514 0.9733 0.9605 0.9799 0.9817 0.9605

Active power losses [kW] 515.77 491.33 263.72 251.79 255.45 253.23

Active power losses cost [$] 11,379.07 10,839.87 5818.36 5555.06 5635.81 5586.81

Conductor cost [$/year] 2134.76 2245.92 4136.38 4338.42 4164.07 4100.23

Total cost [$/year] 13,513.83 13,085.79 9954.75 9893.58 9799.88 9687.04

Economic benefit [%] 0.00 3.17 26.34 26.78 27.48 28.31

From Table 10, it is evident that the simultaneous implementation of OCS and ODNR
provides the highest economic benefit of 28.31%. This benefit is closely followed by the
one obtained with sequential OCS and then ODNR of 27.48%. It was also observed that
the sequential ODNR and then OCS present similar economic benefits of only OCS with
26.78% and 26.34%, respectively. This means that for this test system, it is difficult to further
reduce power losses once OCS has been carried out. Finally, the lowest economic benefit of
only 3.17% was achieved with only ODNR.

As regards technical losses, the ODNR offers a reduction of only 4.73% (from 515.77 kW
of the base case to 491.33 kW), whereas the rest of the cases under study manage to reduce
power losses by nearly 50%. In this case, the highest power loss reduction was obtained
with the sequential ODNR and then OCS approach (51.18%) followed by the simultaneous
approach (50.9%). It is worth mentioning that despite the fact that this sequential approach
presented a higher power loss reduction, the overall economic benefit of the simultaneous
approach is higher.
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Regarding the voltage profile, the initial scenario, referred to as the base case, presents
a minimum voltage of 0.9514 p.u. The most substantial enhancement in the voltage profile
was attained by the sequential OCS and then ODNR approach. In this situation, the
minimum voltage is 0.9817 p.u.; on the other hand, the minimum voltage attained by the
simultaneous approach was 0.9605 p.u.

Table 11 indicates the open switches used in the analyzed cases. It is important
to highlight that the open switches in the ODNR-only scenario are distinct from those
employed in the simultaneous OCS and ODNR scenarios but the same as the sequential
ODNR and then OCS scenario. This is due to the impact of the OCS on the most efficient
reconfiguration strategy aimed at minimizing power losses.

Table 11. Open switches for 83-bus test system.

Case Open Switches

Initial base case 84 to 96

Only OCS 84 to 96

Only ODNR 7, 13, 34, 39, 42, 63, 72, 83, 84, 86, 89, 90, 92

Sequential ODNR-OCS 7, 13, 34, 39, 42, 63, 72, 83, 84, 86, 89, 90, 92

Sequential OCS-ODNR 7, 32, 34, 35, 41, 64, 72, 83, 84, 86, 88, 89, 90

Simultaneous OCS and ODNR 32, 39, 42, 72, 83 84, 85, 86, 88, 89, 90, 94, 96

Table 12 presents the conductor types selected for the base case (A), only OCS (B),
sequential ODNR and then OCS (C) and simultaneous OCS and ODNR (D). Note that the
solutions differ significantly due to the impact of the ODNR. As the system reconfiguration
is optimized, there are changes in the OCS, and this leads to a decrease in the investment
conductor cost.

Table 12. Selected conductors for all simulations carried out for the 83-bus test system.

Branch A B C D Branch A B C D Branch A B C D

1 14 20 19 20 33 6 14 8 14 65 15 20 19 20

2 14 20 19 20 34 6 14 8 14 66 15 20 20 20

3 14 20 19 20 35 6 6 8 5 67 15 20 20 20

4 14 20 18 20 36 6 5 5 4 68 15 20 20 20

5 14 20 14 20 37 6 3 8 3 69 9 19 14 18

6 12 20 14 20 38 6 3 20 2 70 9 19 20 18

7 5 14 8 14 39 6 1 20 – 71 9 19 20 18

8 1 3 8 3 40 6 1 20 1 72 9 2 20 –

9 1 3 8 3 41 6 3 14 2 73 5 14 14 14
10 1 4 19 4 42 6 1 20 – 74 5 14 14 14

11 13 20 19 20 43 2 13 20 13 75 5 14 5 14

12 13 20 14 20 44 2 13 20 13 76 5 3 14 3

13 5 8 20 8 45 2 13 20 13 77 17 20 8 20

14 13 8 20 8 46 2 2 20 2 78 17 20 14 20

15 17 20 20 20 47 13 20 20 20 79 17 20 13 20

16 17 20 20 20 48 13 20 18 20 80 7 14 5 8
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Table 12. Cont.

Branch A B C D Branch A B C D Branch A B C D

17 16 20 20 20 49 13 20 14 20 81 7 13 14 8

18 16 20 14 20 50 13 20 8 20 82 7 6 4 1

19 7 19 14 20 51 13 20 19 20 83 7 5 14 –

20 7 8 4 14 52 13 14 19 14 84 13 13 13 –

21 1 6 5 6 53 13 13 19 13 85 5 5 5 –

22 1 1 3 1 54 13 8 18 8 86 13 13 13 –

23 1 1 20 1 55 13 2 18 2 87 13 13 13 2

24 1 1 20 1 56 5 14 8 14 88 5 5 5 –

25 7 19 19 20 57 5 14 8 14 89 16 16 16 –

26 7 19 19 20 58 5 14 8 14 90 20 20 20 –

27 7 18 8 20 59 5 8 20 9 91 7 7 7 5

28 7 18 20 20 60 5 8 20 9 92 17 17 17 14

29 6 2 20 3 61 5 8 20 8 93 6 6 6 1

30 17 20 13 18 62 5 8 20 8 94 6 6 6 –

31 17 20 8 18 63 5 8 19 8 95 6 6 6 1

32 17 14 13 – 64 5 3 19 3 96 5 5 5 –

A: base case; B: only OCS; C: sequential ODNR-OCS, and D: simultaneous OCS and ODNR.

Figure 5 depicts the optimal solution for the simultaneous OCS and ODNR problem,
where the conductor type of each branch is indicated in parenthesis in red, and the branch
number is indicated in blue. Note that the solution involved the use of conductor types
20, 19, 14, 13, 11, 8, 6, 5, 4, 3, 2, and 1. Furthermore, as with the other test systems, larger
capacity conductors were selected for branches near the substation. Figure 5 also shows
the specific switches that were opened to achieve the optimal reconfiguration.

Figure 6 depicts the voltage profile of the 83-bus test system. Note that for the base
case, all voltage magnitudes are above 0.95 p.u.; nonetheless, the voltage profile is further
improved in all cases under study.

Substation

1

2

3

4

5

6

7
8

9

10

11

12
13 14

15

16

17

18

19

20

21

22
23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

85

84

86

87

88

90

89

91

92

93

94

95

96

60

(1)
(1)

(1)

(1)
(1)

(1)Conductor type( )

Branch numberBranch number

Open switchesOpen switches

Conductor type( )

Branch number

Open switches

(2)

(2)

(2)

(2)
(2)

(3)
(3)

(3)

(3)

(3)

(4)

(5)

(4)

(3)

(1)

(6)

(8) (8)

(14)

(8)

(9)

(8)

(8)

(8)

(9)

(13)

(13)

(13)

(13)

(8)

(14)

(14)

(14)

(14)

(14)

(14)

(14)

(14)

(14)

(14)

(8)
(14)

(18)

(18)

(18)

(18)

(18)

(19)

(20)

(20)

(20)

(20)

(20)

(20)

(20)

(20)

(20)

(20)

(20)

(20)

(20)

(20)

(20)

(20)

(20)

(20)

(20)

(20)

(20)

(20)

(20)

(20)

(20)

(20)

(20)

(20)

(5)

Figure 5. Simultaneous OCS and ODNR for the 83-bus test system.
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Figure 6. Voltage profile of the 83-bus test system

5. Conclusions

Choosing new conductors as replacements for outdated or deteriorated cables can lead
to substantial reductions in power losses and enhancement of voltage profiles. Nevertheless,
OCS alone might not always be fully effective in achieving significant reductions in technical
losses or improving voltage profiles. As a result, OCS can be complemented using other
technical approaches. In this study, we integrate OCS with ODNR, which is a method
that modifies the distribution network’s topology to minimize power losses and enhance
voltage profiles.

Both OCS and ODNR were integrated into a unified MILP model, enabling to obtain
globally optimal solutions. This marks the main innovation of the study because the
integration of these two issues through a MILP approach has not been previously put forth
in the specialized literature. Moreover, the model offers flexibility in decision making,
allowing the problems to be addressed jointly or separately as needed.

The efficiency and suitability of the suggested model was assessed using three standard
distribution test systems. In each investigated scenario, it was proven that employing
simultaneously both optimization methods (OCS and ODNR) within the proposed MILP
model results in a more optimized system, characterized by higher economic benefits,
compared to solving either of them separately or sequentially.

In the 33-bus and 69-bus test systems, the combined application of OCS and ODNR
yielded the greatest decrease in technical losses and the most notable enhancement in
voltage profile. In the 83-bus test system the sequential ODNR and then OCS approach
resulted in slightly higher power loss reduction than the simultaneous approach; nonethe-
less, the latter reported higher overall economic benefits. Additionally, across all test
systems, implementing OCS and DNR simultaneously led to the choice of lower current
capacity conductors compared to using only OCS. This capacity reduction was attributed
to the effect of DNR and significantly influenced the overall investment cost. Future work
may include a multi-period optimization approach to consider active and reactive power
demand variations and the impact of renewable generation.
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Appendix A

The electrical data for the test systems used in this paper is provided in this section.

Table A1. Initial electrical data for the 33-bus test system.

Branch
Branch P Q Conductor Operation Length Branch Branch P Q Conductor Operation Length

From To [kW] [kVAr] Type State [km] From To [kW] [kVAr] Type State [km]

1 1 2 100 60 15 1 0.4164 20 20 21 90 40 1 1 0.1507

2 2 3 90 40 15 1 2.2267 21 21 22 90 40 1 1 0.2608

3 3 4 120 80 7 1 0.8018 22 3 23 90 50 2 1 0.3284

4 4 5 60 30 7 1 0.8348 23 23 24 420 200 2 1 0.6536

5 5 6 60 20 7 1 1.7941 24 24 25 420 200 2 1 0.6521

6 6 7 200 100 2 1 0.1362 25 6 26 60 25 2 1 0.1477

7 7 8 200 100 2 1 0.5178 26 26 27 60 25 2 1 0.2068

8 8 9 60 20 2 1 0.7496 27 27 28 60 20 2 1 0.7707

9 9 10 60 20 2 1 0.7598 28 28 29 120 70 2 1 0.5853

10 10 11 45 30 2 1 0.1431 29 29 30 200 600 2 1 0.3694

11 11 12 60 35 2 1 0.2725 30 30 31 150 70 2 1 0.7092

12 12 13 60 35 2 1 1.0684 31 31 32 210 100 2 1 0.2260

13 13 14 120 80 2 1 0.3942 32 32 33 60 40 2 1 0.2482

14 14 15 60 10 2 1 0.4301 32 32 33 60 40 2 1 0.2482

15 15 16 60 20 2 1 0.5432 33 8 21 2 0 1.4556

16 16 17 60 20 2 1 0.9381 34 9 15 2 0 1.4556

17 17 18 90 40 2 1 0.5328 35 12 22 2 0 1.4556

18 2 19 90 40 1 1 0.0603 36 18 33 2 0 0.3639

19 19 20 90 40 1 1 0.5534 37 25 29 2 0 0.3639

Table A2. Initial electrical data for the 69-bus test system.

Branch
Branch P Q Conductor Operation Length Branch Branch P Q Conductor Operation Length

From To [kW] [kVAr] Type State [km] From To [kW] [kVAr] Type State [km]

1 1 2 0.00 0.00 14 1 0.002 38 38 39 24.00 17.00 1 1 0.011

2 2 3 0.00 0.00 14 1 0.002 39 39 40 24.00 17.00 1 1 0.001

3 3 4 0.00 0.00 14 1 0.007 40 40 41 1.20 1.00 1 1 0.268

4 4 5 0.00 0.00 14 1 0.114 41 41 42 0.00 0.00 1 1 0.114

5 5 6 2.60 2.20 14 1 1.669 42 42 43 6.00 4.30 1 1 0.015

6 6 7 40.40 30.00 14 1 1.738 43 43 44 0.00 0.00 1 1 0.003

7 7 8 75.00 54.00 14 1 0.420 44 44 45 39.22 26.30 1 1 0.040

8 8 9 30.00 22.00 14 1 0.225 45 45 46 39.22 26.30 1 1 0.003

9 9 10 28.00 19.00 2 1 0.596 46 4 47 0.00 0.00 2 1 0.002

10 10 11 145.00 104.00 2 1 0.136 47 47 48 79.00 56.40 2 1 0.062

11 11 12 145.00 104.00 2 1 0.518 48 48 49 384.70 274.50 2 1 0.211
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Table A2. Cont.

Branch
Branch P Q Conductor Operation Length Branch Branch P Q Conductor Operation Length

From To [kW] [kVAr] Type State [km] From To [kW] [kVAr] Type State [km]

12 12 13 8.00 5.50 2 1 0.750 49 49 50 384.70 274.50 2 1 0.060

13 13 14 8.00 5.50 2 1 0.760 50 8 51 40.50 28.30 1 1 0.034

14 14 15 0.00 0.00 2 1 0.770 51 51 52 3.60 2.70 1 1 0.122

15 15 16 45.50 30.00 2 1 0.143 52 9 53 4.35 3.50 6 1 0.319

16 16 17 60.00 35.00 2 1 0.272 53 53 54 26.40 19.00 6 1 0.373

17 17 18 60.00 35.00 2 1 0.003 54 54 55 24.00 17.20 6 1 0.522

18 18 19 0.00 0.00 2 1 0.238 55 55 56 0.00 0.00 6 1 0.516

19 19 20 1.00 0.60 2 1 0.153 56 56 57 0.00 0.00 6 1 2.918

20 20 21 114.00 81.00 1 1 0.126 57 57 58 0.00 0.00 6 1 1.438

21 21 22 5.30 3.50 1 1 0.005 58 58 59 100.00 72.00 6 1 0.558

22 22 23 0.00 0.00 1 1 0.059 59 59 60 0.00 0.00 5 1 0.568

23 23 24 28.00 20.00 1 1 0.127 60 60 61 1244.00 888.00 5 1 0.747

24 24 25 0.00 0.00 1 1 0.275 61 61 62 32.00 23.00 1 1 0.036

25 25 26 14.00 10.00 1 1 0.114 62 62 63 0.00 0.00 1 1 0.053

26 26 27 14.00 10.00 1 1 0.064 63 63 64 227.00 162.00 1 1 0.261

27 3 28 26.00 18.60 1 1 0.002 64 64 65 59.00 42.00 1 1 0.383

28 28 29 26.00 18.60 1 1 0.024 65 11 66 18.00 13.00 1 1 0.074

29 29 30 0.00 0.00 1 1 0.146 66 66 67 18.00 13.00 1 1 0.002

30 30 31 0.00 0.00 1 1 0.026 67 12 68 28.00 20.00 1 1 0.272

31 31 32 0.00 0.00 1 1 0.129 68 68 69 28.00 20.00 1 1 0.002

32 32 33 14.00 10.00 1 1 0.309 69 11 43 1 0 0.184

33 33 34 19.50 14.00 1 1 0.628 70 13 21 1 0 0.184

34 34 35 6.00 4.00 1 1 0.542 71 15 46 1 0 0.368

35 3 36 26.00 18.55 1 1 0.002 72 50 59 1 0 0.736

36 36 37 26.00 18.55 1 1 0.024 73 27 65 1 0 0.368

37 37 38 0.00 0.00 1 1 0.039

Table A3. Initial electrical data for the 83-bus test system.

Branch
Branch P Q Conductor Operation Length Branch Branch P Q Conductor Operation Length

From To [kW] [kVAr] Type State [km] From To [kW] [kVAr] Type State [km]

1 0 1 0.0 0.0 14 1 0.88646 49 48 49 0.0 0.0 13 1 0.23862

2 1 2 100.0 50.0 14 1 0.95577 50 49 50 200.0 160.0 13 1 0.14317

3 2 3 300.0 200.0 14 1 1.07524 51 50 51 800.0 600.0 13 1 0.28634

4 3 4 350.0 250.0 14 1 0.41815 52 51 52 500.0 300.0 13 1 0.14317

5 4 5 220.0 100.0 14 1 0.65577 53 52 53 500.0 350.0 13 1 0.28634

6 5 6 1100.0 800.0 12 1 0.23013 54 53 54 500.0 300.0 13 1 0.03814

7 6 7 400.0 320.0 5 1 0.98960 55 54 55 200.0 80.0 13 1 0.04820

8 7 8 300.0 200.0 1 1 0.38560 56 0 56 0.0 0.0 5 1 0.33377

9 7 9 300.0 230.0 1 1 0.86750 57 56 57 30.0 20.0 5 1 0.79043

10 7 10 300.0 260.0 1 1 0.38560 58 57 58 600.0 420.0 5 1 0.07712

11 0 11 0.9 0.0 13 1 0.28634 59 58 59 0.0 0.0 5 1 0.02948

12 11 12 1200.0 800.0 13 1 1.24080 60 59 60 20.0 10.0 5 1 0.02860

13 12 13 800.0 600.0 5 1 0.01907 61 60 61 20.0 10.0 5 1 0.01907

14 12 14 700.0 500.0 13 1 0.05721 62 61 62 200.0 130.0 5 1 0.07627

15 0 15 0.0 0.0 17 1 0.61497 63 62 63 300.0 240.0 5 1 0.08675

16 15 16 300.0 150.0 17 1 0.28416 64 63 64 300.0 200.0 5 1 0.00894

17 16 17 500.0 350.0 16 1 0.23593 65 0 65 0.0 0.0 15 1 0.21951

18 17 18 700.0 400.0 16 1 0.70779 66 65 66 50.0 30.0 15 1 0.76920

19 18 19 1200.0 1000.0 7 1 0.08609 67 66 67 0.0 0.0 15 1 0.54878

20 19 20 300.0 300.0 7 1 0.12394 68 67 68 400.0 360.0 15 1 0.98780

21 20 21 400.0 350.0 1 1 0.08675 69 68 69 0.0 0.0 9 1 0.12653

22 21 22 50.0 20.0 1 1 0.05784 70 69 70 0.0 0.0 9 1 0.18979
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Table A3. Cont.

Branch
Branch P Q Conductor Operation Length Branch Branch P Q Conductor Operation Length

From To [kW] [kVAr] Type State [km] From To [kW] [kVAr] Type State [km]

23 21 23 50.0 20.0 1 1 0.07230 71 70 71 2000.0 1500.0 9 1 0.14762

24 23 24 50.0 10.0 1 1 0.04821 72 71 72 200.0 150.0 9 1 0.00964

25 0 25 50.0 30.0 7 1 0.12421 73 0 73 0.0 0.0 5 1 0.47682

26 25 26 100.0 60.0 7 1 0.22957 74 73 74 0.0 0.0 5 1 0.04768

27 26 27 100.0 70.0 7 1 0.54524 75 74 75 1200.0 950.0 5 1 0.08344

28 27 28 1800.0 1300.0 7 1 0.10646 76 75 76 300.0 180.0 5 1 0.07152

29 28 29 200.0 120.0 6 1 0.04820 77 0 77 0.0 0.0 17 1 1.36171

30 0 30 0.0 0.0 17 1 1.06562 78 77 78 400.0 360.0 17 1 0.70282

31 30 31 1800.0 1600.0 17 1 0.71041 79 78 79 2000.0 1300.0 17 1 0.26356

32 31 32 200.0 150.0 17 1 0.24041 80 79 80 200.0 140.0 7 1 0.14370

33 32 33 200.0 100.0 6 1 0.04808 81 80 81 500.0 360.0 7 1 0.09534

34 33 34 800.0 600.0 6 1 0.18681 82 81 82 100.0 30.0 7 1 0.03374

35 34 35 100.0 60.0 6 1 0.01928 83 82 83 400.0 360.0 7 1 0.11567

36 35 36 100.0 60.0 6 1 0.18315 84 5 55 0.0 0.0 13 0 0.47723

37 36 37 20.0 10.0 6 1 0.01446 85 7 60 0.0 0.0 5 0 0.19279

38 37 38 20.0 10.0 6 1 0.01446 86 11 43 0.0 0.0 13 0 0.47723

39 38 39 20.0 10.0 6 1 0.02892 87 12 72 0.0 0.0 13 0 1.24080

40 39 40 20.0 10.0 6 1 0.07712 88 13 76 0.0 0.0 5 0 0.67476

41 38 41 200.0 160.0 6 1 0.07230 89 14 18 0.0 0.0 16 0 2.41828

42 41 42 50.0 30.0 6 1 0.07712 90 16 26 0.0 0.0 20 0 0.74980

43 0 43 0.0 0.0 2 1 0.03537 91 20 83 0.0 0.0 7 0 0.17218

44 43 44 30.0 20.0 2 1 0.02860 92 28 32 0.0 0.0 17 0 0.28416

45 44 45 800.0 700.0 2 1 0.09534 93 29 39 0.0 0.0 6 0 0.14425

46 45 46 200.0 150.0 2 1 0.08675 94 34 46 0.0 0.0 6 0 0.04808

47 0 47 0.0 0.0 13 1 0.88525 95 40 42 0.0 0.0 6 0 0.36062

48 47 48 0.0 0.0 13 1 0.23862 96 53 64 0.0 0.0 5 0 0.05784
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