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Abstract: This study discusses the assessment of OE (operational efficiency) and RTS (returns to
scale) over a time horizon. Many previous DEA (Data Envelopment Analysis) studies have discussed
how to measure OE/RTS. However, their works did not consider the measurement over time. The
important feature of the proposed approach is that our models are different from standard ones
in terms of factor (inputs and outputs) unification. A problem with standard models is that they
produce different efficiency measures for input and output orientations. Consequently, they yield
different OE and RTS estimates depending upon which production factor is used for measurement.
To handle the difficulty, we develop a new DEA formulation whose efficiency measure is determined
after combining inputs and outputs, and then we discuss how to measure the types of RTS. The other
methodological feature is that the proposed model incorporates a time horizon. As an empirical
application, this study considers electricity generation and transmission across Chinese provinces
from 2006 to 2019. The first key outcome is that the performance of China’s electricity generation
and transmission system tends to improve with an annual growth rate of 0.45% across time. The
second outcome is that, during the observed periods, China has more occurrences of decreasing
rather than increasing RTS. As an implication, some provinces (e.g., Jiangxi and Hainan) need to
increase their generation sizes to enhance their OE measures, while other provinces (e.g., Jiangsu and
Zhejiang) should decrease their generation sizes. Finally, this study confirms significant technological
heterogeneity across Chinese provinces and groups.

Keywords: data envelopment analysis; returns to scale; operational efficiency; electricity generation
and transmission

1. Introduction

In performance assessment, the DEA (data envelopment analysis) has gained a great
academic reputation. The DEA, first proposed by Charnes et al. [1], has wide applications
in the research of performance evaluation. The approach has been widely applied to assess
energy sectors, often power sectors. According to a recent literature survey by Sueyoshi
and Goto [2], the DEA has several methodological merits because it is a non-parametric
approach (i.e., measuring weights, not parameters, among factors), and it has a high level
of computational tractability (i.e., solving by linear programming). In addition, DEA is
very useful in providing various technology-based measures (e.g., returns to scale). These
unique features provide us with useful and important business and policy information
about production technology.

In this study, we discuss how to determine the degree of OE (operational efficiency)
and how to examine the economic concept of RTS (returns to scale) over a time horizon.
The RTS originally implied how much an output could increase due to a one-unit increase
in an input. We determine the degree of RTS by comparing a proportional output increase
with the other levels of increases. The types of RTS are classified as “increasing” (more
than proportional increase), “constant” (proportional increase), and “decreasing” (less
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than proportional increase). Thus, the RTS measurement suggests implications on how
to improve the level of OE by changing the operational size of each organization. A
contribution of the DEA measurement is that the approach makes it possible to determine
the types of RTS in multiple dimensions of inputs and outputs.

Previous DEA/RTS: In the conventional DEA framework, the measurement of RTS
was discussed by Banker [3] and then followed by many other studies (e.g., Chang and
Guh [4]). However, at an early stage of research on RTS, the previous research efforts were
interested in how to measure the types of RTS on the specific k-th DMU (decision making
unit). Sueyoshi [5] extended the work by considering DEA duality on RTS in production
and cost analyses under the occurrence of multiple solutions and differences between
production-based and cost-based RTS estimates. The problem with those previous studies
was that all of their discussions belonged to the standard DEA models (e.g., radial and
non-radial). Furthermore, they have not incorporated a time horizon, so we cannot use
their analytical frameworks with annual changes. See Section I of the book (Sueyoshi and
Goto [2]) for a detailed description of the standard RTS measurement.

As an important application, this study examines the RTS of the Chinese electric
power industry. The power sector plays a crucial role in supporting economic growth
and has gained great research interest. According to the International Energy Agency [6],
global annual average power sector investment accounted for almost half of total energy
supply investment from 2010 to 2018, and this proportion may increase to two thirds
by 2040. Meanwhile, CO2 emissions from power generation reached 13,818 million tons
in 2018, accounting for 41.57% of the world’s total [6]. Empirically, this study focuses
on the case of China. According to British Petroleum [7], China’s electricity generation
reached 8534.3 TWh (terawatt-hours) in 2021, accounting for 30.0% of the world total. Thus,
China’s power sector has attracted great attention from researchers, professionals, and
policymakers because of its importance to economic growth and sustainability. Based
upon such background, this study evaluates the overall performance and investigates the
technology-based measures of China’s power sector.

Chinese electric power industry: Currently, global electricity generation is highly linked
with but generally separated from electricity transmission. Generally, the power sector
consists of generation, transmission, and distribution. According to Newbery [8] and
Green [9], many industrialized nations have been under a general deregulation trend to
decouple between generation and transmission. It is true for China as well. According to
the official websites of the State Council of China and its branches, since 2002, the Chinese
government has implemented the deregulation reform, and the power sector has been
separated into power and grid companies, decoupling electricity generation and transmis-
sion. In China, there are two huge grid companies: “State Grid” and “China Southern
Power Grid”. The two grid companies operate according to their geographical regions.
Meanwhile, power companies are in charge of electricity generation, and there are five large
power companies (“China Hua’neng Corporation”, “China Datang Corporation”, “China
Huadian Corporation”, “China Guodian Corporation”, and “State Power Investment”),
four large subsidiary companies, and many small companies.

Purpose of this study: Several previous studies have discussed how to measure the types
of RTS. However, their works did not consider a time horizon. The proposed DEA models
have two unique features. One feature is that it incorporates a time horizon into their
computational processes. The other feature is that it is different from the standard models
in terms of factor unification. A problem with the conventional models is that they produce
different efficiency measures for input- and output-based orientations. Consequently, they
yield different RTS estimates depending upon which production factor (input or output) is
used for the RTS measurement. In order to avoid these two difficulties, we develop a new
formulation that determines the degree of OE after unifying inputs and outputs. Then, we
discuss how to measure the types of RTS over time. As an empirical study, we evaluate
the performance of electricity generation and transmission across Chinese provinces. This
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study utilizes the proposed approach to capture the annual changes in OE and RTS so that
we can understand the technology status of China’s power sector.

The remainder of this research is structured as follows: Section 2 reviews the previous
studies. Section 3 describes methods. Section 4 provides a description of RTS. Section 5
proposes an approach to identifying RTS measurements. Section 6 proposes an application
to the Chinese electric power industry. Section 7 summarizes this research and future
extensions.

2. Previous Studies

The OE/RTS assessment of China’s power sector had two highly linked research
groups.

OE/RTS: Table 1 summarizes the previous studies on OE/RTS assessment. The table
provided us with two interesting findings. One of the two findings was that OE/RTS have
documented wide applications, covering many countries and sectors. The other finding
was that OE/RTS may face the possible occurrence of multiple optimal solutions, and many
studies have considered how to handle this type of difficulty as a future task.

Table 1. Recent studies on DEA-based RTS measurement.

Articles Coverage Addressing Problem
of Multiple Solutions Methods Orientation Time

Horizon

Taleb et al. [10] 39 airports, Spain, 2008 Yes Non-radial model Non-oriented No

Mousavi et al. [11] 19 commercial branches,
Iran, 2018 Yes Non-radial model Non-oriented No

Wang et al. [12] 8 provinces, China,
2013–2017 No BCC Input-oriented No

Kuo et al. [13] 53 ports, Vietnam,
2012–2016 No

Context-
dependent

DEA
Output-oriented No

Deng et al. [14] 30 provinces, China,
2016 No Slack-Based

Measure Non-oriented No

Sueyoshi and
Goto [15] 23 districts, Japan, 2014 Yes Intermediate

approach Output-oriented No

Wang et al. [16] 7 companies, China,
2017 No Slack-Based

Measure Non-oriented No

Zhou et al. [17] 38 sectors, China,
2010–2014 No BCC, CCR Input-oriented No

Taleb et al. [18] 20 public universities,
Malaysia, 2011 No Radial model Output-oriented No

Hatami-Marbini
et al. [19] 28 cities, China, 1983 Yes CCR Input-oriented No

Sueyoshi and
Wang [20]

855 PV systems, U.S.,
2013 Yes Radial model Input-oriented No

Sueyoshi and
Goto [21]

160 PV power stations,
U.S., Germany Yes Radial model Input-oriented/

Output-oriented No

Clercq et al. [22] 15 cities, Asia, 2015–2017 No BCC Input-oriented No
Sueyoshi and

Yuan [23]
30 provinces, China,

2005–2012 Yes Radial model Output-oriented No

Sueyoshi and
Goto [24]

31 chemical and
pharmaceutical firms,

Japan, 2007–2010
Yes Radial model Output-oriented No

Zhang et al. [25] 37 airport airsides,
China, 2009 Yes BCC, CCR Output-oriented No

Du et al. [26] 15 companies, Japan,
1995 Yes CCR Input-oriented No

Korhonen et al.
[27]

80 secondary schools,
Iran, 1994 Yes BCC, CCR Input-oriented No

Note: BCC: Banker–Charnes–Cooper model. CCR: Charnes–Cooper–Rhodes model.
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The contributions of this study is that most previous studies have used radial models.
They are classified into input-oriented and output-oriented ones. The different orientations
produce different RTS measures. In this regard, Sueyoshi and Goto [21] have discussed how
to measure OE/RTS separately, depending on the input or output orientation. Meanwhile,
this study unifies the two orientations so that our RTS measure is “unique”, not depending
upon the input/output orientation. Furthermore, no study has developed the OE/RTS
assessment over a reasonable time frame. This study is the first research effort to explore
OE/RTS over time.

Power Sector: The second research group was about previous DEA studies on the
power sector. Table 2 listed the recent 20 studies. The table indicated four implications.
First, many studies have applied DEA to evaluate the performance (OE) of the power sector
at various levels of aggregation. Among 20 studies, 11 studies considered the case of China.
Thus, China was a research focus because of its large amount of electricity generation and
transmission. Second, among all studies, 16 studies considered electricity generation, 15
studies took undesirable outputs (e.g., CO2 emissions) into account, and only 3 studies
analyzed electricity transmission. Third, the previous studies have adopted various DEA
models, covering radial, non-radial, and intermediate approaches. Finally, these studies
computed only OE, but not RTS.

Table 2. Recent studies on electricity generation or transmission based on DEA measures.

Articles Coverage Inputs a Outputs b Methods c Other Assisting
Methods RTS

Zhang et al.
[28]

30 provinces,
China,

2010–2019

K, coal, generation
investment, grid

investment

EL, electricity sold,
electricity loss

Network DEA
model

Mann-Whitney
U test No

Li et al. [29] 36 countries,
2009–2018 K EL

Super-
efficiency

DEA

Random forest
regression No

Xiao et al.
[30]

31 provinces,
China,

2013–2017
K, L EL, CO2

Epsilon-based
measure

Technology gap
ratio No

Eguchi et al.
[31]

Power plants,
China,

2009–2011
Coal, capital EL Slack-Based

Measure No No

Fidanoski
et al. [32]

30 countries,
2001–2018

K, primary energy
trade dependence,

primary energy from
renewables,

electricity from
renewables, R&D
expenditure rate,
urbanization rate

Primary energy
intensity, electricity
intensity, electricity

loss ratio, CO2

Output-
oriented BCC

model
No No

Nakaishi
et al. [33]

28 provinces,
China, 2014

K, coal, electricity
used EL Input-oriented

radial model
Tobit regression

analysis No

Tavassoli
et al. [34]

16 electricity
distribution

networks, Iran,
2017

L, oil, natural gas,
purchases from

neighbor, internal
consumption,

network length

EL, electricity
transmission, sales

volume, service
area, loss electricity

Network DEA
model

Sensitivity analysis,
correlation
coefficient

No

Alizadeh
et al. [35]

16 regional
electrical

companies,
Iran, 2017–2019

K, L, fuel

Sold energy,
number of
customers,

distribution
transformer,

transmission line
length

Dynamic DEA
model No No



Energies 2023, 16, 1006 5 of 23

Table 2. Cont.

Articles Coverage Inputs a Outputs b Methods c Other Assisting
Methods RTS

Sueyoshi
et al. [36]

30 provinces,
China,

2009–2015
K, L, energy EL, CO2 Radial model Discriminant

Analysis No

Cuadros
et al. [37]

24 countries,
2000–2016

Gross domestic
product per capita, K EL, CO2

Dynamic
slack-based
DEA model

Moran’s Index No

Mahmoudi
et al. [38]

24 thermal
power plants,

Iran, 2018

K, L, C, fuel, total
hours of operation,

internal consumption
EL, CO2, revenue Game DEA

model

Principal
Component

Analysis, Shannon
Entropy method

No

Xie et al.
[39]

30 provinces,
China,

2012–2014
L, asset, energy Generation

capacity, CO2

Directional
distance
function

Mann-Whitney U
test, Kolmogorov-

Smirnov
test

No

Lee [40]
33 coal-burning
power plants,
China, 2013

K, coal, operating
hours EL, CO2

Nash DEA
model

Wilcoxon
matched-pairs

signed-rank test
No

Halkos and
Polemis [41]

789 electric
utilities, U.S.,

2000–2012

C, energy
transmission

Utilization of net
capacity, CO2, SO2,

NOx

DEA window
model

Fixed-effects panel
data model No

Sun et al.
[42]

30 provinces,
China,

2005–2015
K, L, energy EL, CO2

Intermediate
approach

Mann-Whitney
U test No

Sueyoshi
et al. [43]

30 provinces,
China, 2015 K, L, energy EL, CO2

Radial model,
non-radial

model,
intermediate

approach

Mann-Whitney
U test No

Bi et al. [44]
28 coal-fired

power plants,
China, 2010

K, L, coal EL, SO2
Two-stage DEA

model No No

Guo et al.
[45]

44 coal-fired
combined heat

and power
plants, China,

2012

C, coal, freshwater,
capital depreciation

EL, heat, GHG
emissions

Slack-Based
Measure Sensitivity analysis No

Barros et al.
[46]

10
hydro-electric

power stations,
Angola,

2004–2014

K, C EL Dynamic RAM
model Simplex regression No

Arabi et al.
[47]

52 power
plants, Iran,
2003–2010

C, fuel, capital,
depreciation

EL, SO2,
operational
availability,

deviation charges

Non-radial
model

Malmquist
Luenberger indices No

Note: a K: capacity. C: cost. L: labor. b EL: Electricity. c BCC: Banker–Charnes–Cooper model (i.e., standard DEA
model). RAM: range-adjusted measure.

In the previous works, Sueyoshi and Goto [21,24] and Sueyoshi and Yuan [23] reviewed
the concept of scale efficiency from the perspective of DEA environmental assessment. As
an extension, they proposed analytical schemes for how to determine the types of OE/RTS
under two disposability concepts. One problem was that the previous studies examined the
RTS measurement within the boundaries of radial and non-radial approaches. Meanwhile,
Tavassoli et al. [34] considered both electricity generation and transmission simultaneously,
which was highly related to this study. However, their study focused on the case of Iran
and did not cover RTS measures.
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The contributions of the proposed approach are that we address three major problems
to be remedied in this study. First, multipliers (weights among inputs and outputs) may
become zero, implying that the corresponding factors are not fully utilized in the DEA
assessment. In this study, we handle the difficulty by restricting their data ranges. Second,
the previous approaches did not have a time horizon, so they could not capture a time shift
in the OE/RTS estimates. Finally, it is expected that our application toward the Chinese
electric power industry can produce useful information for policy makers by using the
updated methodology.

3. Methods

Nomenclatures in this section are summarized as follows:

xijt: the ith input of the jth DMU at the tth period,
grjt: the rth output of the jth DMU at the tth period,
ξkt: the inefficiency score of the kth DMU at the tth period,
Rx

i : the data range adjustment on the ith input,
Rg

r : the data range adjustment on the rth output,
λjt: the intensity variable of the jth DMU at the tth period,
εs: a prescribed very small number (e.g., 0.0001 in this research),
vi: the dual variable (multiplier) of the ith input,
ur: the dual variable (multiplier) of the rth output,
σ: the dual variable that indicates an intercept of the supporting hyperplane.

Note that Rx
i and Rg

r are specified as follows:

Rx
i = (m + s)−1

{
max

jt

(
xijt|all j & all t

)
−min

jt

(
xijt|all j & all t

)}−1
&

Rg
r = (m + s)−1

{
max

jt

(
grjt|all j & all t

)
−min

jt

(
grjt|all j & all t

)}−1
.

3.1. Operational Efficiency

We assess the operational efficiency (OE) measure of DMUs by pooling all observations
into a cross-sectional structure. The measure serves as a benchmark for our comparison.
For example, the measurement examines any difference in the performance of an entity
among different groups and different periods using various statistical tests.

This research treats each entity to be evaluated as a DMU. In each DMU, the production
technology transforms inputs (X) into outputs (G). Given the observed factors (X and G),
we need to evaluate the performance of each DMU by using DEA. Note that we use the
subscript “k” to indicate the kth DMU while “j” stands for all DMUs (j = 1, . . . , n) to
determine an efficiency frontier that is a set of efficient DMUs.

Under the superscript “v” stands for variable RTS, we calculate the degree of OEv
kt of

the kth DMU at the specific tth period by the following formulation:

Maximize ξkt + εs

(
m
∑

i=1
Rx

i dx
it +

s
∑

r=1
Rg

r dg
rt

)
s.t.

T
∑

t=1

n
∑

j=1
xijtλjt + dx

it + ξktxikt = xikt(all i),

T
∑

t=1

n
∑

j=1
grjtλjt − dg

rt − ξktgrkt = grkt(all r),

T
∑

t=1

n
∑

j=1
λjt = 1, λjt ≥ 0 (all j & t = 1, . . . , T),

ξkt: URS (specific k & t = 1, . . . , T),
dx

it ≥ 0 (all i & t = 1, . . . , T) &
dg

rt ≥ 0 (all r & t = 1, . . . , T).

(1)
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Here, the left hand side of Model (1) formulates an efficiency frontier of DMUs in all
periods (t = 1, . . . , T). The frontier may contain a crossover between and/or among multiple
periods so that the frontier consists of the best performers in the T period. Meanwhile, the
right hand side indicates the performance of a “specific kth DMU” in a “specific period
(t)” to be examined. The remaining parts (+dx

it + ξktxikt and −dg
rt − ξktgrkt) indicate the

gaps between the efficiency frontier and the observed performance of the specific DMU in
multiple dimensional factors. The unified inefficiency (ξkt) indicates the magnitude of a
directional vector toward the frontier. The slacks (dx

it and dg
rt) express the remaining parts

of the gap that cannot specify the efficiency measure.
Model (1) has two important features. One of the two features is that the efficiency

does not depend upon the type of orientation, as mentioned previously. For example, the
standard DEA models depend on the type of orientation. The input-oriented efficiency is
different from the output-oriented measure. As a result, we have difficulty in understanding
which efficiency we use for our DEA assessments. However, Model (1) does not have
such difficulty because all factors are unified by a single inefficiency measure (ξkt), so
there is no difference between them. The standard models originated from the ratio
form (Charnes et al. [1]), and as a result, they had this methodological feature. However,
Model (1) does not have the problem, rather unifying the difference due to the orientation
by a single measure. The other is that computational results measured by Model (1) can
easily be linked to statistical inferences by applying various non-parametric tests. The
methodological benefit makes it possible to examine a null hypothesis about whether there
is no difference in efficiency measures among different periods and groups.

The degree of OEv
kt of the kth DMU at the tth period is specified by

OEv
kt = 1−

[
ξ∗kt + εs

(
m

∑
i=1

Rx
i dx∗

it +
s

∑
r=1

Rg
r dg∗

rt

)]
. (2)

Here, the inefficiency measure (ξkt
*) and all slack variables (dx*

it and dg*
rt) are determined by

the optimality (*) of Model (1). We obtain these variables within the equation for optimality.
The degree is obtained by subtracting the level from unity, as in Equation (2).

The dual formulation of Model (1) becomes as follows:

Minimize
m
∑

i=1
vixikt −

s
∑

r=1
urgrkt + σ

s.t.
m
∑

i=1
vixijt −

s
∑

r=1
urgrjt + σ ≥ 0 (all j & all t),

m
∑

i=1
vixikt +

s
∑

r=1
urgrkt = 1,

vi ≥ εsRx
i (i = 1, . . . , m),

ur ≥ εsRg
r (r = 1, . . . , s) &

σ: URS.

(3)

Using Model (3), we can measure the degree of OEv
kt of the kth DMU at the tth

period by

OEv
kt = 1−

[
m

∑
i=1

v∗i xikt −
s

∑
r=1

u∗r grkt + σ∗
]

. (4)

Here, all the dual variables are determined by the optimality (*) of Model (3). In addition,
both Equations (2) and (4) produce the same degree of OEv

kt on optimality.

3.2. Durbin-Watson Statistic

With the aim of testing for autocorrelation in the efficiency scores across periods, this
study computes the Durbin-Watson statistic after referring to Rutledge and Barros [48].
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This statistic can be used as a test for autocorrelation in the efficiency scores across periods.
Technically, this statistic can be computed in the following manner in this effort:

dkt =

2019
∑

t=2007
(OEkt −OEkt−1)

2

2019
∑

t=2006
(OEkt)

2
. (5)

Equation (5) identifies the following types of autocorrelations: (a) Positive autocorre-
lation, if d falls into the range of 0 − dl; (b) Unable to draw conclusions, if d falls into the
range of dl − du or the range of (4 − du) − (4 − dl); (c) No autocorrelation, if d falls into the
range of du − (4 − du); (d) Negative autocorrelation, if d falls into the range of (4 − dl) − 4.

3.3. K-Means Clustering and Group Classification

To summarize the common and heterogeneous characteristics of DMUs, this study
adopted the K-means clustering method following Purohit and Joshi [49] and Zhou et al. [50].
Through this method, this study classifies all DMUs into two groups (i.e., Group 1 (low
efficiency group) and Group 2 (high efficiency group)), according to their average efficiency
scores during 2006–2019. In this way, we can better discover the distribution of efficiency-
related measures (e.g., OE and RTS) across DMUs. In addition, as an unsupervised machine
learning algorithm, the K-means clustering method minimizes the sum of squared Eu-
clidean distances between each point and the nearest cluster centroid, and this objective
function can be formulated as follows:

SSE =
2

∑
τ=1

∑
y∈OEτ

‖y− µτ‖
2

, (6)

where SSE denotes the sum of squared errors and τ stands for different groups. µτ is the
mean of OEτ of all observations in group τ.

4. Returns to Scale
4.1. A Visual Description

In returning to the dual formulation (3), Figure 1 visually classifies the three types
(i.e., increasing, constant, and decreasing) of returns to scale (RTS). The figure has two
coordinates for x and g. However, such a visual description is for our convenience. A
contour line connecting {A-B-C-D}, depicts an efficiency frontier at the tth period. The
specification of the tth period is not listed in the figure. A production possibility set
locates within the southeast region from the efficiency frontier. Further, paying attention to
DMU{B}, for example, Figure 1 depicts the three types of slopes and intercepts regarding a
supporting hyperplane. Accordingly, Figure 1 classifies the three types of RTS on DMU{B}
by the sign of the intercept (σ) of a supporting hyperplane as follows: (a) increasing
RTS ↔ σ< 0 , (b) constant RTS ↔ σ= 0 and (c) decreasing RTS ↔ σ > 0.

To discuss the relationship between RTS and DEA, we begin with a simple case where
an input (x) is used to produce an output (g). In this case, we assume a supporting hyper-
plane is vx− ug+ σ = 0, or g =(v/u)x+ σ/u. A mathematical requirement, for identifying
a supporting hyperplane, is that u should be positive in the sign. The variable (σ) is unre-
stricted in the sign. However, it should be noted that if u is zero, it is very difficult for us to
determine the location of a supporting hyperplane because v/u and σ/u become infinite.
Thus, the dual variable related to an output (g) should be strictly positive in determining
a supporting hyperplane in a data space of x and g. This finding clearly indicates that
Model (3) should incorporate an analytical structure in which the dual variables (ur for r = 1,
. . . , s) should be positive in their signs as proposed in the original standard model, referred
to as the “DEA ratio form”, that incorporates εs (non-Archimedean small number) in the
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formulation. That is the rationale on why the proposed Models (1) and (3) incorporate the
data ranges into their formulations to maintain all positive dual variables.
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Figure 1. Three types of RTS and supporting hyperplanes. Note: (a) We classify the types of RTS
into three cases: increasing, constant or decreasing. (b) Since the efficiency frontier {A-B-C-E} is
determined by the best DMU group in multiple periods (t = 1, . . . , T). The figure exhibits, for example,
the three periods {t − 2, t − 1 and t). The frontier may contain a group of DMUs among different
periods. For example, there is the crossover between the t − 1 and tth frontiers so that the frontier
becomes {A-B-C-E}. (c) The location of a supporting hyperplane is determined by the sign of the
intercept (σ). (d) DMU {D} locates the frontier of the t − 1 period. But, it is not on the frontier during
the three periods because of the overlap between the t and t − 1th periods. The type of inefficient
DMU {F} needs to be projected onto DMU {B} and the type is determined on {B} on the frontier.

4.2. A Supporting Hyperplane

Analytically incorporating a time horizon (t), we explore the economic implications of
a dual variable(s) on any component of the input and output vectors. We characterize a
supporting hyperplane on the kth DMU in Model (3). Further, to initiate our discussion on
RTS measured by Model (3), this research describes the mathematical characterization by
the following proposition:

Proposition 1. A supporting hyperplane on the kth DMU at the tth period is mathematically

expressed by
m
∑

i=1
vixit −

s
∑

r=1
urgrt + σ = 0 where vi (i = 1, . . . , m) and ur (r = 1, . . . , s) are positive

in their signs and measured by Model (3). The two groups of parameters (related to X and G)
indicate a vector direction of the supporting hyperplane in the (m + s) dimensional (X, G) space in
the tth period. The following equations characterize the supporting hyperplane:

m

∑
i=1

vixijt −
s

∑
r=1

urgrjt + σ = 0, j ∈ RSkt &
m

∑
i=1

vixikt +
s

∑
r=1

urgrkt = 1, (7)

where RSkt =
{

j | λ∗jt > 0, j ∈ Jt

}
is a reference set for the kth DMU in the tth period measured

by Model (1).

Proof. Sueyoshi and Goto [2] have provided the proof. Q.E.D. �
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4.3. Types of RTS and Chi-Square Test

The proposition indicates that Equation (8) expresses an estimated supporting hyper-
plane on the kth DMU at the tth period by

s

∑
r=1

u∗r grt =
m

∑
i=1

v∗i xit+σ∗. (8)

From Equation (8), we identify the following types of RTS on the kth DMU at the tth
period. See Sueyoshi and Goto [2] for a detailed description.

Increasing RTS↔ An optimal solution of Model (3) satisfies σ∗ < 0,
Constant RTS↔ An optimal solution of Model (3) that satisfies σ∗ = 0,
Decreasing RTS↔ An optimal solution of Model (3) satisfies σ∗ > 0.

(9)

Additionally, after we determine the types of RTS from Equation (9), this study per-
forms the chi-square test with the purpose of finding technology heterogeneity across
groups. Technically, this test is as follows:

χ2 =
2

∑
τ=1

∑
z∈I,C,D

(OBτz − EXτz)
2

EXτz
, (10)

where z stands for the three types (i.e., increasing, constant, and decreasing) of RTS, where
I, C, and D represent increasing, constant, and decreasing RTS, respectively. The OB
represents the observed numbers of RTS in each group. The EX stands for the number of
RTS that each group should have. Through the use of Equation (10), we can statistically
test whether there are significant differences in RTS across groups.

4.4. Differences between Proposed Approach and Standard Approach

The standard DEA is classified into two types of projections: input-oriented and
output-oriented. Figure 2 visually describes such standard projections and the proposed
projection. An efficient frontier is DMUs {A-B-C-D} and an inefficient frontier is DMU {E}
in the figure.
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Figure 2. Projections from inefficiency to efficiency: Different types of RTS measures. Note: {E} is
an observed DMU while E’, F and E” are the projected performances of DMU {E} on an efficiency
frontier. This study uses { } to indicate the observed performance of a DMU.
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The input-oriented model changes the location of {E} to E’ to attain its efficiency. As a
result, the type of {E} is evaluated as “increasing”. Meanwhile, the output-oriented model
changes the location of {E} to E’ so that it is considered “decreasing”. The standard DEA
models produce different types of RTS. This is problematic. Furthermore, the proposed
(input/output unified) model shifts the location to F so that the type of RTS is evaluated as
“constant”. The assessment proposed in this study is “unique”, not depending upon the
type of input/output orientation.

5. RTS Measurement under Multiple Solutions

A difficulty of the DEA-based RTS measurement is that it suffers from a possible
occurrence of multiple supporting hyperplanes. In order to handle the problem, we need
to measure the upper and lower bounds of the intercept (σ), which is the range of the two
bounds. In addition, to measure them, we use the following model that is obtained by
combining the primal model (1) and the dual model (3):

Minimize/maximize σ
s.t. constraints in Models (1) & (3),

ξkt + εs

(
m
∑

i=1
Rx

i dx
it +

s
∑

r=1
Rg

r dg
rt

)
=

m
∑

i=1
vixikt −

s
∑

r=1
urgrkt + σ.

(11)

The first two groups of constraints duplicate those of Models (1) and (3). The last con-
straint indicates that the objective value of Model (1) equals that of Model (3) in measuring
the lower and upper bounds of the intercept (σ). The purpose of these constraints is to
maintain the primal and dual feasibility in finding the range of σ.

After obtaining σ∗ (the upper bound) and σ∗ (the lower bound) from Model (11), we
classify the types of RTS by the following rule:

Increasing RTS↔ 0 > σ∗,
Constant RTS↔ σ∗ ≥ 0 ≥ σ∗ and
Decreasing RTS↔ σ∗ > 0.

(12)

Figure 3 visually describes σ∗ (the upper bound) and σ∗ (the lower bound) of the
intercept of a supporting hyperplane measured by Model (11) and Equation (12). As
discussed previously, the location of a hyperplane depends upon the magnitude of the
intercept. The measurement determines the types of RTS in the x-g coordinates.
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projected onto {B} for the efficiency enhancement. The efficiency frontier is DMUs {A-B-C-D}. We
measure the type of DMU {F} on {B} with its upper and lower bounds. If both are negative, then {F}
belongs to increasing RTS. On the other hand, both are positive, then the DMU belongs to decreasing
RTS. Equation (12) documents such a classification.

6. Empirical Application

As an empirical application, we consider the performance of electricity generation and
transmission across Chinese provinces. Section 6.1 reports the data. Section 6.2 analyzes
unified efficiency measures. Section 6.3 discusses RTS estimates.

6.1. Data

This study examines the performance of electricity generation and transmission across
Chinese provinces. Due to data availability, this research only considers 30 provinces on
China’s mainland, and every province is treated as a separate DMU. The data ranges from
2006 to 2019.

In this study, there are three inputs and two outputs. Inputs contain installed capacity,
raw coal consumption, and grid investment. For example, as for raw coal consumption, we
adopt the raw coal consumed by power plants whose installed capacity exceeds 6000 kW.
When calculating grid investment, we adopt the approach of the perpetual inventory
system described in Zhang et al. [51]. In this regard, Zhang et al. [51] calculated the
depreciation rate of China. Additionally, the authors estimated the capital stock of Chinese
provinces at the initial period and then adjusted the capital stock across periods after taking
influential factors (e.g., investment and depreciation) into account. During our calculation,
this study chooses the GDP price deflators to adjust the price levels, with 2006 as the base
year. Further, the outputs include electricity sales by power companies and the number
of equivalent users. The data sources are the China Electricity Council (2006–2019) [52].
Table 3 summarizes the descriptive statistics of the production variables.

Table 3. Descriptive statistics of production variables from 2006 to 2019.

Indicators

Inputs Outputs

Installed Capacity Raw Coal Grid Investment Electricity Equivalent User

103 kW 103 tons 109 RMB 109 kWh Household

Average 42,034.94 54,897.81 21.69 136.77 168,651.10
Standard Deviation 29,084.67 46,441.00 18.26 107.07 194,549.90

Minimum 2580.00 360.00 1.45 7.44 4674.00
Maximum 140,440.00 267,920.00 130.90 611.80 1,488,872.00

Sources: China Electricity Council (2006–2019) [52].

6.2. OE Measures

This subsection considers the OE measures. The results are reported in Tables 4 and 5
and Figures 4 and 5. These results provided us with four interesting findings. First, there
was an upward trend in OE scores. According to the results, China’s average OE measures
tend to increase over time. The increase corresponded to an improved ability to generate
and transmit electricity in China. This finding was not surprising, since China has made a
considerable amount of investment in the power sector. However, there were consistent
findings in other studies (e.g., Zhang et al. [28] and Eguchi et al. [31]). Both of these
two studies found an increasing trend in efficiency measures.

Second, there existed significant differences in OE measures across two groups of
provices. In this study, all provinces (DMUs) were classified into two groups, i.e., Group 1
(low efficiency group) and Group 2 (high efficiency group). Group 1 contained 16 provinces,
and Group 2 had 14 provinces. From the results, we found that most provinces in Group 1
were located in underdeveloped regions, while most provinces in Group 2 belonged to
well-developed regions.
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Table 4. OE measures of Chinese provinces.

Groups Provinces 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 Average

Group 1
(low efficiency)

Anhui 0.75 0.72 0.59 0.56 0.62 0.69 0.75 0.81 0.74 0.70 0.64 0.65 0.66 0.67 0.68
Chongqing 0.67 0.62 0.83 0.68 0.63 0.63 0.60 0.82 0.83 0.80 0.84 0.91 0.91 0.96 0.76

Gansu 0.88 0.86 0.83 0.76 0.65 0.63 0.72 0.70 0.73 0.69 0.63 0.65 0.70 0.81 0.73
Guizhou 0.94 0.89 0.88 0.78 0.78 0.72 0.76 0.75 0.82 0.81 0.78 0.74 0.72 0.79 0.80

Heilongjiang 0.98 0.78 0.69 0.65 0.68 0.72 0.76 0.73 0.84 0.87 0.73 0.72 0.81 1.00 0.78
Hubei 0.68 0.65 0.64 0.60 0.65 0.64 0.65 0.72 0.62 0.66 0.79 0.87 0.82 0.94 0.71
Hunan 0.67 0.63 0.55 0.55 0.61 0.65 0.72 0.78 0.92 0.87 0.84 0.84 0.85 0.96 0.75

Inner Mongolia 0.88 0.89 0.85 0.87 0.98 0.68 0.49 0.57 0.63 0.61 0.55 0.55 0.60 0.70 0.70
Jiangxi 0.66 0.60 0.70 0.68 0.72 0.80 0.87 0.88 0.90 0.85 0.81 0.77 0.90 0.88 0.79

Jilin 0.74 0.83 0.77 0.67 0.70 0.62 0.74 0.96 0.81 0.88 0.79 0.79 0.83 1.00 0.80
Ningxia 0.88 0.96 0.77 0.78 0.75 0.82 0.80 0.78 0.73 0.58 0.51 0.64 0.72 0.84 0.75
Shaanxi 0.74 0.70 0.62 0.50 0.62 0.63 0.64 0.65 0.71 0.68 0.67 0.67 0.64 0.65 0.65
Shanxi 0.70 0.68 0.64 0.57 0.60 0.79 0.78 0.96 0.68 0.55 0.51 0.63 0.82 0.80 0.69

Sichuan 0.80 0.71 0.71 0.60 0.65 0.69 0.68 0.70 0.67 0.74 0.81 0.87 0.87 0.99 0.75
Tianjin 0.86 0.73 0.68 0.58 0.62 0.66 0.67 0.83 0.75 0.67 0.71 0.69 0.80 0.75 0.71

Xinjiang 0.92 0.72 0.84 0.62 0.52 0.51 0.54 0.58 0.64 0.62 0.56 0.65 0.57 0.56 0.63

Group average 0.80 0.75 0.72 0.65 0.67 0.68 0.70 0.76 0.75 0.72 0.70 0.73 0.76 0.83 0.73

Group 2
(high efficiency)

Beijing 1.00 1.00 0.95 0.96 0.99 1.00 1.00 1.00 0.91 0.99 1.00 1.00 1.00 1.00 0.99
Fujian 0.65 0.64 0.73 0.77 0.75 0.81 0.83 0.82 0.78 0.87 1.00 0.86 0.89 0.94 0.81

Guangdong 0.93 0.95 0.96 0.96 0.98 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 0.98
Guangxi 0.94 0.88 0.91 0.76 0.79 0.85 0.86 0.86 0.93 0.95 0.84 0.85 0.92 0.87 0.87
Hainan 1.00 0.92 1.00 0.88 0.80 0.83 0.84 0.88 0.97 0.87 0.83 0.89 0.84 0.84 0.88
Hebei 1.00 0.98 0.97 0.95 0.98 1.00 1.00 0.97 1.00 0.95 0.92 0.95 0.94 0.97 0.97
Henan 0.69 0.73 0.76 0.77 0.83 0.87 0.87 1.00 0.85 0.79 0.78 0.79 0.82 0.81 0.81
Jiangsu 0.79 0.84 0.89 0.90 0.94 0.96 0.97 1.00 1.00 0.99 0.99 0.98 0.99 1.00 0.95

Liaoning 0.94 0.87 0.88 0.81 0.80 0.83 0.81 0.94 0.82 0.84 0.82 0.83 0.84 0.88 0.85
Qinghai 1.00 0.91 0.90 0.85 0.90 0.87 0.83 0.92 0.92 0.87 0.79 0.88 0.98 0.84 0.89

Shandong 0.73 0.73 0.75 0.75 0.89 0.94 0.93 0.94 0.86 0.79 0.75 0.74 0.79 0.81 0.81
Shanghai 0.81 0.87 0.85 0.82 0.91 0.98 0.95 0.98 0.84 0.83 0.86 0.90 0.88 0.92 0.89
Yunnan 0.73 0.72 0.80 0.71 0.76 0.91 0.83 0.87 0.88 0.85 0.93 0.98 0.95 1.00 0.85
Zhejiang 0.71 0.75 0.77 0.78 0.86 0.89 0.93 0.93 0.88 0.88 0.89 0.89 0.90 0.97 0.86

Group average 0.85 0.84 0.87 0.83 0.87 0.91 0.90 0.94 0.90 0.89 0.89 0.89 0.91 0.92 0.89

China’s average 0.82 0.79 0.79 0.74 0.76 0.79 0.79 0.84 0.82 0.80 0.79 0.81 0.83 0.87 0.80
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Third, large efficiency gaps existed across Chinese provinces. This finding was sup-
ported by the proposed approach. According to the results in Table 4, Beijing, Guangdong,
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Hebei, and Jiangsu were the provinces with the highest average OE measures. All these
provinces belonged to Group 2 and were coastal provinces with geographically favorable
conditions for economic growth. Among these provinces, Beijing (the Capital of China),
Guangdong, and Jiangsu were the most developed regions in China, while Hebei sur-
rounded and supported Beijing. In comparison, some provinces had poor performances
in average OE measures and should receive special attention. These provinces contained
Xinjiang, Shaanxi, Anhui, Shanxi, and Inner Mongolia. All of these provinces were inland
provinces and belonged to Group 1. Furthermore, most of them (Xinjiang, Shaanxi, Shanxi,
and Inner Mongolia) were the most important coal or energy producers in China.

Table 5. Summary of efficiency measures in different groups.

Indicators Group 1 (Low Efficiency) Group 2 (High Efficiency)

Maximum 1.00 1.00
Minimum 0.49 0.64
Average 0.73 0.89

Standard Deviation 0.05 0.06
Number of efficient

observations 2 30

Meanwhile, according to the results in Table 5 and Figure 4 (Panel B), the average OE
measures in Group 1 were observed lower than those of Group 2. The standard deviation
of OE measures in Group 1 was less than that of Group 2. The most efficient observations
were found to belong to Group 2.

Finally, we statistically confirmed that the OE measures of all provinces were positively
auto-correlative. Table 6 reported the results of the Durbin Watson statistic. According to
the results, all the provinces were observed to be of the first type and thus belonged to
a positive autocorrelation. These results indicated that the performance of the electricity
generation and transmission systems at one period had positive effects on those at the next
period. Consequently, the OE measures had good consistency across periods. However,
we also found that there was a strong positive correlation between the OE measures and
GDP per capita across Chinese provinces. As demonstrated in Figure 5, the provinces with
higher levels of GDP per capita (reflecting higher levels of economic growth) tended to have
higher OE measures. For example, four coast provinces (Beijing, Shanghai, Guangdong,
and Jiangsu) performed well in both the OE measures and GDP per capita, while another
four inland provinces (Sichuan, Gansu, Anhui, and Hunan) performed poorly in terms of
these two indicators.

Table 6. Results of Durbin Watson statistic.

Groups Provinces d Groups Provinces d

Group 1

Anhui 0.007

Group 2

Beijing 0.001
Chongqing 0.015 Fujian 0.007

Gansu 0.006 Guangdong 0.000
Guizhou 0.003 Guangxi 0.006

Heilongjiang 0.016 Hainan 0.005
Hubei 0.009 Hebei 0.001
Hunan 0.007 Henan 0.006

Inner Mongolia 0.023 Jiangsu 0.001
Jiangxi 0.006 Liaoning 0.004

Jilin 0.017 Qinghai 0.006
Ningxia 0.015 Shandong 0.004
Shaanxi 0.007 Shanghai 0.004
Shanxi 0.032 Yunnan 0.006

Sichuan 0.007 Zhejiang 0.002
Tianjin 0.012

Xinjiang 0.026
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6.3. RTS Measures

This subsection considers RTS measures. The results are reported in Tables 7–9 and
Figure 6. These results had three insightful findings.

First, there have been significant changes in the type of RTS over time. According
to our results, i.e., the China’s total, 55.00% of observations belonged to increasing RTS,
3.10% of observations were under constant RTS, and 41.90% of observations had decreasing
RTS. Meanwhile, the numbers of increasing RTS have dropped over time, while those
of decreasing RTS have increased. For example, during 2006–2007, more than 63.33% of
observations showed increasing RTS. In comparison, this proportion decreased to 43.33%
in the year 2019. One possible reason is that some Chinese provinces had relied too much
on excessive investments during the examined periods with the purpose of promoting
economic growth.

Second, there have been considerable differences in RTS measures across two research
groups. As reported in Table 8, for Group 1, 72.32% of the observations belonged to
increasing RTS, implying that a DMU could increase its production size to enhance OE
because it had enough transmission capacity. In addition, 26.79% of observations showed
decreasing RTS, implying that a DMU should reduce the generation to improve its OE.
However, things were quite different in terms of Group 2. Only 35.20% of observations
faced increasing RTS, and about 59.18% of observations had decreasing RTS. Furthermore,
according to Table 9, significant differences in RTS measures were statistically confirmed
between the two groups.

Finally, in the type of RTS, we confirmed large differences across Chinese provinces.
Some provinces (e.g., Jiangxi, Hainan, Gansu, Qinghai, and Xinjiang) had more occur-
rences of increasing RTS. These results indicated that these provinces could increase their
generation sizes to enhance their OE measures, because they have sufficient transmission
capacities. Furthermore, in comparison, some provinces (e.g., Jiangsu, Zhejiang, Shandong,
and Guangdong) had more observations of decreasing RTS. These results imply that these
provinces should decrease their generation sizes with the purpose of improving their OE
measures, due to the fact that they have a limited transmission capacity.
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Table 7. The upper bound and lower bound of σ from 2006–2019.

Yeas 2006 2007 2008 2009 2010 2011 2012

Provinces Upper
bound

Lower
bound

Upper
bound

Lower
bound

Upper
bound

Lower
bound

Upper
bound

Lower
bound

Upper
bound

Lower
bound

Upper
bound

Lower
bound

Upper
bound

Lower
bound

Beijing 0.015 −0.246 0.017 −0.300 −0.226 −0.226 −0.216 −0.216 −0.205 −0.205 0.375 −0.203 0.372 −0.174
Tianjin −0.099 −0.099 −0.206 −0.206 −0.042 −0.042 −0.033 −0.033 0.357 0.357 0.344 0.344 0.334 0.334
Hebei 0.036 −0.045 0.058 0.058 0.055 0.055 0.047 0.047 0.043 0.043 0.135 0.039 0.089 0.078
Shanxi −0.039 −0.039 0.001 0.001 0.002 0.002 0.002 0.002 0.030 0.030 −0.051 −0.051 −0.048 −0.048

Inner Mongolia −0.093 −0.093 0.050 0.050 0.043 0.043 0.041 0.041 0.040 0.040 0.030 0.030 −0.033 −0.033
Liaoning −0.043 −0.043 0.044 0.044 0.042 0.042 0.072 0.072 0.059 0.059 0.116 0.116 0.115 0.115

Jilin −0.093 −0.093 −0.164 −0.164 −0.117 −0.117 −0.064 −0.064 −0.114 −0.114 −0.043 −0.043 −0.074 −0.074
Heilongjiang −0.169 −0.169 −0.126 −0.126 −0.060 −0.060 −0.050 −0.050 −0.048 −0.048 −0.051 −0.051 −0.048 −0.048

Shanghai 0.004 0.004 0.004 0.004 0.003 0.003 0.095 0.095 0.003 0.003 −0.037 −0.037 −0.029 −0.029
Jiangsu 0.102 0.102 0.091 0.091 0.090 0.090 0.085 0.085 0.075 0.075 0.068 0.068 0.063 0.063

Zhejiang 0.112 0.112 0.107 0.107 0.101 0.101 0.095 0.095 0.088 0.088 0.081 0.081 0.075 0.075
Anhui −0.056 −0.056 −0.047 −0.047 −0.036 −0.036 0.003 0.003 0.003 0.003 −0.032 −0.032 −0.029 −0.029
Fujian −0.023 −0.023 −0.019 −0.019 −0.021 −0.021 −0.018 −0.018 0.013 0.013 −0.014 −0.014 −0.025 −0.025
Jiangxi −0.083 −0.083 −0.059 −0.059 −0.065 −0.065 −0.049 −0.049 −0.044 −0.044 −0.046 −0.046 −0.041 −0.041

Shandong 0.024 0.024 0.041 0.041 0.069 0.069 0.091 0.091 0.116 0.116 0.100 0.100 0.065 0.065
Henan 0.002 0.002 0.029 0.029 0.048 0.048 0.080 0.080 0.072 0.072 0.081 0.081 0.078 0.078
Hubei −0.023 −0.023 −0.020 −0.020 −0.018 −0.018 −0.016 −0.016 −0.015 −0.015 −0.013 −0.013 0.032 0.032
Hunan −0.025 −0.025 −0.021 −0.021 0.015 0.015 0.201 0.201 0.136 0.136 0.123 0.123 −0.018 −0.018

Guangdong 0.079 0.079 0.075 0.075 0.072 0.072 0.080 0.080 0.071 0.071 0.061 0.061 0.112 0.049
Guangxi −0.040 −0.040 −0.030 −0.030 −0.027 −0.027 −0.024 −0.024 −0.022 −0.022 −0.021 −0.021 −0.035 −0.035
Hainan −0.446 −1.000 −0.417 −0.417 −0.287 −1.000 −0.352 −0.352 −0.263 −0.263 −0.175 −0.175 −0.309 −0.309

Chongqing −0.084 −0.084 −0.071 −0.071 −0.064 −0.064 −0.050 −0.050 0.004 0.004 0.008 0.008 −0.050 −0.050
Sichuan −0.019 −0.019 −0.017 −0.017 0.014 0.014 0.012 0.012 0.127 0.127 0.113 0.113 0.044 0.044
Guizhou −0.099 −0.099 −0.078 −0.078 −0.074 −0.074 −0.023 −0.023 −0.016 −0.016 −0.015 −0.015 −0.014 −0.014
Yunnan −0.037 −0.037 −0.029 −0.029 −0.020 −0.020 0.014 0.014 0.012 0.012 0.011 0.011 0.026 0.026
Shaanxi −0.065 −0.065 −0.055 −0.055 −0.037 −0.037 0.003 0.003 −0.037 −0.037 0.003 0.003 0.001 0.001
Gansu −0.069 −0.069 −0.059 −0.059 −0.053 −0.053 −0.031 −0.031 −0.031 −0.031 −0.019 −0.019 −0.033 −0.033

Qinghai −0.105 −0.815 −0.112 −0.112 −0.101 −0.101 −0.139 −0.139 −0.108 −0.108 −0.089 −0.089 −0.098 −0.098
Ningxia −0.119 −0.119 −0.118 −0.118 −0.093 −0.093 −0.082 −0.082 −0.064 −0.064 −0.102 −0.102 −0.078 −0.078
Xinjiang −0.328 −0.328 −0.114 −0.114 −0.196 −0.196 −0.073 −0.073 −0.052 −0.052 −0.039 −0.039 −0.029 −0.029
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Table 7. Cont.

Years 2013 2014 2015 2016 2017 2018 2019

Provinces Upper
bound

Lower
bound

Upper
bound

Lower
bound

Upper
bound

Lower
bound

Upper
bound

Lower
bound

Upper
bound

Lower
bound

Upper
bound

Lower
bound

Upper
bound

Lower
bound

Beijing 0.427 −0.208 0.334 0.334 −0.248 −0.248 −0.008 −0.331 −0.182 −1.000 −0.009 −0.009 0.844 −1.000
Tianjin −0.060 −0.060 −0.046 −0.046 0.257 0.257 −0.043 −0.043 −0.041 −0.041 −0.044 −0.044 −0.039 −0.039
Hebei 0.077 0.077 0.373 −0.036 0.078 0.078 0.075 0.075 0.065 0.065 0.060 0.060 0.057 0.057
Shanxi 0.147 0.147 −0.041 −0.041 −0.010 −0.010 −0.009 −0.009 0.023 0.023 0.027 0.027 0.024 0.024

Inner Mongolia 0.022 0.022 0.024 0.024 0.024 0.024 0.020 0.020 0.017 0.017 0.016 0.016 0.364 0.364
Liaoning 0.105 0.105 0.105 0.105 −0.020 −0.020 −0.020 −0.020 −0.019 −0.019 0.026 0.026 −0.018 −0.018

Jilin −0.075 −0.075 −0.071 −0.071 −0.091 −0.091 −0.073 −0.073 −0.063 −0.063 −0.069 −0.069 0.087 −0.157
Heilongjiang −0.047 −0.047 −0.086 −0.086 −0.085 −0.085 −0.036 −0.036 −0.034 −0.034 −0.058 −0.058 0.363 −0.326

Shanghai −0.037 −0.037 0.170 0.170 0.187 0.187 0.156 0.156 0.131 0.131 0.169 0.169 0.014 0.014
Jiangsu 1.000 0.013 0.264 0.048 0.103 0.103 0.236 0.236 0.215 0.215 0.238 0.238 0.979 0.035

Zhejiang 0.070 0.070 0.073 0.073 0.072 0.072 0.058 0.058 0.055 0.055 0.050 0.050 0.048 0.048
Anhui −0.024 −0.024 −0.026 −0.026 −0.019 −0.019 0.025 0.025 0.023 0.023 0.021 0.021 0.020 0.020
Fujian −0.013 −0.013 0.010 0.010 −0.022 −0.022 0.872 −0.311 0.029 0.029 0.027 0.027 −0.019 −0.019
Jiangxi −0.041 −0.041 −0.039 −0.039 −0.035 −0.035 −0.030 −0.030 −0.027 −0.027 −0.029 −0.029 −0.027 −0.027

Shandong 0.061 0.061 0.063 0.063 0.063 0.063 0.058 0.058 0.185 0.185 0.177 0.177 0.170 0.170
Henan 0.844 −0.025 0.076 0.076 0.076 0.076 0.072 0.072 0.067 0.067 0.057 0.057 0.081 0.081
Hubei 0.155 0.155 0.136 0.136 0.165 0.165 −0.041 −0.041 −0.040 −0.040 −0.036 −0.036 0.015 0.015
Hunan −0.029 −0.029 −0.031 −0.031 −0.029 −0.029 −0.029 −0.029 0.155 0.155 0.050 0.050 −0.026 −0.026

Guangdong 0.052 0.052 0.164 0.037 0.045 0.045 0.044 0.044 0.643 0.004 0.664 0.129 1.000 0.113
Guangxi −0.019 −0.019 −0.034 −0.034 −0.034 −0.034 −0.030 −0.030 −0.071 −0.071 −0.027 −0.027 0.011 0.011
Hainan −0.162 −0.162 −0.159 −0.159 −0.155 −0.155 −0.182 −0.182 −0.179 −0.179 −0.159 −0.159 −0.151 −0.151

Chongqing −0.047 −0.047 −0.045 −0.045 −0.043 −0.043 −0.048 −0.048 −0.041 −0.041 −0.037 −0.037 −0.037 −0.037
Sichuan 0.043 0.043 0.043 0.043 0.253 0.253 0.772 0.772 0.723 0.723 0.649 0.649 −0.059 −0.059
Guizhou −0.013 −0.013 −0.013 −0.013 −0.024 −0.024 −0.022 −0.022 −0.019 −0.019 0.027 0.027 −0.018 −0.018
Yunnan 0.010 0.010 −0.013 −0.013 0.046 0.046 0.704 0.704 0.656 0.656 0.203 0.203 0.621 −0.062
Shaanxi 0.003 0.003 −0.032 −0.032 −0.024 −0.024 −0.016 −0.016 −0.014 −0.014 −0.013 −0.013 −0.012 −0.012
Gansu −0.031 −0.031 −0.034 −0.034 −0.064 −0.064 −0.056 −0.056 −0.057 −0.057 −0.037 −0.037 −0.058 −0.058

Qinghai −0.035 −0.035 −0.076 −0.076 −0.079 −0.079 −0.071 −0.071 −0.073 −0.073 −0.208 −0.208 −0.184 −0.184
Ningxia −0.070 −0.070 −0.041 −0.041 −0.021 −0.021 −0.019 −0.019 −0.033 −0.033 −0.055 −0.055 0.068 0.068
Xinjiang −0.013 −0.013 −0.057 −0.057 −0.050 −0.050 −0.044 −0.044 −0.050 −0.050 −0.039 −0.039 −0.036 −0.036
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Table 8. Returns to Scale: type classification.

Groups Provinces 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Group 1

Anhui I I I D D I I I I I D D D D
Chongqing I I I I D D I I I I I I I I

Gansu I I I I I I I I I I I I I I
Guizhou I I I I I I I I I I I I D I

Heilongjiang I I I I I I I I I I I I I C
Hubei I I I I I I D D D D I I I D
Hunan I I D D D D I I I I I D D I

Inner Mongolia I D D D D D I D D D D D D D
Jiangxi I I I I I I I I I I I I I I

Jilin I I I I I I I I I I I I I C
Ningxia I I I I I I I I I I I I I D
Shaanxi I I I D I D D D I I I I I I
Shanxi I D D D D I I D I I I D D D

Sichuan I I D D D D D D D D D D D I
Tianjin I I I I D D D I I D I I I I

Xinjiang I I I I I I I I I I I I I I

Aggregation
Increasing RTS 16 14 12 10 9 10 12 11 13 12 13 11 10 9
Constant RTS 0 0 0 0 0 0 0 0 0 0 0 0 0 2

Decreasing RTS 0 2 4 6 7 6 4 5 3 4 3 5 6 5

Group 2

Beijing C C I I I C C C D I I I I C
Fujian I I I I D I I I D I C D D I

Guangdong D D D D D D D D D D D D D D
Guangxi I I I I I I I I I I I I I D
Hainan I I I I I I I I I I I I I I
Hebei C D D D D D D D C D D D D D
Henan D D D D D D D C D D D D D D
Jiangsu D D D D D D D D D D D D D D

Liaoning I D D D D D D D D I I I D I
Qinghai I I I I I I I I I I I I I I

Shandong D D D D D D D D D D D D D D
Shanghai D D D D D I I I D D D D D D
Yunnan I I I D D D D D I D D D D C
Zhejiang D D D D D D D D D D D D D D

Aggregation
Increasing RTS 6 5 6 5 4 5 5 5 4 6 5 5 4 4
Constant RTS 2 1 0 0 0 1 1 2 1 0 1 0 0 2

Decreasing RTS 6 8 8 9 10 8 8 7 9 8 8 9 10 8
Note: I: increasing returns to scale. C: constant returns to scale. D: decreasing returns to scale.
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Table 9. The results of Chi-Square test.

Year 2006 2007 2008 2009 2010 2011 2012 overall

χ2 12.468 *** 8.769 ** 3.214 * 2.143 2.330 2.832 5.105 * 59.890 ***
p-value 0.002 0.012 0.073 0.143 0.127 0.243 0.078 0.000

Year 2013 2014 2015 2016 2017 2018 2019

χ2 4.470 8.670 ** 3.214 * 6.725 ** 3.274 * 3.453 * 2.493
p-value 0.107 0.013 0.073 0.035 0.070 0.063 0.287

Note: The superscript (***) denotes that we should reject the null hypothesis at a significance level of 1%. The
superscript (**) denotes that we should reject the null hypothesis at the significance level of 5%. The superscript (*)
denotes that we should reject the null hypothesis at a significance level of 10%.

7. Conclusions

This study considered the DEA based OE/RTS assessment over time. Many previous
DEA studies have discussed how to measure the type of RTS. However, their studies did
not consider the measurement over a time horizon. The important feature of the proposed
RTS measurement was that the proposed models used in this study were different from the
standard models in terms of factor unification. A problem of the conventional DEA models
was that they produced different efficiency measures between input and output-based
measurements. Consequently, they yielded different OE and RTS estimates, depending
upon which production factor (input or output) was used for the OE and RTS measurements.
In order to avoid the difficulty, it is important to develop a new approach whose efficiency
measure is determined after combining them, and then discuss how to measure the types
of RTS. As an illustrative example, this study empirically evaluated the performance of
electricity generation and transmission in Chinese provinces from 2006 to 2019.

The main empirical evidences are summarized as follows. (a) First, China’s electricity
generation and transmission systems have improved their performance during the ob-
served periods. The improved performance is possibly because China has invested a large
amount of investment in the power sector to support its rapid economic growth. However,
it is important for the Chinese central and local governments to pay special attention to
the provinces with poor performance. These provinces include Xinjiang, Shaanxi, Anhui,
Shanxi, and Inner Mongolia. (b) Second, China has experienced considerable changes in
the different types of RTS measures. According to our results, the number of increasing RTS
has dropped significantly over time, implying that the increase in the amount of generation
may not enhance OE scores. The decreasing RTS indicates that the corresponding provinces
should reduce their generation amounts to enhance their OE measures. (c) Finally, we
have confirmed significant technological heterogeneity across groups and across Chinese
provinces. Additionally, some provinces have experienced more cases of increasing RTS,
while other provinces have directed toward decreasing RTS. The underlying policy impli-
cation due to the finding is that the former should increase their amounts of generation
to enhance the level of OE, while the latter should reduce their generation amounts to
enhance the degree. Thus, different provinces may have different strategies to enhance
their degrees of OE. Thus, detailed information on production technology for generation
and transmission is valuable and important for policy makers in Chinese governments,
particularly at the level of provincial governments.

This research has four drawbacks that should be overcome in future extensions. First,
it is necessary to compare the proposed OE/RTS measures with the ones obtained from the
conventional use of the standard models. This study did not work on such a research effort
because of the page limit. Second, it is important for this study to incorporate a description
of Chinese regional features so that we can understand the policy implications obtained
from this study. Third, we can examine the type of RTS after their convergences when the
time is infinite. Usually, the convergences produce group classification [53]. Finally, this
type of empirical study needs to compare China with the other industrial nations in Europe,
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the United States, and Japan in terms of their energy policy developments. All drawbacks
will be future extensions of this study.

In conclusion, we hope that this study is useful for Chinese energy policy and look
forward to seeing future extensions as discussed in this study.
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