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Abstract: Intelligent anomaly detection for wind turbines using deep-learning methods has been
extensively researched and yielded significant results. However, supervised learning necessitates
sufficient labeled data to establish the discriminant boundary, while unsupervised learning lacks prior
knowledge and heavily relies on assumptions about the distribution of anomalies. A long short-term
memory-based variational autoencoder Wasserstein generation adversarial network (LSTM-based
VAE-WGAN) was established in this paper to address the challenge of small and noisy wind turbine
datasets. The VAE was utilized as the generator, with LSTM units replacing hidden layer neurons to
effectively extract spatiotemporal factors. The similarity between the model-fit distribution and true
distribution was quantified using Wasserstein distance, enabling complex high-dimensional data
distributions to be learned. To enhance the performance and robustness of the proposed model, a two-
stage adversarial semi-supervised training approach was implemented. Subsequently, a monitoring
indicator based on reconstruction error was defined, with the threshold set at a 99.7% confidence
interval for the distribution curve fitted by kernel density estimation (KDE). Real cases from a wind
farm in northeast China have confirmed the feasibility and advancement of the proposed model,
while also discussing the effects of various applied parameters.

Keywords: wind turbine; anomaly detection; long short-term memory-based (LSTM-based);
variational autoencoder Wasserstein generation adversarial network (VAE-WGAN); semi-supervised
training

1. Introduction

In response to the global energy shortage and climate deterioration following the
Paris Agreement, renewables have attracted increasing attention in the past decade [1].
The rapid growth of wind power as a renewable energy source renders it strategically
significant in expediting the transition towards green and low-carbon energy structures.
The latest statistics from GWEC reveal that a cumulative wind-power capacity of 77.6 GW
was successfully integrated into power grids in 2022, resulting in a year-on-year growth
rate of 9% and elevating the total installed wind-power capacity to 906 GW [2]. For the
years 2023–2027, 680 GW of new capacity was forecast, exhibiting a compound annual
growth rate of 15%. As the world’s largest wind-energy market, by 2022, China’s wind
power grid’s installed capacity has reached 14.3%, satisfying 8.8% of its electricity demand.

However, large wind turbines have a higher failure rate compared to thermal and
hydroelectric turbines due to the challenging external environment and complex operat-
ing conditions. This not only impedes operational efficiency but also results in increased
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operation and maintenance (O&M) expenses, which account for 25–35% of the total life-
time cost [3]. The advancement of data processing technology has led to the widespread
recognition of data-driven fault diagnosis technology as a highly effective means of timely
identifying potential faults. This provides personnel with a basis for making informed
maintenance decisions, ultimately reducing O&M costs. The data-driven approach elimi-
nates the necessity for precise mathematical or physical models and prior knowledge of
the system, thereby bypassing the arduous modeling process and significantly improving
efficiency. Numerous studies have been dedicated to utilizing big data obtained from
Supervisory Control and Data Acquisition (SCADA) and Condition Monitoring System
(CMS) [4]. Two primary categories can be distinguished: conventional machine-learning
techniques and advanced deep-learning approaches.

The framework of machine-learning techniques primarily involves three key processes:
signal acquisition, feature extraction, and fault identification. Typically, manual adjustment
of the noise reduction threshold based on experience is necessary, followed by extraction of
statistical features to construct diverse models. The feature sets are analyzed under fault
conditions by means of blind source separation of fault features or through the combination
of experience, screening indicators, and dimensionality reduction methods to select high-
dimensional sensitive features. Machine-learning models are subsequently utilized to
further investigate the correlation between sensitive features and fault types, ultimately
achieving intelligent identification of equipment-health status [5–7]. However, the efficacy
of machine-learning techniques is heavily contingent upon the construction and selection of
feature sets. The limited nonlinear characterization ability of their shallow models hinders a
comprehensive exploration of fault information contained in wind turbine monitoring data.

On the other hand, deep-learning approaches utilize hierarchical feature extraction
to adaptively capture depth and essential features, thereby enabling the representation
of complex data structures through nonlinear transformations of the original input data.
This enhances the model’s capacity for effective data mining and generalization in big data
scenarios. The current methodologies can be classified into two approaches, namely super-
vised learning for classification and unsupervised learning for prediction/reconstruction.
Supervised learning involves a binary or multi-classification task that aims to distinguish
between normal and abnormal instances. By utilizing the output of a classification model,
data sequences can be categorized accordingly, facilitating the detection and recognition of
anomalous states [8–11]. Supervised learning is dependent on the availability of labeled
data to establish the discriminant boundary, thus the challenge of missing or insufficient
typical samples of abnormal data hinders the coverage of abnormal data distribution.
Moreover, due to a significantly lower amount of abnormal data compared with normal
data, classification-based methods are inevitably affected by imbalanced datasets.

In unsupervised learning, anomaly detection involves the identification of observations
that significantly deviate from others, indicating the possibility of a distinct mechanism
generating them. The process primarily entails establishing a predictive/reconstructive model
for state parameters, analyzing the distribution characteristics of prediction/reconstruction
residuals, and quantifying the degree of anomaly in state parameters. Statistical-based
anomaly detection assumes that the normal state is characterized by a high probability
range in a stochastic model, while the abnormal state falls within a low probability range.
The prediction or reconstruction error serves as a criterion for identifying anomalies [12–16].
Nevertheless, these methods lack prior knowledge of true anomalies and heavily rely on
assumptions regarding the distribution of anomalies.

In conclusion, the unsupervised learning approach based on prediction/reconstruction
has become the mainstream for anomaly detection and fault diagnosis due to its robust
feature extraction capabilities and broad adaptability. However, normal behavior mod-
els require a substantial amount of clean data for training, which can be significantly
compromised by the noise generated by equipment during the initial operation of wind
turbines with limited samples. Additionally, the model training only utilizes normal sam-
ples, while some abnormal samples are solely used for verifying the effectiveness of the
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model and are not fully exploited. Moreover, anomalies typically exhibit salient features in
low-dimensional space but remain inconspicuous and latent in high-dimensional space.
The generation of vast amounts of multidimensional data by large wind turbines presents
a challenge for anomaly detection.

In this study, a long short-term memory-based variational autoencoder Wasserstein
generation adversarial network (LSTM-based VAE-WGAN) is established to address the
challenge of small and noisy wind turbine data samples and to enable local information
extraction and abnormal feature amplification. The VAE is utilized as a generator, with
LSTM units replacing hidden layer neurons to effectively extract spatiotemporal factors.
The similarity between the model-fit distribution and the true distribution is measured
by means of Wasserstein distance in order to learn complex high-dimensional data distri-
butions. To enhance the performance and robustness of the proposed model, a two-stage
adversarial semi-supervised training approach is introduced.

2. Model Description

The framework of the proposed anomaly detection method using LSTM-based VAE-
WGAN and adversarial semi-supervised training is presented in Figure 1.
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Figure 1. Flowchart of proposed anomaly detection procedure.

During the modeling stage, system alarm logs are gathered to annotate the SCADA
data and to differentiate between normal operation and faulty data triggered by various
alarms, including fault events, warnings, and other relevant information. Subsequently, an
LSTM-based VAE-WGAN is established and trained for each sub-system using a two-stage
adversarial semi-supervised training approach. The monitoring indicator is computed and
analyzed based on the reconstruction error, followed by the determination of an alarm
threshold η for subsequent anomaly detection and warning. In the monitoring stage, the
well-trained model utilizes online SCADA data to compute real-time indicators. An alert
signal is generated when the predefined alarm threshold η is surpassed.

2.1. SCADA Data

Currently, almost all commercially operating wind farms are equipped with a SCADA
system that provides status monitoring, operational control, data storage, energy man-
agement, off-limit alarms, log management, and other functions. The SCADA system
typically monitors hundreds of variables with a low sampling frequency, ranging from
every few seconds to minutes. Nevertheless, given the varying time spans of data recorded
by SCADA systems, which can range from several months to years, it is both feasible and
cost-effective to assess wind turbine health status and to predict remaining life based on
SCADA data [17–19].

The SCADA data utilized in this investigation were acquired from an onshore wind
farm in the northeastern region of China. The occurrence of abnormal data is inevitable due
to factors such as electromagnetic interference, communication interruption, and informa-
tion processing errors. Therefore, it is imperative to identify abnormal data in wind turbines
for previous unsupervised learning approaches based on prediction/reconstruction to en-
sure optimal performance of the normal behavior model [20,21]. However, both statistical
and clustering-based identification methods necessitate large datasets, making them un-
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suitable for small sample data. In such cases, only the off-limit identification method can
be utilized for healthy training data.

2.2. LSTM-Based VAE-WGAN
2.2.1. Variational Autoencoder (VAE)

Autoencoders (AEs) and their variations have been extensively studied and utilized
in anomaly detection due to their strong adaptability and scalability, which is achieved
through symmetrical representation compression (the encoding process) and reconstruction
(the decoding process) [22–24]. Nonetheless, the AE-based anomaly detection method solely
focuses on the structural characteristics of data and neglects to fully exploit distributional
rules. This results in an over-sensitive normal behavior model that lacks robustness for early
warning when faced with SCADA data exhibiting strong temporal variability in practical
applications. The VAE is a powerful deep generative network that utilizes variational
Bayesian inference to model the underlying probability distribution of observations. It has
been proven to be highly effective in tasks such as data feature extraction, dimensionality
reduction, target detection, and even generating new datasets.

As illustrated in Figure 2, the encoder produces a posterior distribution qθ(zc | x) of
input data x, and the decoder stochastically samples elements from these distributions to
output reconstructed data pϕ(x | zc). x and xr are the input data and reconstructed data,
and zc is the latent variable [25].
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Due to the impracticality of directly computing the reverse derivative of the gradient
and the computational intensity required for Monte Carlo sampling, the reparameterization
trick is employed so that zc = µ + ε ∗ σ (µ and σ are the mean and standard deviation of a
normal distribution). Then the loss function of VAE can be calculated as:

L(θ, ϕ) = Ez∼q[log(pϕ(x | zc))]− DKL[qθ(zc | x)|| pϕ(zc)] (1)

where θ and ϕ are the parameters of the encoder and the decoder, the first term
Ez∼q[log(pϕ(x | zc))] is the reconstruction probability that denotes the reconstruction loss,
while the second term DKL[qθ(zc | x) || pϕ(zc)] is the KL divergence constraints that repre-
sents the similarity measure between two entities qθ(zc | x) and pϕ(zc).

2.2.2. Wasserstein Generative Adversarial Network (WGAN)

As another compelling deep generative network, the Generative Adversarial Network
(GAN) employs adversarial training to achieve complex high-dimensional data distribution
modeling. The generator G acquires knowledge of the underlying distribution of real data
and leverages it to convert random noise into generated data that closely approximates
real data, while the discriminator D is a classifier tasked with discerning whether an input
sample is real or generated, as illustrated in Figure 3.
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During the network-optimization process, the generator and discriminator are trained
alternately and pitted against each other, continuously enhancing the network’s generative
and discriminative capabilities until a state of equilibrium is achieved. The loss function is
shown as:

min
G

max
D

F(D, G) = Ex∼Pdata(x)[log2(D(x))] + Ez∼Pz(z)[log2(1− D(G(z)))] (2)

where x is the real data, Pdata is the distribution of x, z is the random noise, and G(z) is the
generated data.

A traditional GAN and its variants employ f-divergence to quantify the dissimilarity
between the hypothetical distribution and the actual distribution, which often leads to
issues of gradient instability and mode collapse during training. To address this problem,
the Earth-Mover (also called Wasserstein-1) distance has been further proposed, informally
defined as the minimum cost of transporting mass to transform distribution Pr into Pg
(where cost equals mass times transport distance):

W(Pr, Pg) = inf
γ∼Π(Pr ,Pg)

E(x,y)∼γ[|| x− y ||] (3)

where Π(Pr, Pg) is the set of all possible joint distributions of these two distributions. The
advantage of the Wasserstein distance over f-divergence lies in its ability to reflect the
proximity between two distributions, even when their overlap measure is zero.

To enforce the Lipschitz constraint on the discriminator D, its weights are clipped to
lie within a compact space [−c, c], and the gradient norm of the discriminator’s output with
respect to its input can also be directly regulated [26]. Then the loss function for WGAN
using the Kantorovich-Rubinstein duality with gradient penalty is constructed:

min
G

max
D∈
∼
D

F(D, G) = Ex∼Pdata(x)[D(x)]− Ez∼Pz(z)[D(G(z))] + λ · Ex′∼P(x′)[(|| ∇x′D(x′) ||2 − 1)2
] (4)

where
∼
D is the set of 1-Lipschitz functions, x′ is the mixed sample x′ = ε · x + (1− ε) · G(z),

and λ is the gradient penalty weight. The WGAN loss function yields a discriminator
function with a more well-behaved gradient in comparison to its GAN counterpart, thereby
facilitating the optimization of the generator [26].

2.2.3. Long Short-Term Memory (LSTM)

As a specialized form of recurrent neural network (RNN), LSTM is extensively em-
ployed in sequence modeling tasks, including but not limited to speech recognition, ma-
chine translation, text classification, and time series prediction. It addresses the issue
of vanishing or exploding gradients in RNNs by introducing a memory cell and gating
mechanism, as shown in Figure 4.
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The memory cell preserves past information, while the forget gate controls whether to
discard it. The input gate determines whether new information should be incorporated into
the memory unit, and ultimately, the output gate transmits information from the memory
unit to subsequent time steps. The expressions for the forget gate, input gate, output gate,
and cell update can be formulated as:

ft = σ(W f · [ht−1, xt] + b f ) (5)

it = σ(Wi · [ht−1, xt] + bi) (6)

ot = σ(Wo · [ht−1, xt] + bo) (7)

ct = ft ⊗ ct−1 + it ⊗ tanh(Wc · [ht−1, xt] + bc) (8)

where W f , Wi, Wo, Wc are weights and b f , bi, bo, bc are bias; σ(·) is the sigmoid activation
function and ⊗ represents an element-wise multiplication.

2.2.4. LSTM-Based VAE-WGAN

To tackle the challenge of limited and noisy wind turbine data samples, which hinder
local information extraction and amplify abnormal features, the LSTM-based VAE-WGAN
is established that utilizes a VAE as a generator with LSTM units replacing hidden layer
neurons to effectively extract spatiotemporal factors. The structural diagram of the LSTM-
based VAE-WGAN is depicted in Figure 5.

Figure 5. Structure diagram of the LSTM-based VAE-WGAN.

The VAE encodes the sequenced real data x to a latent representation zc and decodes
the latent representation back to xr. Subsequently, the discriminator D is fed with real data
x and reconstructed data xr to output the corresponding discrimination results. By incorpo-
rating KL divergence constraints and sampling the latent representation of VAE, VAE-GAN
can effectively address issues related to overfitting and mode collapse that are commonly
encountered in conventional GANs. Additionally, the integration of adversarial training
concurrently enhances its ability to detect anomalous data features with greater sensitivity.

2.2.5. Adversarial Semi-Supervised Training

The complexity of GAN-based models may lead to sub-optimal performance when
trained with limited observed data. Additionally, machine-learning models often require
an initial selection of model parameters prior to training. The occurrence of inadequate
initialization may lead to models getting trapped in local minima, which is particularly
pronounced in the case of deep neural networks. Normally, the model training for conven-
tional unsupervised learning methods based on prediction/reconstruction solely employs
normal samples. The abnormal data generated by wind turbines due to faults or failures
during operation has not been effectively utilized, except for the purpose of validating the
efficacy of anomaly detection models. A two-stage adversarial semi-supervised training
methodology is formulated in this section, utilizing a large quantity of normal data and a
limited quantity of abnormal data.

Stage 1: Supervised pre-training for discriminator with abnormal data.
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In this stage, the discriminator parameters are initialized with a small amount of
abnormal data, and the parameter updating process can be briefly expressed as follows.

θDis ← RMSProp(∇θDis(−D(xab)), α) (9)

where α is the learning rate for optimizer RMSProp, and xab is the input abnormal data.
Stage 2: Adversarial training for LSTM-based VAE-WGAN with normal samples.
The algorithm for LSTM-based VAE-WGAN with normal samples is presented in

Algorithm 1. During this stage of training, the process closely resembles that of conventional
GANs, where the generator and discriminator are trained alternately. In each epoch, the
discriminator is trained several times to discriminate real data x and reconstructed data
xr. The gradient penalty term is implemented by alternatively sampling the generated
and real data, followed by the weight clipping. Afterward, the VAE is trained on the
training data with the objective of minimizing a combination of expected log-likelihood
(reconstruction error) and a regularization term based on prior knowledge for the encoder,
while simultaneously deceiving the discriminator for the decoder with a hyperparameter β
that weights reconstruction versus discrimination.

Algorithm 1: LSTM-based VAE-WGAN with normal samples.

Initialization: Network parameters for encoder θEnc and decoder θDec.
Input: Maximum training epoch e, batch size m, clipping parameter c, number of iterations of the
discriminator per generator iteration ndis, RMSProp learning rate α, gradient penalty weight λ,
VAE hyperparameter β, and network parameters for the discriminator θDis.
while the training epoch is not satisfied do

for i = 0, . . . , m do
for t = 0, . . . , ndis do

Sample real data x ∼ Pr, a random number ε ∼ U[0, 1].
zc ← Enc(x) , xr ← Dec(zc) , x′ = ε · x + (1− ε) · xr
Update parameters of discriminator according to gradient:
θDis ← RMSProp(∇θDis ((D(x)− D(xr)) + λ · [(|| ∇x′D(x′) ||2 − 1)2]), α)
θDis ← clip(θDis,−c, c)
end for
Update parameters of encoder and decoder according to gradient:

θEnc, θDec ← RMSProp(∇θEnc ,θDec (β · (Ez∼q[log(p(x | zc))]− DKL[q(zc | x) || p(zc)])− D(xr)), α)
end for

end while

2.3. Anomaly Detection

The interdependence of SCADA variables remains stable under normal operating
conditions but is inevitably disrupted in the presence of an anomaly. Once the LSTM-
based VAE-WGAN model is effectively trained, the VAE demonstrates its capability to
map inputs to a latent space and accurately reconstruct them back to their original form.
The reconstruction error can thus be regarded as a suitable metric for anomaly detection,
triggering an alarm when it surpasses a predefined threshold. Thus, the anomaly score is
defined as shown below:

Anomaly score = ||x− ∼x||2 (10)

The samples exhibiting high anomaly scores are classified as anomalies according
to a predetermined threshold η. Additionally, KDE is utilized to fit the distribution of
anomaly scores under normal conditions and to subsequently calculate the Probability
Density Function (PDF) as:

∧
f (x) =

1
nh

n

∑
k=1

K(
x− xk

h
) (11)

where K(·) represents the kernel function under the condition of
∫ +∞
−∞ K(x)dx = 1, xk de-

notes the element contained, and h denotes the window width to ensure that the estimated
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∧
f (x) can best fit the distribution. In this study, the Gaussian kernel function was chosen for

K( x−xk
h ) = 1

h
√

2π
e−

(x−xk)
2

2h2 .
The alarm threshold η at a given confidence interval of α can be obtained below.

Additionally, the mechanism is defined here that an alarm will only be issued when certain
consecutive points exceed the threshold.

α = P(x < η) =
∫ η

0

∧
f (x)dx (12)

3. Results

The following section provides specific examples from a wind farm situated in north-
east China to validate the feasibility and advancement of the proposed model. The wind
turbines are identical in type, featuring a rated power output of 2.6 MW, rotor diameter
of 140 m, hub height of 100 m, cut-in speed of 2.5 m/s, rated wind speed of 8.5 m/s,
cut-out speed of 20 m/s, and rated generator speed at 1750 rpm with a design life set for
twenty years.

3.1. Generator Input Bearing Wear for Wind Turbine YD37

Pitting corrosion of the generator input bearing was found for wind turbine YD37
during a planned inspection on 25 October 2021, which must be replaced after a subsequent
detailed inspection. The LSTM-based VAE-WGAN was established for the generator with
the input features of wind speed, output power, nacelle temperature, generator input
shaft temperature, generator output shaft temperature, generator winding U temperature,
generator winding V temperature, generator winding W temperature, and generator speed.
The training parameters for this case are listed in Table 1.

Table 1. Training network parameters for case one.

Training Network Value

VAE network [8 6 4 6 8]
Discriminator network [6 2 1]

Batch size 64
Epoch size 2000

Delay time for LSTM [14] 10
Learning rate α 0.001

Clipping parameter c 0.002
Discriminator iterations ndis 5

VAE hyperparameter β 0.008
Gradient penalty weight λ 4

3.1.1. Model Performance

Comparative experiments were performed on the same training dataset with five
different global random seeds, and the reconstruction results are presented in Table 2.
The proposed LSTM-based VAE-WGAN demonstrates superior model performance by
effectively extracting spatiotemporal factors, as represented by its significantly lower mean
absolute error (MAE) and root mean square error (RMSE) for reconstructing real inputs.
Especially, by adopting the LSTM module in the reconstruction model, the performance
can be significantly improved, as evidenced by lower reconstruction errors observed in
LSTM-based VAE, LSTM-based VAE-GAN, and LSTM-based VAE-WGAN compared to
VAE, VAE-GAN, and VAE-WGAN. Also, by using the Wasserstein distance and enforcing
the Lipschitz constraint on the discriminator, the performance of VAE-WGAN can be
improved compared to its GAN counterpart.
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Table 2. Comparative results of model performance for case one (normalized).

Training Network MAE RMSE

Random Seed 1 2 3 4 5 1 2 3 4 5

VAE 0.02062 0.01999 0.02106 0.01989 0.01815 0.02760 0.02683 0.02794 0.02670 0.02448
VAE-GAN 0.02333 0.01997 0.02090 0.02300 0.02288 0.03058 0.02718 0.02772 0.03063 0.02963

VAE-WGAN 0.01725 0.01844 0.01976 0.02197 0.02017 0.02335 0.02442 0.02618 0.02939 0.02632
LSTM-based VAE 0.01475 0.01428 0.01490 0.01832 0.01220 0.02011 0.02022 0.01989 0.02513 0.01691

LSTM-based VAE-GAN 0.01006 0.01218 0.01172 0.01556 0.01384 0.01482 0.01671 0.01653 0.02092 0.01891
LSTM-based VAE-WGAN 0.00921 0.01287 0.01059 0.01062 0.01053 0.01389 0.01790 0.01543 0.01539 0.01525

Moreover, the effects of network parameters on model performance have also been
discussed, as illustrated in Figure 6. Typically, a more complex network architecture yields
improved feature extraction capabilities but an increased risk of overfitting. In this case,
the VAE and discriminator networks are set as [8 6 4 6 8] and [6 2 1], respectively. Moreover,
the hyperparameter β assigns a weight to balance the trade-off between reconstruction
and discrimination in the VAE’s loss function, while the clipping parameter c and gradient
penalty weight λ determine model constraints in WGAN. Therefore, optimal values can
be obtained with a minimal MAE and RMSE, with 0.008 for the VAE hyperparameter β,
0.002 for the clipping parameter c, and 4 for the gradient penalty weight λ, as can be seen
in Table 1.
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Figure 6. Effects of network parameters for case one: (a) VAE network; (b) Discriminator network;
(c) VAE hyperparameter β; (d) Clipping parameter c; (e) Gradient penalty weight λ.
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3.1.2. Anomaly Detection

To detect anomalies in time, the two-stage adversarial semi-supervised training
method proposed above is adopted. Due to the previous extended shutdown of this
wind turbine for fire safety renovations, there was a limited amount of continuous normal
data available (from 7 October to 14 October with a 1-min interval) for data preprocessing
and model training, which were split into 70% for training and 30% for testing. Moreover,
to initialize the discriminator parameters, a small amount of abnormal data (about 30%
of the normal data) was generated by applying a large disturbance to the temperature
parameters associated with the generator.

The histogram and estimated PDF of the reconstruction error for the testing sets are
presented in Figure 7a, with the anomaly detection threshold determined as 0.0014. A
total of 6375 data points before the shutdown are used for validation, and the monitoring
reconstruction error and detection threshold are shown in Figure 7b. The alarm signal is
triggered when fifteen consecutive points exceed the threshold which is at the 314th data
point. After that, a large number of out-limits can be seen before the planned inspection,
which serve as indicators of deviations in the internal relationships between variables
and a decline in performance. Especially, the original monitoring generator input shaft
and output shaft temperatures for validation are illustrated in Figure 7c. Under normal
circumstances, the input shaft temperature should be slightly higher than the output shaft
temperature. However, during the validation period leading up to the shutdown, there
is a significant disparity between the input and output shaft temperatures, which further
intensifies over time. The traditional fixed-threshold alarm or trend alarm methods face
challenges in deep and long-term dependency relations between monitoring parameters
and detecting these changes, thus validating the effectiveness of the proposed method. The
presence of several prominent columnar lines in Figure 7b marked by green ellipses, which
are most likely attributed to interference during the measurement process (green ellipses in
Figure 7c), is worth highlighting.
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Figure 7. Anomaly detection for case one: (a) Histogram and density estimation by KDE; (b) Moni-
toring reconstruction error; (c) Monitoring temperature.
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3.1.3. Comparative Experiments

For comparison, the detection results for this case using the LSTM-based AE [27],
LSTM-based VAE [28], LSTM-based VAE-GAN, LSTM-based VAE-WGAN (without su-
pervised pre-training for discriminator), LSTM-based VAE-WGAN (with supervised pre-
training for discriminator) are illustrated in Figure 8. Among the 6375 validation data
points, the point before the alarm is labeled as normal, whereas the remainder is labeled as
abnormal. Subsequently, the precision, recall, and F1 score are introduced as evaluation
indicators, as expressed in Equations (13)–(15), respectively [29].

Precision =
TP

TP + FP
(13)

Recall =
TP

TP + FN
(14)

F1 = 2× Precision× Recall
Precision + Recall

(15)
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Figure 8. Anomaly detection results for case one: (a) LSTM-based AE; (b) LSTM-based VAE; (c) LSTM-
based VAE-GAN; (d) LSTM-based VAE-WGAN (without supervised pre-training for discriminator).

TP is the number of cases that are correctly labeled as positive, FP is the number of
cases that are incorrectly labeled as positive, and FN is the number of cases that are positive
but are labeled as negative. In particular, precision reflects the false alarm rate, whereas
recall represents the missing alarm rate. The F1 score reflects the balance between precision
and recall, where a high score implies a good trained model. The detailed comparative
results of different anomaly detection methods can be seen in Table 3. It is clear that the
proposed LSTM-VAE-WGAN that adopts the two-stage adversarial semi-supervised train-
ing approach manages to capture subtle changes in the relationship between parameters
with the earliest alarm point (314th point) and the highest F1 score (0.8381). Thus, through
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deep and long-term dependency analysis between the monitoring parameters, as well
as the initialization of discriminator parameters with abnormal data, the feasibility and
advancement of the proposed model have been confirmed.

Table 3. Comparative results of different anomaly detection methods for case one.

Model Alarm Point Precision Recall F1 Score

LSTM-based AE 343rd point 0.9886 0.5476 0.7048
LSTM-based VAE 322nd point 0.9967 0.5944 0.7447

LSTM-based VAE-GAN 320th point 0.9942 0.7118 0.8296
LSTM-based VAE-WGAN(without supervised pre-training) 325th point 0.9944 0.7018 0.8229

LSTM-based VAE-WGAN (with supervised pre-training) 314th point 0.9952 0.7238 0.8381

3.2. Sensor Failure of Pitch Motor Temperature 2 for Wind Turbine YD28

Sensor failure of pitch motor temperature 2 was found for wind turbine YD28 during a
planned inspection on 15 October 2021. The LSTM-based VAE-WGAN was established for
the pitch system with the input features of wind speed, output power, nacelle temperature,
pitch torque 1, pitch torque 2, pitch torque 3, pitch motor temperature 1, pitch motor
temperature 2, pitch motor temperature 3, pitch angle 1, pitch angle 2 and pitch angle 3.
The training parameters for this case are listed in Table 4.

Table 4. Training network parameters for case two.

Training Network Value

VAE network [8 6 4 6 8]
Discriminator network [8 2 1]

Batch size 64
Epoch size 2000

Delay time for LSTM [14] 10
Learning rate α 0.001

Clipping parameter c 0.002
Discriminator iterations ndis 5

VAE hyperparameter β 0.008
Gradient penalty weight λ 4

3.2.1. Model Performance

Comparative experiments were performed on the same training dataset with five dif-
ferent global random seeds, and the reconstruction results are presented in Table 5. Similar
to case one, the proposed LSTM-based VAE-WGAN achieves superior model performance
by effectively extracting spatiotemporal factors, as demonstrated by its significantly lower
MAE and RMSE for reconstructing real inputs.

Table 5. Comparative results of model performance for case two (normalized).

Training Network MAE RMSE

Random Seed 1 2 3 4 5 1 2 3 4 5

VAE 0.03907 0.03640 0.03749 0.03913 0.03539 0.06099 0.05785 0.05682 0.05965 0.05827
VAE-GAN 0.03358 0.03443 0.03438 0.03517 0.03389 0.05635 0.05533 0.05489 0.05627 0.05652

VAE-WGAN 0.03243 0.03434 0.03490 0.03725 0.03238 0.05586 0.05593 0.05635 0.05765 0.05600
LSTM-based VAE 0.02861 0.02913 0.03011 0.02992 0.02663 0.04648 0.04664 0.04761 0.04704 0.04453

LSTM-based VAE-GAN 0.02592 0.02600 0.02934 0.02755 0.02719 0.04209 0.04294 0.04619 0.04419 0.04500
LSTM-based VAE-WGAN 0.02566 0.02737 0.02846 0.02648 0.02565 0.04395 0.04480 0.04621 0.04330 0.04405

The effects of network parameters on model performance have also been presented,
as illustrated in Figure 9. The optimal network parameters can be obtained with [8 6 4 6 8]
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for the VAE, [8 2 1] for the discriminator, 0.008 for the VAE hyperparameter β, 0.002 for the
clipping parameter c, and 4 for the gradient penalty weight λ as can be seen in Table 4.

Energies 2023, 16, x FOR PEER REVIEW 14 of 19 
 

 

the VAE, [8 2 1] for the discriminator, 0.008 for the VAE hyperparameter β , 0.002 for the 
clipping parameter c , and 4 for the gradient penalty weight λ  as can be seen in Table 
4. 

  
(a) (b) 

  
(c) (d) 

 
(e) 

Figure 9. Effects of network parameters for case two: (a) VAE network; (b) Discriminator network; 
(c) VAE hyperparameter β ; (d) Clipping parameter c ; (e) Gradient penalty weight λ . 

3.2.2. Anomaly Detection 
To detect anomalies, normal data available from 1 October to 7 October with a 1-min 

interval were collected for data preprocessing and model training, which were split into 
70% for training and 30% for testing. Also, a small amount of abnormal data (about 30% 
of the normal data) was generated by applying a large disturbance to the temperature 
parameters associated with the pitch system to initialize the discriminator parameters.  

The histogram and estimated PDF of the reconstruction error for the testing sets are 
presented in Figure 10a, with the anomaly detection threshold determined as 0.016. A total 
of 5229 data points before the shutdown are used for validation, and the monitoring re-
construction error and detection threshold are shown in Figure 10b. The alarm signal is 

[2 1 2] [4 2 4] [8 4 2 4 8] [8 6 4 6 8] [10 6 2 6 10]

VAE network

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

3400

3600

3800

4000

4200

4400

4600

MAE
RMSE
Training time

[4 1] [4 2 1] [6 2 1] [8 2 1] [8 4 1]

Discriminator network

0.025

0.03

0.035

0.04

0.045

0.05

4340

4360

4380

4400

4420

4440

4460

4480

4500

4520

4540

MAE
RMSE
Training time

0.002 0.004 0.006 0.008 0.01

VAE hyperparameter

0.025

0.03

0.035

0.04

0.045

0.05

4530

4532

4534

4536

4538

4540

4542

4544

MAE
RMSE
Training time

0.002 0.003 0.004 0.005 0.006

Clipping parameter

0.025

0.03

0.035

0.04

0.045

0.05

4510

4515

4520

4525

4530

4535

MAE
RMSE
Training time

2 4 6 8 10

Gradient penalty weight

0.025

0.03

0.035

0.04

0.045

0.05

4528

4530

4532

4534

4536

4538

4540

4542

4544

MAE
RMSE
Training time

Figure 9. Effects of network parameters for case two: (a) VAE network; (b) Discriminator network;
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3.2.2. Anomaly Detection

To detect anomalies, normal data available from 1 October to 7 October with a 1-min
interval were collected for data preprocessing and model training, which were split into
70% for training and 30% for testing. Also, a small amount of abnormal data (about 30%
of the normal data) was generated by applying a large disturbance to the temperature
parameters associated with the pitch system to initialize the discriminator parameters.
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The histogram and estimated PDF of the reconstruction error for the testing sets are
presented in Figure 10a, with the anomaly detection threshold determined as 0.016. A
total of 5229 data points before the shutdown are used for validation, and the monitoring
reconstruction error and detection threshold are shown in Figure 10b. The alarm signal is
triggered when five consecutive points exceed the threshold which is at the 4639th data
point. After that, a large number of out-limits can be seen before the planned inspection. The
original monitoring pitch motor temperature 1 and pitch motor temperature 2 validation
are illustrated in Figure 10c. Under normal circumstances, these two temperatures should
be close to each other. During the validation period, however, a sensor failure in pitch
motor temperature 2 resulted in an erratic fluctuation of the measured temperature, leading
up to the out-limits of monitoring reconstruction error.
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Figure 10. Anomaly detection for case two: (a) Histogram and density estimation by KDE; (b) Moni-
toring reconstruction error; (c) Monitoring temperature.

3.2.3. Comparative Experiments

For comparison, the detection results for this case using the LSTM-based AE, LSTM-
based VAE, LSTM-based VAE-GAN, LSTM-based VAE-WGAN (without supervised pre-
training for discriminator), LSTM-based VAE-WGAN (with supervised pre-training for
discriminator) are illustrated in Figure 11, together with the detailed comparative results
shown in Table 6. Similar to case one, the proposed LSTM-VAE-WGAN that adopts the two-
stage adversarial semi-supervised training approach manages to capture subtle changes in
the relationship between parameters with the earliest alarm point (4639th point) and the
highest F1 score (0.6559).
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Figure 11. Anomaly detection results for case two: (a) LSTM-based AE; (b) LSTM-based VAE;
(c) LSTM-based VAE-GAN; (d) LSTM-based VAE-WGAN (without supervised pre-training
for discriminator).

Table 6. Comparative results of different anomaly detection methods for case two.

Model Alarm Point Precision Recall F1 Score

LSTM-based AE 4867th point 0.6582 0.5746 0.6136
LSTM-based VAE 5140th point 0.2386 0.7640 0.3636

LSTM-based VAE-GAN 4812th point 0.5670 0.4365 0.4933
LSTM-based VAE-WGAN (without

supervised pre-training) 4933th point 0.3450 0.3007 0.3213

LSTM-based VAE-WGAN (with
supervised pre-training) 4639th point 0.6938 0.6220 0.6559

4. Conclusions

In this study, the LSTM-based VAE-WGAN was established to address the challenge
of small and noisy wind turbine datasets. The VAE was utilized as the generator, with
LSTM units replacing hidden layer neurons to effectively extract spatiotemporal factors.
The similarity between the model-fit distribution and true distribution was quantified
using Wasserstein distance, enabling complex high-dimensional data distributions to be
learned. Comparative experiments were conducted on the same dataset with five differ-
ent global random seeds that the proposed LSTM-based VAE-WGAN achieved superior
model performance by effectively extracting spatiotemporal factors, as demonstrated by
its significantly lower mean absolute error (MAE) and root mean square error (RMSE)
for reconstructing real inputs. The effects of network parameters on model performance
have also been discussed. A more complex network architecture yields improved feature
extraction capabilities but an increased risk of overfitting, while the VAE hyperparameter
β, clipping parameter c, and gradient penalty weight λ affect the training process of VAE
and WGAN. Two real anomaly detection cases of pitting corrosion of the generator input
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bearing and sensor failure of pitch motor temperature 2 were represented. The histogram
and estimated PDF of the reconstruction error for the testing sets by KDE, the monitor-
ing reconstruction error and the detection threshold have been illustrated. The proposed
method manages to mine deep and long-term dependency relations between the moni-
toring parameters and identify small changes in the relationships. Moreover, extensive
comparative experiments with other anomaly detection methods were also conducted.
The proposed LSTM-VAE-WGAN with the two-stage adversarial semi-supervised training
approach achieved the best performance with the earliest alarm point and highest F1 score.

Despite the above relevant findings, false alarms can still be seen in the real-time moni-
toring stage, and further research is needed to improve the model. Moreover, more complex
and complete cases are needed to verify the wide applicability of the developed methods.
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Nomenclature

Abbreviations
LSTM Long short-term memory SCADA Supervisory control and data acquisition
VAE Variational autoencoder CMS Condition monitoring system
WGAN Wasserstein generation adversarial network AE Autoencoder
KDE Kernel density estimation GAN Generative adversarial network
GWEC Global Wind Energy Council RNN Recurrent neural network
O&M Operation and maintenance PDF Probability density function
Parameters
η The predefined alarm threshold b f The bias of forget gate
x The input data/real data bi The bias of input gate
xr The reconstructed data bo The bias of output gate
zc The latent variable bc The bias of cell
µ The mean of a normal distribution σ(·) The sigmoid activation function
σ The standard deviation of a normal distribution ⊗ The element-wise multiplication
θ The parameter of the encoder α The learning rate for optimizer RMSProp
ϕ The parameter of the decoder xab The input abnormal data
z The random noise β The hyperparameter that weights reconstruction

versus discrimination.
Pdata The distribution of real samples e The maximum training epoch
G(z) The data generated by the generator m The batch size
Π(Pr, Pg) The set of all possible joint distributions of Pr and Pg ndis The number of iterations of the discriminator

per generator iteration
∼
D The set of 1-Lipschitz functions θDis The network parameters for discriminator
c The clipping parameter θEnc The network parameters for encoder
ε The random number θDec The network parameters for decoder
x′ The mixed sample K(·) The kernel function
λ The gradient penalty weight h The window width
W f The weight of forget gate α The given confidence interval
Wi The weight of input gate TP The number of cases that are correctly labeled

as positive
Wo The weight of output gate FP The number of cases that are incorrectly labeled

as positive
Wc The weight of cell FN The number of cases that are positive but are

labeled as negative
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