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Abstract: This is a comprehensive research endeavor focused on enhancing the efficiency of the
proposed solar cell design. The integration of the simulation techniques, judicious material selection,
and meticulous performance metrics showcase a methodical approach toward creating a solar cell
capable of achieving high efficiency across a wide spectrum of light in the AM 1.5 G1 sun solar
cell illumination spectrum. Having said this, many researchers are still working on the efficiency
potential—based on external radiative efficiency (ERE), open-circuit voltage loss, and fill factor
loss—of high-efficiency solar cells. The solar cell is built on aluminum-doped zinc oxide (ZnO) as
a transparent conductive oxide layer; aluminum nitride (AlN) as the window layer (emitter); an
SWCNT layer as the absorber layer; gallium phosphide (GaP) as the contact layer; and silicon as the
substrate. The proposed solar cell transmission, reflection, and absorption relative to the variations in
wavelength band spectrum are studied. The conduction and valence band energy diagrams of the
solar cell design structure are simulated against the layer thickness variations for the suggested solar
cell structure. Short-circuit current density and maximum power variations are clarified versus the
bias voltage. Light current density is simulated versus the bias voltage (J/V characteristics curve) of
the suggested solar cell design structure. The carrier generation–recombination rate is also simulated
by the COMSOL simulation program versus the layer thickness of the suggested solar cell structure.
The solar cell circuit design has a fill factor (FF) value of 74.31% and a power conversion efficiency
value of 29.91%.

Keywords: optimum absorber layer; solar cell structure; surface morphology; conversion efficiency
and quantum efficiency

1. Introduction

The most significant and environmentally beneficial source of renewable energy is
solar energy; it is free, abundantly available, and widely applicable everywhere on Earth.
Therefore, the expected demand for solar energy is constantly increasing, along with efforts
to increase its production efficiency. The development of technologies, materials, internal
structure, design, and other factors have been studied with the aim of increasing the
steady-state conversion efficiency of solar cells. One of the most important means for this
purpose is the introduction of metal nanoparticles. The silicon-based solar cell’s absorption
coefficient can be raised by creating a heterojunction, which enhances its efficiency [1].
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A platinum precursor solution was designed to fabricate the active counter electrodes
suitable for efficient dye-sensitized solar cells. The solar cell assembly was built with six
different concentrations. The measurements of light voltage curves were tested, and the
electrochemical impedance was measured at a standard of AM 1.5 G solar light. Simulated
photo-voltage and photo-current density variations were found. The proposed solar cells’
electrochemical impedance parameters were used to evaluate the fill factor, as well as the
overall efficiency [2].

The graded energy band gap is a powerful method for increasing the effectiveness of
the sun spectrum by reducing the losses in short-circuit current density [3]. Perovskite solar
cells are one of the most promising technologies in this field. The efficiency of the suggested
graded FAPbI3 perovskite solar cell was investigated together with the impact of (Br, I). The
graded energy band gap perovskite solar cell can achieve steady-state conversion efficien-
cies of ∼26.63%. Another bandgap grading (1–3 eV) profile was proposed to maximize the
perovskite absorber material’s ability to absorb the spectrum. The bandgap of the Pb-based
MAPbX3 was 2 eV, while that of the Sn-based MASnX3 was 1.17 eV, which is used in
this design. A 1D Solar Cell Capacitance Simulator (SCAPS-1D) was used to simulate the
current density (J)–voltage (V), capacitance (C)–voltage (V), and capacitance (C)–frequency
(f) curves; the quantum efficiency curves; band diagrams; and the recombination cur-
rent. Their proposed design has a 30% power conversion efficiency [4]. A certain study
used the SCAPS-1D software, version 3.3.05 package to prove that, compared to a CdTe
cell, the performance of a four-terminal (4T) perovskite-CdTe tandem is more efficient [5].
The numerical modeling of fluorine-doped tin oxide (FTO)/Cu:NiO/MA3Sb2I9/ZnO/Al,
which was based on perovskite solar cells by SCAPS, produced a power conversion ef-
ficiency (PCE) of 22.03% [6]. Regarding the photoelectric characteristics of ZnO/Si and
perovskite/Si, the impacts of the gold nanoparticles of various sizes and periodicities were
studied. The results showed that the maximum values of the fill factor, open-circuit volt-
age, and short-circuit current were 71.06%, 0.384 V, and 10.47 mA/cm2 for perovskite/Si,
as well as 71.12%, 0.306 V, and 10.52 mA/cm2 for ZnO/Si [7]. The study presented
CH3NH3PbI3−xClx perovskite solar cells beside the light detection conducted with the
SCAPS simulation program [8]. The authors studied the effects of the front/back electrode
on the performance parameters of the solar cell design. The authors confirmed that a
22.7% max. conversion power efficiency with an open-circuit voltage of 1130 mV could be
achieved with the optimization of the solar cell device performance parameters.

A zinc oxide/silicon (ZnO/Si) heterojunction has recently been used in the manufac-
turing of solar cells because of their potentially low-cost application. The authors optimized
the design and performance properties of the ZnO/p-Si solar cell-based heterojunction
structure with the SCAPS-1D Simulator. The effects of the defects at the ZnO/c-Si het-
erojunction interface were investigated. The study confirmed that the solar cell device
performance efficiency achieved optimum values by using the optimum thin buffer layer.
By effectively controlling the interface Dit and silicon layer defects, the ZnO/c-Si hetero-
junction solar cells’ conversion efficiency showed the potential to be raised above 17%.
The effects of emitter layer thickness, buffer layer thickness, interface defect states, and
emitter and absorber defect density on cell performance were studied and analyzed, and
the simulation results were thusly presented. The results show that a cell with an optimum
thin buffer layer performs better. Also, the performance of the solar cells was significantly
more sensitive to the defects in the Si than in the ZnO layer [9]. The authors paid attention
to analyzing the solar cells’ front side. An antireflective coating and amorphous silicon
oxide layer were used with three front contact stacks: indium tin oxide (ITO) as a reference;
ZnO:Al and ZnO:Al/SiO2 in their design. The simulations and experimental results of
this design yielded maximum conversion efficiencies of 23.0% [10]. A wide-gap n-type
doped ZnO layer acting as a front electron-selective contact layer on a single-junction GaAs
substrate was proposed to block hole transport and promote electron collection at the
front side. By simulation, the authors showed that depositing a wide-gap ZnO window
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layer enhances cell absorption in the short wavelength range, and it can be used in highly
efficient single-junction GaAs cells [11].

Sb2Se3’s thin-film crystallinity has been extensively exploited as an absorber layer
in solar cells. Several studies have used SCAPS-1D to complete simulation work based
on Sb2Se3/c-Si hetero-junction solar cells [12–14]. The simulation included its band gap,
thickness of layers, absorption coefficient, and the extraction of parameters, such as back
contact work function and electron affinity (which were varied and optimized to improve
the solar cell’s performance). Also, parameters such as short-circuit current density (Jsc),
open-circuit voltage (Voc), quantum efficiency (QE), fill factor (FF), and the efficiency of
the devices were examined graphically. The maximum efficiency reached 23.9% under
the condition of an illumination spectrum of AM 1.5 G. SCAPS was used to study an
extremely resistant transparent oxide material for usage as a solar cell’s front contact. The
optical and photoelectric characteristics of the solar cell, based on the heterostructure
ZnO/CdS/CdTe/CuO, were modeled to study the influence of film thickness on the
performance efficiency, which was recorded as 20.94% in this study [15].

There are other programs that were used to simulate a solar cell and to investigate its
characteristics and performance. Through electromagnetic waves, semiconductors, and
heat transfer modules, COMSOL is able to compute the optical–electrical–thermal models
for a finely meshed structure. A COMSOL multiphysics 3-D simulation investigation of
the optical, electrical, and thermal properties of a Cu2 ZnSnSx Se4−x (CZTSSe) thin-film
solar cell has been reported in many works [16,17]. COMSOL is used for the purpose
of analyzing the temperature distribution in typical perovskite solar cells [18,19]. The
performance of CH3NH3PbI3 absorber thickness and the addition of pyramid grating
to electron transporting layers was studied by COMSOL, and this caused the power
conversion efficiency to rise to 21.058% [19]. In many articles [20–23] on the design of solar
cells and their corresponding performance parameters—such as VOC, Jsc, reflection, external
quantum efficiency, and photovoltaic efficiency—antireflection coatings were evaluated
using the TCAD (technology computer-aided design) Sentaurus. TCAD is restricted to
either one or two dimensions.

There have been studies on the thickness variations of a Perovskite layer through
the spectral wavelength bands ranging from 100 nm to 1300 nm. There have also been
discussions on the influence of the thickness of absorber layers on the performance of
Perovskite solar cells with SCAPS software. Moreover, the results of a short-circuit density
current device of 20.991 mAcm−2, an open circuit voltage device of 0.741 V, a fill factor
device percentage ratio of 54.048%, and a power conversion solar cell device efficiency of
8.256% were demonstrated. The solar cell device quantum internal efficiency clarified a
strong activity through the visible spectrum region. The authors clarified the defective
solar cell design parameters of the interfaces and absorber layers. A solar cell structure
simulation and solar cell energy level diagram were also constructed [24]. The authors
clarified the power conversion efficiency optimization in multi-band solar cells. They then
conducted a theoretical investigation with a genetic optimization algorithm. They showed
a three- and four-band diagram of solar cell devices. The authors then used a genetic
algorithm optimization technique for the estimation of the peak quantum efficiency of used
multi-band solar cell devices. Their results achieved a maximum quantum efficiency for
three- and four-band solar cells, which were 62.9% and 70.3%, respectively [25]. The authors
designed and characterized effective solar cell devices. They then clarified a two-stage
multi-band framework optimization for the full solar cell device structure design. The solar
cell design was clarified through solar cell characterization, solar cell cost minimization,
and internal quantum device efficiency maximization. The evaluation of fifteen structures
for various solar cell design simulations was worked on, and this was achieved through
the material type variations and photodiode doping strategies. In addition, the authors
concluded that through a solar cell design, as well as a comparison and optimization of the
doped zinc oxide layer (which is based on the transparent conductive oxide (TCO) layer



Energies 2023, 16, 7001 4 of 23

and rough silver back reflector (BR)), internal quantum efficiency can be optimized. This
proposed study reported a total internal quantum efficiency of 60.31% [26].

Certain authors have investigated the power conversion efficiency limitation factors
of Cu (InxGa1−x) (Se)2 thin-film solar cells using SCAPS simulation software. They have
studied the effects of the various layers doping levels and series resistance of solar cell
structure design on short-circuit current density, open circuit voltage, total conversion
power efficiency, and fill factor percentage. They have concluded that an increase in the
solar cell’s layer series resistance causes a decrease in the conversion power efficiency
with a light intensity dependency. In addition, the absorber doping level and layer buffer
played an important vital role in the control of the solar cells’ conversion power efficiency;
moreover, they help in filling solar cell factor values with peak values when the doping
levels of acceptors are approximately equal to the doping levels of donors [27].

Other scholars have provided more details about the study of the conversion of solar
energy systems when using the maximum power point method. They have the key to
clarifying the detailed procedures of this proposed technique with the tracking process for
the solar cell panel with both standalone and grid connections in the solar cells’ energy
conversion system when using a boost converter. The solar cell equivalent circuit design
with I–V solar cell characteristics through different areas has been presented. In addition,
the PV array impedance against applied voltage has been presented, as well as the sketched
boost converter impedance against a duty cycle. Moreover, these authors have elaborated
on power conversion efficiencies versus the voltage curves for the irradiances of 800 W/m2

and 700 W/m2, as well as on their maximum power peak points. They have performed
all the simulation solar cell results by using MATLAB/Simulink to demonstrate the better-
proposed scheme performance [28].

2. Different Suggested Solar Cell Structure Descriptions

The suggested solar cell structure descriptions are shown in Table 1, and the basic
front and back contacts are clarified in Figure 1a. The solar cell structure is composed of a
single-walled carbon nanotube (SWCNT) layer thickness of 1500 nm, a cadmium sulfide
(CdS) layer thickness of 50 nm, and a zinc oxide (ZnO) layer thickness of 50 nm. This was set
for the purpose of upgrading the solar cell performance signature. Figure 1b demonstrates
a three-dimensional schematic view of the short and open circuits of the electrons, hole
concentrations, and electric potential. The COMSOL mesh modeling (triangle elements
with a constant shape function) is clarified in Figure 1c.

Figure 2 clarifies the conduction and valence band energy diagrams of the layer
thickness variations for the suggested solar cell structure. The quantum efficiency versus
the spectral wavelength band is clarified in Figure 3 for the suggested solar cell structure.
The quantum efficiency ranges approximately from 83.5% to 99.23% through the spectral
wavelength band of 250 nm to 360 nm. However, the quantum efficiency is approximately
99.999% through the spectral wavelength band of 360 nm to 1000 nm. The quantum
efficiency degrades from 99.99% to the lowest values through the spectral wavelength
band of 1000 nm to 1500 nm. Then, we can conclude that the best region of the solar cell
performance operation through the spectral wavelength band is from 360 nm to 1000 nm.
Figure 4 demonstrates the carrier generation–recombination rate versus the layer thickness
of the suggested solar cell structure. Figure 5 shows the light current density versus the
bias voltage (J/V characteristics curve) of the proposed solar cell structure. It is evident that
the photo-current density is almost constant at 8 mA/cm2 when applied to the bias voltage
(which ranges from 0 V to 1.75 V). Figure 6 illustrates the photon energy versus the spectral
wavelength band of the suggested solar cell structure. Figure 7 illustrates the short-circuit
current density and maximum power variations versus the applied bias voltage.
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Figure 1. (a) Suggested solar cell structure in a schematic view. (b) The 3-D short and open circuits of
the electrons, hole concentrations, and electric potential. (c) COMSOL mesh modeling (the triangle
elements with a constant shape function).
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Table 1. Basic material layer structures of the suggested solar cell [29–31].

Parameters AlN CdS CBTS ZnO:Al SWCNT ZnS GaP

Thickness (nm) ----- ----- ----- ----- ----- ----- -----

Band gap (eV) 6.42 2.4 1.9 3.55 1.1 3.5 2.26

Electron affinity (eV) 0.6 4.3 3.6 4.5 4.27 4.5 3.8

Dielectric permittivity 8.9 8.73 5.4 8.96 3.4 10 11.1

CB effective density of the
states (1/cm3) 6.3 × 1018 2.2 × 1018 2.2 × 1018 2.94 × 1018 5 × 1016 1.5 × 1018 1.8 × 1019

VB effective density of
states (1/cm3) 4.8 × 1020 1.8 × 1019 1.8 × 1019 2.98 × 1018 6 × 1017 1.8 × 1018 1.9 × 1019

Electron thermal velocity
(cm/s) 1.85 × 107 107 107 1 × 107 107 1 × 107 2 × 107

Hole thermal velocity
(cm/s) 0.41 × 107 107 107 1 × 107 107 1 × 107 1.3 × 107

Electron mobility
(cm2/Vs) 300 160 30 46 8 × 104 50 250

Hole mobility (cm2/Vs) 14 15 10 26 2 × 103 20 150

Donor density (1/cm3) ----- 1017 ----- 5 × 1019 ----- 2 × 1017 -----

Acceptor density (1/cm3) 1018 ------ 1017 ----- 1017 ----- 1018

Defect density (1/cm3) 1 × 1017 1 × 1017 1 × 1015 3.4 × 1020 1 × 1014 3.02 × 1019 2 × 1015
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3. Solar Cell Design and Modeling Equations

The SCAPS-1D model is controlled by the solution of the basic semiconductor equa-
tions of the hole and electron continuities, and this is in addition to the Poisson equations.

div(ε∇Ψ) = −ρ (1)

The continuity equations of the electron and hole carriers:

∂n
∂t

=
1
q

div(
→
j n) + Gn − Rn (2)

∂p
∂t

=
1
q

div(
→
j p) + Gp − Rp (3)

where

p, n: The hole and electron concentrations.
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Jp, Jn : The hole and electron densities.
Gn, Gp: The electron and hole generation rates.
Rn, Rp: The electron and hole recombination rates.

The proposed solar cell layer structures are illustrated in Table 1. The surface planar
morphology is studied with an AM 1.5 G1 illumination spectrum. The light path length in
the light trapping model is as follows [32]:

Z = 4 + ln
(

n2 +
(

1− n2
)

e−α W
)

/α W (4)

where α is the attenuation and n is the absorptive solar cell refractive index. Moreover, the
substrate width (W) = 180 µm. The junction current–voltage (JV) density is clarified by the
following [33]:

Jn = Dn
dn
dx

+ µnn
dϕ

dx
(5)

Jp = Dp
dp
dx

+ µp p
dϕ

dx
(6)

where n and p are the electronic and hole concentrations, and µp and µn represent the hole
and electron mobilities.

4. Results and Discussion
4.1. Optimized Solar Cell Structure Design

This section focuses on the optimized solar cell structure design. The integration of the
simulation techniques, judicious material selection, and meticulous performance metrics
showcase a methodical approach toward creating a solar cell that is capable of achieving
high efficiency across a wide spectrum of light in an AM 1.5 G1 sun solar cell illumination
spectrum. Having said this, many researchers are still working on the efficiency potential,
based on external radiative efficiency (ERE), of high-efficiency solar cells’ open-circuit
voltage loss and fill factor loss. Conduction and valence band energy diagrams of solar
cell design structures are simulated against the layer thickness variations for the suggested
solar cell structures. Short-circuit current densities and maximum power variations are
clarified versus the bias voltage. Light current density is simulated versus the bias voltage
(J/V characteristics curve) of the suggested solar cell design structures. The substrate layer
structure is glass material, while the subsequent layer is the transparent conductive oxide
layer. The solar cell structure is composed of a single-walled carbon nanotube (SWCNT)
layer thickness of 1500 nm, a cadmium sulfide (CdS) layer thickness of 50 nm, and a
zinc oxide (ZnO) layer thickness of 50 nm for the purposes of upgrading the solar cell
performance signature with the silicon substrate material. In Section 4.2, the clarification
of the reflections, absorptions, and transmissions of the proposed photovoltaic solar cell
against the spectral wavelength variations are included.

4.2. RAT Variations with Spectrum Wavelength Variations

Figure 8 shows the reflections, absorptions, transmissions, and spectral intensities
against the spectral wavelengths through the use of the optimum GaP absorber layer
thicknesses, and this is achieved by using OPAL 2 solar cell simulation. The total incident
photo-current density through a GaP absorber layer was 5.64 mA/cm2. Furthermore, the
photo-absorbed current in a GaP film was 2.48 mA/cm2, and the photo-absorbed current
in the substrate was 3.17 mA/cm2.
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Figure 8. The reflections, absorptions, transmissions, and spectral intensities against the spectral
wavelengths through the use of optimum GaP absorber layer thickness, which were determined by
using OPAL 2 simulation.

Figure 9 illustrates the reflections, absorptions, transmissions, and spectral intensities
against the spectral wavelengths, and this was determined through the use of an optimum
ZnS absorber layer thickness via OPAL 2 solar cell simulation. The total incident photo-
current density through a ZnS absorber layer was 51.88 mA/cm2, the photo-absorbed
current in a ZnS film was 0.48 mA/cm2, and the photo-absorbed current in the substrate
was 51.41 mA/cm2.
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Figure 9. The reflections, absorptions, transmissions, and spectral intensities against the spectral
wavelengths, which was achieved through the use of optimum ZnS absorber layer thicknesses via
OPAL 2 simulation.

Figure 10 demonstrates the reflections, absorptions, transmissions, and spectral inten-
sities against the spectral wavelengths, which was achieved through the use of an optimum
AIN absorber layer thickness via OPAL 2 solar cell simulation. The total incident photo-
current density through an AIN absorber layer was 6.97 mA/cm2, the photo-absorbed
current in an AIN film was 0.05 mA/cm2, and the photo-absorbed current in the substrate
was 6.93 mA/cm2.
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Figure 10. The reflections, absorptions, transmissions, and spectral intensities against the spectral
wavelengths, which was achieved through the use of an optimum AIN absorber layer thickness via
OPAL 2 simulation.

Figure 11 indicates the reflections, absorptions, transmissions, and spectral intensities
against the spectral wavelengths through the use of an optimum ZnO:Al absorber layer
thickness via OPAL 2 solar cell simulation. The total incident photo-current density through
a ZnO:Al absorber layer was 51.88 mA/cm2, the photo-absorbed current in a ZnO:Al film
was 1.06 mA/cm2, and the photo-absorbed current in the substrate was 50.82 mA/cm2.
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Figure 11. The reflections, absorptions, transmissions, and spectral intensities against the spectral
wavelengths through the use of an optimum ZnO:Al absorber layer thickness via OPAL 2 simulation.

Figure 12 shows the reflections, absorptions, transmissions, and spectral intensities
against spectral wavelengths through the use of an optimum CdS absorber layer thickness
via OPAL 2 solar cell simulation. The total incident photo-current density through a
CdS absorber layer was 51.88 mA/cm2, the photo-absorbed current in a CdS film was
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9.87 mA/cm2, and the photo-absorbed current in the substrate was 42.01 mA/cm2. In
Section 4.3, the surface morphology variation effects on the absorbed photo-current and
internal quantum efficiencies are demonstrated.
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Figure 12. The reflections, absorptions, transmissions, and spectral intensities against the spectral
wavelengths through the use of an optimum CdS absorber layer thickness via OPAL 2 simulation.

4.3. Effects of the Surface Morphology on the Photo-Current Absorption and IQE

Figure 13 illustrates the substrate absorption current and the quantum efficiency
versus the different substrate surface configurations. The substrate absorption current and
quantum efficiency were 64 mA/cm2 and 93%, respectively, in the case of planar substrate
surface configuration. For the V grooves’ surface configuration, the substrate absorption
current and quantum efficiency were 66 mA/cm2 and 94%, respectively.
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Figure 13. The substrate absorption current and quantum efficiency versus the different substrate
surface configurations.

The substrate absorption current and quantum efficiency were 65 mA/cm2 and 94.65%,
respectively, in the case of the regular upright hillocks’ substrate surface configurations.
The substrate absorption current and quantum efficiency were 62.67 mA/cm2 and 92.675%,
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respectively, in the case of the regular inverted pyramids’ substrate surface configurations.
The substrate absorption current and quantum efficiency were 61 mA/cm2 and 95%,
respectively, in the case of the regular spherical caps’ surface configurations. The planar
surface V grooves’ surface and regular spherical caps were the best candidates for the
substrate’s surface configuration for the enhancement of the quantum efficiency of the solar
cells. In Section 4.4, the suggested substrate materials’ variation effects on the photo-current
absorption and internal quantum efficiency are shown.

4.4. Substrate Materials’ Variation Effects on the Photo-Current Absorption and IQE

Figure 14 demonstrates the substrate absorption current and quantum efficiency versus
the different substrate layer structures. The substrate absorption current and quantum
efficiency were 49 mA/cm2 and 73%, respectively, in the case of the MgF2 substrate layer.
The substrate absorption current and quantum efficiency were 55 mA/cm2 and 82%,
respectively, in the case of the SiNx substrate layer. The substrate absorption current
and quantum efficiency were 62 mA/cm2 and 93%, respectively, in the case of the SiOx
substrate layer.
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Figure 14. The substrate absorption current and quantum efficiency versus the different substrate
layer structures.

The substrate absorption current and quantum efficiency were 50 mA/cm2 and
74.654%, respectively, in the case of the Ti substrate layer. The substrate absorption current
and quantum efficiency were 59 mA/cm2 and 88%, respectively, in the case of the ZnS sub-
strate layer. The ZnS substrate layer was found to be the best candidate material substrate
structure for upgrading the proposed solar cell’s internal quantum efficiency. In Section 4.5,
the absorber material layer variation effects on the photo-current absorption and internal
quantum efficiency are clarified.

4.5. Absorber Material Layer Variation Effects on the Photo-Current Absorption and IQE

Figure 15 clarifies the substrate absorption current and quantum efficiency versus
the different absorber layer structures. The substrate absorption current and quantum
efficiency were 62.5 mA/cm2 and 93%, respectively, in the case of the TiO2 absorber
layer. The substrate absorption current and quantum efficiency were 61 mA/cm2 and
91%, respectively, in the case of the ITO absorber layer. The substrate absorption current
and quantum efficiency were 52 mA/cm2 and 78%, respectively, in the case of the CdTe
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absorber layer. The substrate absorption current and quantum efficiency were 52 mA/cm2

and 78%, respectively, in the case of the CdTe absorber layer. The substrate absorption
current and quantum efficiency were 53 mA/cm2 and 80%, respectively, in the case of the
CdS absorber layer.
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Figure 15. Substrate absorption current and quantum efficiency versus different absorber
layer structures.

The substrate absorption current and quantum efficiency were 65 mA/cm2 and 94%,
respectively, in the case of the ZnS absorber layer. The TiO2 absorber layer and ZnS absorber
layer were the best candidate material structures for the absorber layer of the solar cells. In
Section 4.6, the contact layer material variation effects on the photo-current absorption and
internal quantum efficiency are clarified.

4.6. Contact Layer Material Variation Effects on the Photo-Current Reflection/Absorption and IQE

Figure 16 shows the substrate absorption current and quantum efficiency versus the
different contact layer structures. The substrate absorption current and quantum efficiency
were 60 mA/cm2 and 89%, respectively, in the case of the TiO2 contact layer. The substrate
absorption current and quantum efficiency were 55 mA/cm2 and 84%, respectively, in the
case of the Si3N4 contact layer. The substrate absorption current and quantum efficiency
were 50 mA/cm2 and 75%, respectively, in the case of the InP contact layer.

The substrate absorption current and quantum efficiency were 52 mA/cm2 and 78%,
respectively, in the case of the GaAs contact layer. The substrate absorption current and
quantum efficiency were 62 mA/cm2 and 94.6567%, respectively, in the case of the GaP
contact layer. The GaP contact layer was the best candidate material structure for the contact
layer of the solar cells. In Section 5, the equivalent circuit model and circuit performance
parameters optimization are clarified.
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Figure 16. Substrate absorption current and quantum efficiency versus the different contact
layer structures.

5. Equivalent Circuit Modeling and Circuit Performance Parameter Optimization

The equivalent circuit model diagram of the solar cell device is illustrated in
Figure 17. The light-collected current (JL) was 66.45 mA/cm2, and the input solar cell
circuit parameters were as follows: the light-collected current (Jl) was 51.88 mA/cm2,
the saturation current was (J1) = 1 pA/cm2, the saturation current was (J2) = 1 nA/cm2,
the saturation current was (JH) = 100 pA/cm2, the resistance (RH) = 1000 Ω·cm2, the
shunt resistance (RSH) = 100 kΩ·cm2, and the series resistance (RS) = 1200 Ω·cm2. The
light JV outputs were as follows: max-power voltage Vmp = 503.559 mV, max-power cur-
rent Jmp = 48.8075 mA/cm2, open-circuit voltage Voc = 637.552 mV, short-circuit current
Jsc = 51.8738 mA/cm2, fill factor (FF) = 0.7431, and the power conversion efficiency was
approximately (η) = 29.91%.
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Figure 17. Solar cell circuit model design.

The maximum open-circuit voltage solar cells can be optimized and obtained through
the following equation [33]:

Voc =
nkT

q
ln

(
IL
I0

)
+ 1 (7)

where I0 and IL and are the dark and photo saturation currents, respectively; T is the
temperature; and q is the charge of the electrons. The maximum power point solar cell was
clarified as a function of the FF parameter. The short-circuit current and the open-circuit
voltage were as follows [33]:

Pmp = FF Voc Isc (8)
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The power conversion efficiency of the solar cell device was estimated by the follow-
ing [15]:

η =
Isc Voc FF

Pin
(9)

Figure 18 shows the solar cell photo-current density versus the bias voltage variations.
The solar cell photo-current density was 0.12 mA/cm2 in the short circuit case at a bias
voltage of 0.1 Volt, and its value was 0.18 mA/cm2 in the open-circuit case at a bias voltage
of 0.1 Volt. The solar cell photo-current density was 0.42 mA/cm2 in the short-circuit case
at a bias voltage of 0.5 Volt, and its value was 0.55 mA/cm2 in the open-circuit case at a bias
voltage of 0.5 Volt. The solar cell photo-current density was 0.835 mA/cm2 in the short-
circuit case at a bias voltage of 0.9 Volt, and its value was 1.023 mA/cm2 in the open-circuit
case at a bias voltage of 0.9 Volt. The solar cell photo-current density was 1.563 mA/cm2 in
the short-circuit case at a bias voltage of 1.1 Volt, and its value was 1.892 mA/cm2 in the
open-circuit case at a bias voltage of 1.1 Volt.
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Figure 18. Solar cell photo-current density versus the bias voltage variations.

The basic definition of the ideality factor derivations from the dark IV characteristics
curve or the light IV curve was determined. The examination of the recombination in the
device was a powerful tool for the ideality factor. When the saturation current was stable,
this resulted in the ideality factor also being stable. When the operation is at a low voltage,
the shunt resistance tests the performance of the solar cell device and can cause a large
peak. It is particularly important to work on the suitable values of shunt resistance to avoid
any bad effects on the ideality factor. The temperature and noise have based effects on the
ideality factor of the solar cell output measurement. The series resistance variations can
cause a large peak at high bias voltages. Figure 19 illustrates the solar cell ideality factor
versus the bias voltage variations. The ideality factor was 3.77 in the case of the open-circuit
current, and the ideality factor was 3.987 in the case of light current at an applied bias
voltage of 0.1 Volt. The ideality factor was 5.56 in the case of the open-circuit current, and the
ideality factor was 7.56 in the case of the light current at an applied bias voltage of 0.5 Volt.
The ideality factor was 8.32 in the case of the open-circuit current, and the ideality factor
was 9.45 in the case of light current at an applied bias voltage of 0.9 Volt. The ideality factor
was 3.775 in the case of the open-circuit current, and the ideality factor was 3.9778 in the
case of light current at an applied bias voltage of 1.1 Volt. Figure 20 shows the open-circuit
voltage and short-circuit current density of the solar cell structure against the GaP absorber
layer thickness. It was observed that, in the case of the GaP absorber layer thickness, there
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was an increase in both the open-circuit voltage and short-circuit current values. At a
55 nm GaP absorber layer thickness, the Voc = 1.701 mV and the Jsc = 1.845 mA/cm2. At a
70 nm GaP absorber layer thickness, the open-circuit voltage Voc was 1.706 mV and the
short-circuit current Jsc was 2.242 mA/cm2. At a 100 nm GaP absorber layer thickness, the
Voc = 1.713 mV and the Jsc = 2.939 mA/cm2. At a 120 nm GaP absorber layer thickness, the
open-circuit voltage Voc was 1.72 mV and the short-circuit current Jsc was 3.362 mA/cm2. At
a 250 nm GaP absorber layer thickness, the Voc = 1.732 mV and the Jsc = 5.16 mA/cm2. At a
500 nm GaP absorber layer thickness, the open-circuit voltage Voc was 1.744 mV and the
short circuit current Jsc was 6.67 mA/cm2. At a 1000 nm GaP absorber layer thickness, the
Voc = 1.76 mV and the Jsc = 7.69 mA/cm2. At a 1500 nm GaP absorber layer thickness, the
open-circuit voltage Voc was 1.775 mV and the short-circuit current Jsc was 8.13 mA/cm2.
The optimum GaP absorber layer thickness was 1500 nm for the most optimum solar cell
conversion efficiency performance.
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Figure 20. Short-circuit current density/open-circuit voltage of the solar cell structure against the
GaP absorber layer thickness.
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Figure 21 illustrates the fill factor, power conversion efficiency, and quantum efficiency
of the solar cell structure against the GaP absorber layer thickness. With a GaP absorber
layer thickness of 55 nm, it was considered that the fill factor, power conversion efficiency,
and quantum efficiency were 75.24%, 2.36%, and 40%, respectively. With a GaP absorber
layer thickness of 70 nm, it was indicated that the fill factor, power conversion efficiency,
and quantum efficiency were 75.09%, 2.87%, and 45%, respectively. The fill factor, power
conversion efficiency, and quantum efficiency were 74.97%, 3.77%, and 50% when using a
GaP absorber layer thickness of 100 nm. The fill factor, power conversion efficiency, and
quantum efficiency were 74.75%, 4.32%, and 60%, respectively, with a GaP absorber layer
thickness of 120 nm. The fill factor, power conversion efficiency, and quantum efficiency
were 74.91%, 6.69%, and 80%, respectively, with a GaP absorber layer thickness of 250 nm.
The fill factor, power conversion efficiency, and quantum efficiency were 75.76%, 8.82%,
and 90%, respectively, with a GaP absorber layer thickness of 500 nm. With a GaP absorber
layer thickness of 1000 nm, it was indicated that the fill factor, power conversion efficiency,
and quantum efficiency were 77.11%, 10.42%, and 92.5%, respectively. The fill factor, power
conversion efficiency, and quantum efficiency were 78.02%, 11.2%, and 92.5%, respectively,
with a GaP absorber layer thickness of 1500 nm. Figure 22 demonstrates the short-circuit
current density/open-circuit voltage of the suggested solar cell structure against a ZnS
absorber layer thickness of X nm. At 25 nm, the ZnS absorber layer thickness had a
Voc = 1.712 mV and a Jsc = 2.93 mA/cm2. At 50 nm, the ZnS absorber layer thickness had
an open-circuit voltage Voc of 1.732 mV and short-circuit current Jsc of 5.16 mA/cm2. At
55 nm, the ZnS absorber layer thickness had a Voc = 1.701 mV and a Jsc = 1.845 mA/cm2.
In addition, a Voc = 1.715 mV and a Jsc = 2.947 mA/cm2 were estimated at a 75 nm ZnS
absorber layer thickness. A Voc = 1.716 mV and a Jsc = 2.959 mA/cm2 were demonstrated
at a 100 nm ZnS absorber layer thickness. Figure 23 shows the fill factor, power conversion
efficiency, and quantum efficiency of the solar cell structure against an X nm ZnS absorber
layer thickness. The fill factor, power conversion efficiency, and quantum efficiency were
72.28%, 3.63%, and 48%, respectively, at a 25 nm ZnS absorber layer thickness. At a 50 nm
ZnS absorber layer thickness, the fill factor, power conversion efficiency, and quantum
efficiency were 78.02%, 11.23%, and 94%, respectively. At a 55 nm ZnS absorber layer
thickness, the fill factor, power conversion efficiency, and quantum efficiency were 74.83%,
3.78%, and 52.3%, respectively. The fill factor, power conversion efficiency, and quantum
efficiency were 75%, 3.98%, and 53%, respectively, at a 75 nm ZnS absorber layer thickness.
The fill factor, power conversion efficiency, and quantum efficiency were 74.82%, 3.8%, and
57.5%, respectively, at a 100 nm ZnS absorber layer thickness.
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structure for the various GaP absorber layer thicknesses.
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Figure 22. The short-circuit current density/open-circuit voltage of the solar cell structure for the
various ZnS absorber layer thicknesses.
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Figure 23. The fill factors, power conversion efficiencies, and quantum efficiencies of the solar cell
structure for the various ZnS absorber layer thicknesses.

Figure 24 shows the short-circuit current density/open-circuit voltage of the solar
cell structure against the various ZnO:Al absorber layer thicknesses. The open-circuit
voltage and the short-circuit current density were 1.714 mV and 2.95 mA/cm2, respectively,
at a 30 nm ZnO:Al absorber layer thickness. The short-circuit current density and the
open-circuit voltage were 5.16 mA/cm2 and 1.732 mV, respectively, at a 50 nm ZnO:Al
absorber layer thickness. The open-circuit voltage and short-circuit current density were
1.72 mV and 3.362 mA/cm2, respectively, at a 65 nm ZnO:Al absorber layer thickness. The
short-circuit current density and open-circuit voltage were 0.982 mA/cm2 and 1.714 mV,
respectively, at a 100 nm ZnO:Al absorber layer thickness.
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Figure 24. The short-circuit current density and open-circuit voltage of the solar cell structure of the
various ZnO:Al absorber layer thicknesses.

Figure 25 clarifies the fill factor, power conversion efficiency, and quantum efficiency
of the solar cell structure of the various ZnO:Al absorber layer thicknesses. The fill fac-
tor, power conversion efficiency, and quantum efficiency were 74.94%, 3.79%, and 60%,
respectively, at a 30 nm ZnO:Al absorber layer thickness. The fill factor, power conversion
efficiency, and quantum efficiency were 77.11%, 10.42%, and 92.5%, respectively, at a 50 nm
ZnO:Al absorber layer thickness. The fill factor, power conversion efficiency, and quantum
efficiency were 74.75%, 4.32%, and 61%, respectively, at a 65 nm ZnO:Al absorber layer
thickness. The fill factor, power conversion efficiency, and quantum efficiency were 74.8%,
3.78%, and 49%, respectively, at a 100 nm ZnO:Al absorber layer thickness. The keys for the
optimum performance parameters of the suggested and previous solar cell structures are
illustrated in Table 2.
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The maximum power voltage (Vmp) was 503.559 mV, the maximum power current
(Jmp) was 48.8075 mA/cm2, the short-circuit current (Jsc) was 51.8738 mA/cm2, and the
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open-circuit voltage (Voc) was 637.552 mV. Table 2 clarifies the comparison of our proposed
solar cell structure with previous works.

Table 2. Comparison of our proposed solar cell structure with previous works.

Basic Solar Cell Structure
Solar Cell Circuit Key Parameters

Voc (mV) Jsc (mA/cm2) FF (%) η (%)

Ref. [34] ZnS/CdS/CdTe 740 22.4 62.1 10.3

Ref. [35] ZnO/CdS/CdTe 1810 7.01 78.84 10

Ref. [36] Al:ZnO/CdS/CdTe 834 24.7 75.9 15.6

Ref. [37] ZnO/CdTe – – – 8

Ref. [38] ZnO/CdS/CdTe 875 21 70.7 12.77

Ref. [39] ZnO/CdS/CdTe 1000 26.15 76.9 18.3

Ref. [40] CdTe/CdS/ZnO/Cu 917 28.45 75.99 19.83

Ref. [41] CdTe/CdS/SnO2/FTO 813 27.72 66.03 13.8

This work SWCNT/CdS/ZnO/Si 637.552 51.8738 74.31 29.91

6. Conclusions

The optimized solar cell structure design was clarified against various suitable ab-
sorbers, substrates, and contact layer structures. The reflection, absorption, and transmis-
sion (RAT) of the solar cell spectrum were simulated versus the spectrum wavelength
variations. The effects of the surface morphology were clarified against the photo-current
absorptions. The substrate material variation effects were demonstrated against the photo-
current absorptions and solar cell quantum efficiencies. The absorber material layer varia-
tion effects were studied against the photo-current absorptions. In addition, the contact
layer material variation effects were clarified against the photo-current reflections and
absorptions of the solar cell. The equivalent circuit modeling and circuit performance
parameter optimizations were demonstrated against and compared with other previous
studies. A comprehensive research endeavor was conducted that focused on enhancing the
efficiency of the proposed solar cell design. The integration of the simulation techniques,
judicious material selection, and meticulous performance metrics showcased a methodical
approach toward creating a solar cell capable of achieving high efficiency across a wide
spectrum of light. Having said this, many researchers are still working on the efficiency
potential—based on external radiative efficiency, open-circuit voltage loss, and fill factor
loss—of high-efficiency solar cells.
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