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Abstract: We propose a network optimization model for smart energy market management in the con-
text of an uncertain environment. The network optimization considers the stochastic programming
approach to capture the randomness of the unknown demands. We utilize the particle swarm opti-
mization technique in the proposed model to solve the proposed optimization problem. The present
research is based on the inclusion of stochastic demands and uncertain energy prices. Optimizing
produced energy is crucial for efficient usage and meeting the targets. The proposed model also
focuses on addressing sustainability concerns by minimizing energy consumption in the scheduling
process. An improved particle swarm optimization technique is implemented for energy-efficient
production. Parameters such as number of particles, iterations, and energy usage specification are
customized. A fitness function is taken that considers both completion time and energy consumption.
The optimal of energy consumption is also visualized. The decision makers employ risk aversion
in the objective function of the optimization problem to measure the risk deviation of the expected
energy management.

Keywords: smart energy management; robust optimization; particle swarm optimization

1. Introduction

Energy is one of the most viable resources to fulfill the multi-criteria assessment [1].
The crisis in energy has been triggered by the Russo-Ukrainian war [2]. The production
and consumption of energy in industrialized nations have been extensively studied [3], but
studies on the efficient consumption of energy in developing countries have either not been
done or have only recently been started. Energy consumption has been on the rise globally
due to increased urbanization, industrializations, and population growth [4]. However,
this increase in energy consumption has resulted in environmental degradation including
climate change, air pollution, and resource depletion. As a result, there is a growing need
for an integrated approach that incorporates energy management strategies and renewable
energy sources to address these concerns.

1.1. Motivation

The smart energy market highlights not only the individual smart energy grid but also
all energy grids such as electricity, thermal, and gas. These smart grids should be connected
so as to better exploit synergies across the different individual energy grids. In light of the
anticipated shift to the smart energy market, the role of future energy sources depends on
a variety of criteria, including their cost, technical capabilities, the availability of suitable
sites, and the necessity for energy storage or load balancing [5]. The revenue management
system is the backbone of the energy generation industry. Over the years, the industry
has developed sophisticated systems for forecasting demand, controlling inventory by
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price, and responding to competitors’ prices in the smart energy market revenue [6]. It
incorporates the application of pricing strategies and information systems in order to
allocate the appropriate energy capacity to the appropriate client at the appropriate price at
the appropriate moment. In today’s world, revenue management is a widely established
subject in the field of aviation, hospitality, auto rental, cruise line, rail freight, and television
broadcast industries [7–12]. Other industries have also investigated revenue management
methodologies such as the planning issue at a broadcasting corporation and renewable
and sustainable energy [13–15]. Revenue management improves energy-aware resource
allocation without raising costs through market forecasting and price strategy [16]. The
situation-based stochastic framework was used for the variable modeling of pool market
prices and customer group demand in the smart grid environment [17]. An optimization
framework for an energy storage system combining cooling and heating systems was
proposed based on price demand response strategy and analysis [18]. The technical (tools
and machines on which managers work and become proficient at operating after a certain
time) and social skills (interpersonal skills or manager’s skills that can be used in every job)
improved revenue energy management [19]. Iris and Lam (2021) [20] suggested integrated
energy management and operations planning for posts as large-scale energy end users. This
planning could significantly reduce costs with energy arbitrage and load shifting under a
demand response mechanism in a smart grid. The cargo inventory costs were affected by
the speed of logistics operations of ships. The speed models in energy-efficient maritime
transportation were surveyed with respect to both the economy and environment [21].
A detailed literature review on energy efficiency in ports and containers was conducted,
where technologies such as cold-ironing, the electrification of equipment, energy storage
systems, and smart grid and micro-grids were discussed. Furthermore, methods regarding
energy consumption and emission assessment were discussed [22]. Several different
energy revenue management strategies, including capacity control, pricing, energy demand,
forecasting, and overbooking, appear in [23,24]. A dynamic programming formulation
was considered to relate the energy-aware routing for delivering customers [25]. Lai and
Ng (2005) [26] proposed an absolute deviation model to maximize revenue from random
demands and measure risk in the context of different situations. This pioneered work gave
a viable solution to maximize the profit of the hotel industry. Ibrahim et al. [27] constructed
a stochastic equilibrium model with three agents’ producer, mid-streamer, and consumer
to express the optimal contracting between the producer and the mid-streamer of the oil
gas industry. The good-deal risk function was used to measure the risk generated by the
proposed model. Philpott et al. [28] studied competitive market equilibrium, uncertainty,
and risk in a hydrothermal electricity system where agents optimized their current and
future profit, accounting for future prices that depend on uncertain inflows. To explore
the solution of equilibrium uncertainty problems in the sector of energy management,
researchers may refer [29,30] and references therein.

Feng and Xiao (2006) [31] derived a yield management model to integrate the capacity
allocation and pricing strategy for perishable products. A causal relationship between
customers’ price fairness perceptions and their behavioral intentions was investigated in the
context of electric energy management [32]. A network revenue management system was
modeled under horizontal and vertical competition to increase the revenue of competitors
in the energy-internet-oriented management [33]. From a review of the literature, it is
worth mentioning that simulation is the major technique for investigating the smart home-
energy management of day-ahead and real-time energy market problems [34]. Zhang
et al. (2019) [35] utilized simulated data to judge the heuristic approaches of accepting or
rejecting decisions for energy-aware allocation, which combined dynamic workflow and
resource monitoring [36].

1.2. Research Gaps

Although revenue management has been employed in many other industries, the
smart energy industry has seen very little application. The energy market capacity has
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the following characteristics: (i) energy market capacity is perishable in nature and cannot
be saved for future sale; (ii) the energy market capacity is fixed, and it is impossible to
expand immediately at a reasonable cost; (iii) both the marginal cost and sales cost are
small; (iv) the demand of the energy market capacity varies with the time period of each
day, such as morning and midnight, and the season of each year like summer, winter,
ordinary days, and holidays; and (v) advance bookings are welcomed, which make the
smart energy market safe. There are drawbacks to the smart energy market. Smart energy
such as the electric energy needs to be transmitted, produced, and consumed. However,
the security of the energy grid should also be taken into account [37]. Therefore, a tight
policy is necessary for no-shows, cancellations, and overbooking issues [38]. Bookings are
encouraged to be made in advance, even one day or half an hour in advance, in order to
guarantee the safety and efficiency of the energy grid and energy market. Orders for energy
typically last for a period of time such as one day/week/month/year, and the price varies
with the quantity and time period [39].

1.3. Contributions and Advantages of the Proposed Model

This paper proposes a new framework approach to support the smart energy market
by incorporating the robust optimization technique to particle swarm optimization. The
aim is to ensure the efficient usage of available energy. However, the capacity-constrained
industries such as electricity energy, wind energy, and solar energy industries frequently
struggle to allocate their limited perishable inventories to meet demand from several
market segments. It is crucial for the smart energy market system to obtain a noble method
to accept the energy booking in advance. Therefore, we are motivated to answer of the
following research questions:

1. How to operate the energy market in such a way that accounts for risk trade-offs and
various price structures?

2. How to fulfill the future demands of energy so that total capacity does not exceed the
estimated capacity under stochastic situations?

This paper presents the revenue management system to answer the above questions.
The revenue management system for the energy industry is more complex than that
for airlines and hotel business. The stochastic model is proposed on the basis of the
energy market facing stochastic demands with varied prices. A network optimization
mechanism [40,41] is applied in the proposed model under an uncertain environment.
The network optimization involves stochastic programming formulation to capture the
randomness of the unknown demand.

The paper is organized as follows. The notations and parameters used in this paper
are introduced in Section 2. The basic mathematical model is formulated in Section 3. The
importance of stochastic programming and the solution scheme for robust optimization are
discussed in Section 4. The IPSO algorithm for stochastic robust optimization is presented
in Section 5. Section 6 illustrates examples to show the effectiveness of the proposed model.
Finally, the conclusion and future remarks are given in Section 7.

2. Notations and Assumptions

The procedure of the smart energy booking system is presented in Figure 1.
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For the parameters and variables used in this paper, we adhere to major notations.
Let qij be the energy quantity consumed in each time unit of accepted booking that is
considered as the decision variables beginning from the start of time unit i to the end of
time unit j, such that 1 ≤ i ≤ j ≤ T, where i, j ∈ {1, . . . , T} are time units. Let C be total
capacity of the energy market system. Let pi,j be the price for energy booking beginning
from the starting time unit i to the ending time unit j. Let Di,j be the energy demand
beginning from the start of time unit i to the end of time unit j. Let qm be the total energy
quantity accepted by advance booking in time unit k, given as:

qm =
m

∑
i=1

T

∑
j=i

qij. (1)

Let fm be the cost of energy generation in time unit m. This can be expressed as:
fm = aq2

m + bqm + e.
Note that variables a and b are constant over time and e is an unobserved error that

arises due to the uncertain demand of energy. It is presumed that each booking should be
made at least one time unit in advance and that each booking will last at least one time unit.

3. Stochastic Network Formulation

It can be demonstrated from Figure 1 that each time unit is viewed as a node in the
network, and the flow after time unit m can be computed as

q∗m =
m

∑
i=1

T

∑
j=k

qi,j −
m

∑
i=1

qi,m. (2)

We take into account a particular time unit m, where m ∈ {1, . . . , T} in the planning
period is given in Figure 1. The following equation model represents the total energy
quantity accepted by advanced booking in time unit m,

qm =
m

∑
i=1

T

∑
j=m

qi,j. (3)

If C represents the total capacity of the energy market and Dm is the actual demand
of energy on time unit m, then the specific constraint for day m ∈ {1, . . . , T} should
be satisfied:

Di,j =
m

∑
i=1

T

∑
j=m

qi,j ≤ C, (4)

where qi,j ≤ Di,j. We formulate our robust optimization model as:

ς =
T
∑

i=1

T
∑
j=i

pi,jqi,j −
T
∑

m=1
qm fm =

T
∑

i=1

T
∑
j=i

pi,jqi,j −
T
∑

m=1

[
qm
(
aq2

m + bqm + e
)]

=
T
∑

i=1

T
∑
j=i

pi,jqi,j −
T
∑

m=1

[
aq3

m + bq2
m + eqm

]
.

Therefore,

ς =
T

∑
i=1

T

∑
j=i

pi,jqi,j −
T

∑
k=1

a

(
m

∑
i=1

T

∑
j=m

qi,j

)3

+ b

(
m

∑
i=1

T

∑
j=m

qi,j

)2

+ e

(
m

∑
i=1

T

∑
j=m

qi,j

) . (5)

In order to acquire the future demands of the energy market, we propose the following
mathematical programming:
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ς (6)

Maximize Equation (6).
Subject to

qm =
m

∑
i=1

T

∑
j=m

qi,j ≤ C (7)

T

∑
j=1

q1,j ≤ C, (8)

qi,j ≥ 0, (9)

qi,j ≤ Di,j, (10)

for all 0 ≤ i < j ≤ T.

4. Stochastic Formulation in Robust Optimization Scheme

In the energy market, the mentioned parameters Di,j in Equation (4) are uncertain
at the starting of the planning period. Moreover, the revenue may not be constant, as
the decision managers may like to fix different pricing that results in different demands.
Revenue managers compute such a problem by replacing the parameters with better point
estimators. For instance, expected value F

(
Di,j
)

can be used to replace the uncertain
parameter of Di,j. However, practitioners can obtain success by utilizing the expected value
approach. The drawback of this approach is that it does not give a feasible solution. One
may apply sensitivity analysis for corrective action [12]. Decision makers prefer to use
proactive tools to obtain the feasible solutions.

Since it is hard to entirely eliminate uncertainty in the proposed model, accepting
uncertainty first, understanding it, and incorporating it into the planned decision model are
the best ways to make decisions in an uncertain world. When it comes to solving stochastic
problems, robust optimization [12,13] integrates goal programming and the scenario-based
description of unknown data. In light of demand uncertainty, the decision maker typically
deals with many situations. We assume that the decision maker has a set of scenarios
s ∈ Ω, where Ω ∈ {1, . . . , S} associated with unknown parameters. For each scenario,
the corresponding probability is Ps, such that Ps ≥ 0 and ∑S

s=1 Ps = 1. We assume the
following measurements of robustness:

Definition 4.1 (Solution robustness): An optimal solution a robust solution with respect to
optimality if it remains “close” to optimal for any scenario s ∈ Ω.

Definition 4.2 (Model robustness): An optimal model qualifies a robust model if the model continues
“almost” feasible under any circumstances s ∈ Ω.

The philosophy of robust optimization is constructed based on the trade-off between
solution robustness and model robustness. A stochastic programming model is obtained,
and an absolute deviation is used to measure the risk of falling revenues. We propose the
following model:

Maximize

s

∑
s=1

psςs − θ
s

∑
s=1

ps

∣∣∣∣∣ςs −
s

∑
s=1

psςs

∣∣∣∣∣− s

∑
s=1

ps

T

∑
i=1

T

∑
j=i

wi,j

∣∣∣qi,j − Ds
i,j

∣∣∣ (11)
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Subject to
m

∑
i=1

T

∑
j=i

qs
i,j
≤ C, (12)

q
i,j
≥ 0, (13)

qi,j ≤ maximum
{

Ds
i,j

}
, (14)

qi,j ≥ 0, (15)

where s ∈ Ω, 0 ≤ i < j ≤ T.
Note that θ and wi,j are non-negative weight factors. The objective function is con-

structed by combining the expected revenue of the energy market with the mean absolute
deviation of the revenue. Parameter θ is a risk-aversion factor. The risk factor’s values
reflect the decision makers’ levels of risk aversion. We show that the expected revenue
decreases and the risk-aversion factor increases. These two terms can be viewed as a
measurement of robust trade-off solution. The absolute deviation in the third term is a
model robustness measurement, and the parameters wi,j are the penalty factors for con-
straint violations. The decision makers adjust the energy supply durations by changing the
corresponding weighing wi,j. The proposed model generates robust solutions using the
mean absolute values as penalties.

5. Improved Particle Swarm Optimization in Stochastic Robust Optimization Scheme

Eberhart and Kennedy [42] developed the Particle Swarm Optimization (PSO) algo-
rithm, a stochastic and population-based optimization technique that uses a swarm of
particles. This method maps high-dimensional data sets to lower-dimensional data sets
with little mapping error. PSO does not take into account information from other particles
because this search algorithm is based on local and global search processes. The search in
the solution space is unidirectional. When particles cannot get away from local minima,
it unquestionably suffers from premature convergence. This drawback is addressed by
the improved particle swarm optimization (IPSO). In the IPSO, all particles are ranked
according to their fitness value, decided by their personal best PiBest. The information
from the top n particles is selected to adjust the behavior policy for each particle in its next
iteration (n = 2 in this paper). Thereby, the search of IPSO turns out to be multi-directional
and precise. The global convergence ability of the proposed method is also improved. The
basic formulation for the IPSO method is as follows:

Ui(t + 1) = φ0Ui(t) + φ1r1j(t)[piBest −Yi(t)] +
1
n∑n

j=1 φ2jr2j(t)
[
gjBest − (t)

]
, (16)

Yi(t + 1) = Yi(t) + Ui(t). (17)

where φ2j is the study factor of particle j, φ0 and φ1 are two constants, r1j(t) and r2j(t) are
two random parameters taken from open interval [0, 1], gjBest is the best position of jth

particle after the (t− 1)th iteration, and piBest is the position that gives the best value of the
objective function. The jth particle is a top particle among n particles. Note that piBest and
Yi(t) are two position vectors and the difference piBest −Yi(t) is the vector subtraction. The
IPSO size is the total amount of particles, which is fixed as 10. For a revenue management
system, all parameters of the particle position are either initialized or updated during the
search process that helps to present a feasible sales plan. In order to avoid infeasible particle
position for δn ∈ [0, 1], we adjust Equation (17) as follows:

If [Yi(t) + Ui(t)]δn is feasible, then

Yi(t + 1) = Yi(t) + Ui(t). (18)
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If [Yi(t) + Ui(t)]δn is not feasible, then

Yi(t + 1) = Yi(t). (19)

In order to balance global and local search ability, a suitable maximum velocity
Umax should be confirmed, and the velocity of the particles should vary within interval
[−Umax, Umax]. Usually, Umax is selected between 10% and 20% of the total variation. In this
paper, 10% of the project duration is used as the maximal velocity (U max = 10%). During
the IPSO search, if i particle’s velocity uij(t) in direction j is beyond interval [−Umax, Umax],
its velocity for calculating maximum velocity Vmax should be adjusted as follows:

If uij(t) ≤ Umax, then,
uij(t) = Vmax = 10%. (20)

If uij(t) ≤ −Umax, then

uij(t) = −Vmax = −10%. (21)

The main goal is to find solutions that can remain acceptable over an extended period
of time. The different swarms track peaks and collect information about their behavior.
This information is utilized to make decisions about the next robust solution. The main
goal is to improve the quality of selected solutions. In the next section, we illustrate several
examples to demonstrate the proposed scheme. Note that the meta-heuristic technique is
used for proposed optimization problems to improve the performance of the smart energy
market system.

6. Illustrative Examples

We first take a look at a deterministic single-scenario example of the smart energy
market demand problem.

6.1. Deterministic Situation for Single Scenario

A 12-month planning horizon has been established, starting from the month of January
to the month of December. The energy market has a maximum capacity of 7000 MWh
(megawatt-hour). For ease of use, the cost for energy storage made in advance is set at
0.54 CNY/KWh. Each time unit, the energy generation cost changes depending on how
much energy is consumed. The energy demands for all pairs of (i, j) Di,j are forecast, as
shown in Table 1. For instance the demand of energy starts from time unit i = 1 to the time
unit j = 2, such that i ≤ j. If this condition does not satisfy, then we obtain empty cells in
Tables 1–6. The energy market’s consumers are mainly related to submerged membrane
bioreactors load consumers, which are based on permeate production. The demand is
usually higher in the month of March, median in the month of August, and shorter in the
months of November and December. The anticipated demands for all months are depicted
in Table 1.

There is no deviation because every parameter is deterministic. The IPSO solves the
integer programming problem, and Table 2 provides a summary of the best outcomes for
the requirement of energies given in Table 1. The best optimal solutions are presented in
Table 2 if the risk factor is set to 1.

When different risk factor λ values are used, different projected revenue values are
obtained. These are shown in Figure 2. The different values of the parameter of risk
trade-off factor represent different degrees of management’s risk aversion.

Figure 2 shows that as the risk-trading-off factor rises, the predicted revenue falls. The
model causes the values of the decision variable to be zero and zero projected revenue
when the risk trade-off factor is very large. Thus, this operated the energy market in such a
way to account for risk trade-offs and various price structures.

We now offer the scenario in which the energy market would wish to plan for various
future demand levels under stochastic situations.
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Table 1. Demands (KWh) for single scenario.

i (j)

1 2 3 4 5 6 7 8 9 10 11 12

1 97.4 146.1 119.2 83.0 69.5 57.2 41.6 35.2 26.8 26.8 23.8 22.4
2 104.7 140.1 125.0 99.0 72.4 42.8 48.0 28.5 26.3 23.7 29.5
3 105.1 132.3 124.2 82.5 75.1 44.0 30.7 45.3 31.2 30.1
4 107.3 131.9 108.7 84.4 60.6 46.9 33.4 32.4 29.6
5 125.3 156.2 146.5 93.6 78.1 47.1 51.0 32.1
6 149.1 148.0 145.4 99.3 77.5 46.4 30.5
7 149.6 147.4 114.9 81.8 65.6 44.7
8 137.1 151.9 128.6 100.2 79.7
9 138.7 139.9 110.7 104.8

10 111.5 125.3 118.6
11 107.4 125.9
12 91.9

Table 2. Optimal solution (KWh) for single scenario.

i (j)

1 2 3 4 5 6 7 8 9 10 11 12

1 97.3 138.9 118.5 102.3 64.8 40.1 39.7 29.5 37.2 33.8 21.0 31.2
2 96.4 143.4 116.7 95.2 64.2 49.0 37.4 32.3 33.6 27.4 23.6
3 104.9 139.1 122.4 79.6 69.7 42.2 34.9 42.4 28.6 31.4
4 105.9 146.2 108.8 98.4 65.5 50.7 37.9 38.7 26.5
5 111.5 162.2 140.8 80.4 61.8 57.9 35.8 35.6
6 141.2 160.6 135.3 87.8 70.9 45.8 37.2
7 141.5 156.7 114.3 91.2 77.5 58.3
8 132.1 155.5 114.4 84.6 69.6
9 128.2 125.1 128.4 87.8

10 123.0 149.1 107.9
11 107.3 144.3
12 97.5

Table 3. Demands (KWh) for first scenario with probability 0.1.

i (j)

1 2 3 4 5 6 7 8 9 10 11 12

1 128.8 132.9 112.2 62.9 71.4 45.8 30.7 37.2 24.8 28.0 31.6 23.5
2 134.6 117.1 115.2 62.7 60.6 54.7 36.2 49.8 25.1 26.4 20.4
3 144.3 131.5 130.6 78.7 74.5 45.9 39.2 38.5 26.4 37.8
4 142.5 123.4 107.4 67.6 76.2 52.9 36.3 41.6 25.9
5 148.9 127.9 150.9 68.6 72.8 46.3 29.0 38.3
6 173.9 126.2 129.8 65.9 70.5 52.2 43.8
7 165.7 130.4 110.8 76.0 74.6 42.0
8 170.9 141.8 113.7 80.9 78.2
9 154.5 113.6 116.8 82.8

10 143.6 117.9 134.4
11 131.6 111.3
12 125.0
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Table 4. Demands for second scenario with probability 0.3.

i (j)

1 2 3 4 5 6 7 8 9 10 11 12

1 143.8 129.3 86.7 97.5 69.9 51.7 46.3 39.1 21.0 29.7 39.9 39.6
2 145.7 115.8 89.5 94.6 71.9 43.1 34.1 34.2 37.3 20.7 33.0
3 144.1 127.4 110.6 80.3 65.4 41.2 48.8 32.6 35.2 23.6
4 156.7 125.4 102.2 90.5 67.2 46.6 43.3 47.1 31.5
5 157.6 142.5 134.5 90.6 64.1 50.7 50.9 35.3
6 175.2 143.2 124.6 87.2 63.5 40.4 48.9
7 172.6 136.1 87.2 79.8 66.5 51.6
8 180.0 121.6 86.1 78.6 73.5
9 168.3 132.1 97.8 91.8

10 155.2 132.1 122.9
11 137.8 100.5
12 130.0

Table 5. Optimal solutions for first scenario with probability 0.1.

I (j)

1 2 3 4 5 6 7 8 9 10 11 12

1 117.2 136.4 111.1 91.6 65.3 51.6 33.7 44.2 36.9 23.2 35.7 32.0
2 117.2 115.3 132.1 85.1 78.1 56.9 40.6 27.4 26.7 29.1 22.6
3 128.0 133.7 129.0 76.0 71.8 52.7 37.8 37.7 36.9 39.4
4 135.9 141.7 115.1 91.4 78.7 52.0 33.6 39.2 40.0
5 131.0 136.8 150.5 96.6 69.8 41.6 46.1 38.7
6 157.1 157.6 123.3 84.1 61.2 45.4 28.1
7 165.0 146.9 117.5 76.5 71.2 44.1
8 165.1 132.6 122.9 103.4 65.7
9 140.2 122.7 128.2 98.6

10 141.8 117.5 110.5
11 122.4 136.2
12 118.4

Table 6. Optimal solutions (KWh) for second scenario with probability 0.3.

i (j)

1 2 3 4 5 6 7 8 9 10 11 12

1 125.4 137.4 128.5 89.9 62.7 54.8 40.5 35.1 39.7 20.8 23.3 19.5
2 118.5 130.3 113.6 83.4 66.5 52.6 44.2 51.0 24.6 34.4 36.6
3 135.8 137.6 104.4 104.3 60.4 54.7 40.2 30.5 32.4 31.6
4 126.1 125.9 120.5 82.9 64.5 56.5 45.9 49.1 24.0
5 133.9 160.4 138.4 101.2 73.2 48.4 37.0 28.8
6 151.5 154.8 143.0 95.6 67.7 37.9 41.8
7 166.2 139.8 122.1 94.6 61.6 38.3
8 162.2 135.1 127.0 93.7 64.4
9 153.4 120.3 119.1 83.3

10 133.7 122.4 111.1
11 113.1 140.7
12 112.8
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6.2. Stochastic Situation for Two Scenarios

We now consider the case where the energy market would like to take two future-
demand scenarios into its planning, although the energy market management will fix their
prices (0.54) for these scenarios. In this case the revenue varied, and the only stochastic
variable is the demand Dij. Suppose there are two scenarios with a probability of 0.1 and
0.3, respectively. The demands Dij are shown in the following Tables 3 and 4 for the two
scenarios. For simplicity, all weights wij are set to be equal to 1. This is the computational
aspect of the smart energy market problem under a stochastic situation. The demands of
energy start from the month of January to the month of December. The uncertain data
causes the different strategies and management attitudes. Therefore, the weight parameters
are used. The optimal solutions are summarized in Tables 5 and 6.

From the above experimental results, we conclude that the future demands of energy
should be fulfilled in such a way that the total capacity of energy should not exceed the
estimated capacity under stochastic situations.

Furthermore, in the smart energy market system, optimizing production scheduling
is crucial for efficient recourse utilization and meeting production targets. This system
focuses on addressing sustainability concerns by minimizing energy consumption in the
scheduling process. The algorithm takes into account factors such as machine setup times,
processing rates, and energy profiles to generate optimal schedules. The improved particle
swarm optimization algorithm is implemented for energy-efficient production scheduling.
Parameters such as number of particles, iterations, and job/machine specification are
customized. A fitness function is taken that considers both completion time and energy
consumption. In Figure 3, the optimal of energy efficiency (EE) is visualized as follows:
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Figure 3. Optimal job scheduling for EE.

We have included five different categories of energy consumption for every individual.
Five distinct colors are used in Figure 3 to indicate the energy efficiency of the five different
forms of energy usage. Higher energy efficiency values are considered more appropriate for
choosing the best option. In Table 7, we present the optimal solutions for the consumption
of energy using improved particle swarm optimization technique for twelve different
individuals.

We present the sensitivity analysis that is needed for the particle swarm optimization
technique. Therefore, we have used the robustness check in Table 8. The model is affected
by uncertainties in control inputs. A sensitivity analysis is used before the decision making
to validate the robustness of the design decision related to the energy consumption and
comfort [39].

Table 7. Optimal solutions (KWh) for consumption of energy using IPSO.

i (j)

1 2 3 4 5 6 7 8 9 10 11 12 EE

1 1 1 5 5 5 1 5 5 3 3 1 1 131.74
2 1 2 1 5 5 5 5 5 1 2 1 5 130.13
3 5 3 5 5 1 1 5 3 5 1 3 5 130.22
4 1 1 4 5 5 1 4 1 1 4 2 2 131.73
5 1 5 1 1 5 4 1 3 1 5 4 3 128.57
6 1 1 2 1 1 1 3 1 1 5 5 2 126.86
7 1 1 1 5 1 1 3 3 1 1 5 3 127.71
8 5 1 5 1 1 5 1 5 1 5 1 1 118.46
9 2 5 5 5 2 2 5 5 5 5 5 5 125.74
10 1 1 1 1 1 1 4 1 1 1 4 1 120.57
11 5 5 1 1 5 5 5 1 5 5 5 1 103.52
12 5 1 3 4 3 5 1 4 1 4 4 1 135.80
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Table 8. Robustness check for energy efficiency affected by uncertainties.

Sl. No. EE1 EE2 EE3 EE4 EE5 EE6 EE7

1 120.97 118.38 132.24 133.04 115.35 128.13 130.45

2 129.95 129.95 135.44 122.82 131.02 127.66 133.14

3 117.61 117.61 117.44 133.57 130.62 124.05 118.32

4 112.38 112.38 114.15 122.29 125.95 121.89 139.25

5 134.52 134.52 113.61 109.18 116.71 119.62 120.73

6 122.24 122.24 133.26 121.10 135.35 131.72 116.60

7 109.82 109.82 129.73 123.60 135.68 122.51 146.58

7. Conclusions and Future Directions

In order to solve the smart energy market problem with variable demands, we present
the stochastic techniques in the proposed optimization model. This model combines robust
optimization and improved particle swarm optimization methods. The goal function takes
into account the risk aversion of the decision makers. The risk of energy demand deviating
from the expected value is measured by the mean absolute value. We have also shown how
to operate the energy market in a way that accounts for risk trade-offs and various price
structures. We have also fulfilled the future demands of energy under two scenarios with a
probability 0.1 and 0.3. We have performed the robustness check for the proposed model.
The present research problem can be formulated using the equilibrium uncertainty model,
which is the objective of our future research. We hope that this future research will spur
useful insights to develop the energy policy.

Author Contributions: Conceptualization, B.Z., L.S., M.Y., K.-K.L. and B.R.; methodology, B.Z., L.S.,
M.Y., K.-K.L. and B.R..; software, B.Z., L.S., M.Y., K.-K.L. and B.R.; validation, B.Z., L.S., M.Y., K.-K.L.
and B.R.; writing—original draft preparation, B.Z., L.S., M.Y., K.-K.L. and B.R.; supervision, K.-K.L.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data is unavailable due to ethical restrictions.

Acknowledgments: All authors are highly thankful to the respective universities/institute for their
support of research. We are grateful to the respected editor and reviewers for their valuable comments
which helped us to improve the article. The fifth author is supported by the Centre for Digital
Transformation, Indian Institute of Management Ahmedabad, India.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bilan, Y.; Serhiy, K.; Inna, M. Recent Advances in the Energy Market Development: Current Challenges and Perspectives of

Energy Crises in Academia. Energies 2023, 16, 2332. [CrossRef]
2. Cui, L.; Suyun, Y.; Xuan, N.; Mei, D. Exploring the risk and economic vulnerability of global energy supply chain interruption in

the context of Russo-Ukrainian war. Resour. Policy 2023, 18, 103373. [CrossRef]
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