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Abstract: Non-intrusive load monitoring (NILM) techniques are central techniques to achieve the
energy sustainability goals through the identification of operating appliances in the residential
and industrial sectors, potentially leading to increased rates of energy savings. NILM received
significant attention in the last decade, reflected by the number of contributions and systematic
reviews published yearly. In this regard, the current paper provides a meta-analysis summarising
existing NILM reviews to identify widely acknowledged findings concerning NILM scholarship in
general and neural NILM algorithms in particular. In addition, this paper emphasizes federated
neural NILM, receiving increasing attention due to its ability to preserve end-users’ privacy. Typically,
by combining several locally trained models, federated learning has excellent potential to train NILM
models locally without communicating sensitive data with cloud servers. Thus, the second part of
the current paper provides a summary of recent federated NILM frameworks with a focus on the
main contributions of each framework and the achieved performance. Furthermore, we identify
the non-availability of proper toolkits enabling easy experimentation with federated neural NILM
as a primary barrier in the field. Thus, we extend existing toolkits with a federated component,
made publicly available and conduct experiments on the REFIT energy dataset considering four
different scenarios.

Keywords: load disaggregation; neural NILM; federated learning; energy recommender systems

1. Introduction

Global energy demand is rising quickly, which in turn, makes the need for electric
energy rise even faster, especially in household setups. Current studies reveal that the most
crucial element in resolving energy issues would be the intelligent and cost-effective use of
electricity as the primary source of energy [1]. This, in turn, raises the need for systems that
recommend best practices and actions to use energy in homes, workplaces, and buildings
more efficiently [2–4]. To recommend positive actions to the users and help them adopt
a more efficient energy consumption behavior, it is essential first to capture their energy
footprint and analyze their behavior concerning the use of appliances [5,6]. The analysis
of energy utilization can help in this regard. A viable solution is to use smart meters
and sensors to record the energy consumption of each appliance, potentially combined
with smart data analytics to visualize the energy consumption habits [7]. Nonetheless, a
more financially affordable solution is to use only a single meter, and non-intrusive load
monitoring (NILM) techniques [8,9] to identify the consumption of each appliance from the
aggregate measurements. NILM techniques offer thus the possibility to determine which
appliances are utilized in a household at any moment and the corresponding amount of
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energy consumed [10]. Therefore, these approaches can be leveraged by different services
such as activity monitoring [11], and the detection of defective appliances [12].

Several algorithms were suggested to address the NILM problem [13]. Nonetheless,
deep neural networks have received significant attention since their first introduction [14].
These models fast became the main research stream in NILM scholarship, mainly en-
couraged by the availability of several real and synthetic energy datasets (e.g., REFIT [15],
SynD [16]), enabling the training and testing of these models considering different scenarios.
Many of these approaches were developed to evaluate the advantages and drawbacks of
different deep learning concepts on the energy disaggregation task and achieved significant
enhancement in the performance.

Despite these recent advancements, several open research questions remain unad-
dressed. For example, the transferability of these models remains problematic for real
deployments in smart grids. Furthermore, the computational complexity of neural NILM
approaches requires high processing power. Consequently, the majority of these models are
implemented on the cloud. Leveraging pruning and compression techniques to reduce the
models’ size is a viable solution in this regard [17] where NILM models can operate on the
edge. On the one hand, using local models would prevent updating the model with new
data measurements from other clients. On the other hand, uploading the consumers’ data
to the cloud would lead to privacy and security concerns from the consumer side, which
was identified as a primary obstacle to the acceptance of smart metering technology [18].
To overcome these issues, federated learning (FL) has recently been leveraged to train and
share NILM models [19,20] providing a solution to both of the previous concerns.

The vast and fast-increasing attention that the NILM research topics received in the last
decade created the need for more systematic reviews summarising recent advancements in
the field. Consequently, not only the number of NILM contributions has increased in recent
years, but also the number of systematic reviews published yearly. This trend is yet to rise,
considering the current energy crisis and the potential of NILM approaches in mitigating
its effect on the end consumer.

This work contributes to the current literature by performing an in-depth analysis
of existing NILM reviews and highlighting their contributions. The main advantages
and drawbacks of neural NILM models are identified by discussing the different learning
paradigms that can mitigate the computational complexity or redistribute it more efficiently
between the cloud and edge nodes. Furthermore, we evaluate the federated NILM mod-
els’ performance in a simulated energy measurements dataset. Furthermore, the current
paper suggests an FL disaggregator fully compatible with the most recent NILM toolkits
(i.e., NILMtk [21] and Deep-NILMtk [21]). We publish the code of the disaggregator to
enable and facilitate further studies and research on the topic. To summarize, the main
contributions of this article are as follows:

• presenting an umbrella review that discusses existing NILM systematic reviews and
identifies their contributions;

• analyzing recent FL-based NILM studies and highlighting their advantages and drawbacks;
• identifying open FL-based NILM challenges and deriving directions where actual and

near future research, works are heading;
• introducing an FL-based disaggregator fully compatible with NILMtk.

The rest of this paper is organized as follows: In Section 2, we explain the methodology
adopted to conduct the proposed umbrella review of NILM systems. In Section 3, we
present an overview of the different findings revealed in recent NILM reviews. In Section 4,
we provide an overview of the main data engineering approaches covered in recent NILM
systematic reviews. Next, Section 5 describes relevant NILM algorithms, comparison,
and evaluation setups. Section 6 discusses the FL paradigm with an overview of the
leading frameworks available in the scope of NILM. Following, a case study simulating a
distributed training environment is presented in the case of the REFIT dataset considering
different scenarios in Section 7. Thereafter, Section 8 identifies FL-based NILM open
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challenges and derives future research directions. Finally, Section 9 concludes the current
paper with a summary of our study’s main contributions and limitations.

2. Methodology

There has been an increasing interest in NILM in the last decade leading to an in-
creasing number of published contributions. Consequently, many systematic reviews have
already been published. Figure 1 illustrates the number of published NILM reviews per
year, considering only the Scopus database. Accounted alone, 2022 witnessed the publica-
tion of ten (10) NILM reviews. With this increased number of systematic reviews available,
a logical next step is to review existing systematic reviews, allowing the findings of sepa-
rate reviews to be compared and contrasted, thereby establishing a broader overview of
the topic.
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Figure 1. The number of published NILM reviews per year.

For this purpose, an umbrella review was adopted in the first part of the current
study following the protocol suggested in [22]. Four databases were queried, Scopus,
Google, Scholar, IEEE explore, and ACM library with the key terms Survey, review, NILM,
and load disaggregation. Our search was further limited to reviews that were published
in English during the last two years to include the most recent findings about the topic.
A total number of twenty-two reviews was obtained. A first screening step based on
the title and the abstract was established to consider only reviews with the main focus
on NILM scholarship and eliminate reviews about related topics or only subtopics (e.g.,
only datasets [23]). In a second step, the methodological quality of the reviews included
was assessed using an adapted version of the AMSTAR checklist [24], which resulted in
considering only ten reviews published during the last two years. The main goal of the
meta-analysis study is to address the following research questions:

• RQ1.1: What taxonomies exist in the literature for NILM approaches?
• RQ1.2: What are the main NILM-related topics that have been covered extensively (or

merely) in recent reviews?
• RQ1.3: What are recent reviews’ common findings?
• RQ1.4: What open research gaps exist in the literature, and what potential future

directions have been identified so far?

Among others, the topic of FL was identified as one of the topics that have merely been
covered in existing reviews. The reviews presented in [9,25] were the only ones addressing
this topic. Yet, it was only superficially discussed. In addressing this gap in the literature,
a systematic literature review of available federated NILM frameworks was established
in the second part. The same four databases considered in the first part were queried.
Nonetheless, only fourteen papers addressing the topic, all from the past two years, were
obtained, which further highlights the novelty of the topic. The systematic review was
conducted with the following research questions in mind:

• RQ2.1: What aspects of FL have been investigated in the case of NILM?
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• RQ2.2: What are the state-of-the-art performances of federated NILM approaches?
• RQ2.3: What are the major challenges facing the adoption of this learning paradigm

in NILM scholarship?

Furthermore, we identify the non-availability of NILM toolkits suitable for federated
training of disaggregation models as a major obstacle in evaluating FL in NILM scholarship.
Thus, we extend available toolkits with a federated trainer fully compatible with the API of
NILMtk and present a simulation study on a single appliance from a real energy dataset to
address the following research questions:

• RQ3.1: What is the effect of the data amount on the disaggregation performance?
• RQ3.2: What is the effect of the number of local iterations on the disaggregation

performance?

3. Findings from the Meta-Analysis

Table 1 summarises the main topics covered in the ten NILM reviews selected during
the current study. It is clear from the table that some topics were extensively reviewed
while others gained less attention. The learning algorithms and existing data sets with
metrics have been among the most investigated topics. Data engineering topics (i.e., feature
extraction, preprocessing, and postprocessing), existing toolkits, and computing platforms
gained less attention. Interestingly, only a handful of reviews performed a comparative
study of existing approaches with only two qualitative and four quantitative comparisons.
Most of these studies leveraged values reported in the reviewed contributions to provide
recommendations for future directions. While leveraging values reported in different
contributions to perform a comparative study does not provide rigorous findings since they
result from different evaluation setups, it remains one of the most straightforward means of
providing recommendations for future work. Yet, the findings of these comparisons are to
be interpreted with caution. We highlight that the previous observations are highly related
to the selected set of systematic reviews, which is the main limitation of the current study
that the authors admit.

In summary, the literature and research landscape of NILM is full of algorithms,
solutions, and systems, which can be broadly categorized into the following domains, as
depicted in more detail in Figure 2:

• Data: Data are the primary concern and, at the same time, the main asset of NILM
approaches, particularly recent ML/deep learning (DL) approaches. All the necessary
data-related tasks in all other ML and data mining problems appear in the case of en-
ergy load data: preprocessing, feature extraction and management, and representation
are the most important, and the decisions made in each one of them respectively affect
the NILM quality.

• Algorithms: Despite the majority of reviews briefly discussing traditional NILM
algorithms, there is a consensus to put the main focus on ML algorithms. More
precisely, the disaggregation algorithms have evolved during the last three decades
from simple combinatorial optimization to ML models and, more recently, to DNN
models, which are now considered state-of-the-art algorithms.

• Computing platforms: The choice of the platform where the NILM computations
will take place is equally essential to the choice of algorithms or data. The choice
can be application dependent, but it also must consider more constraints related, for
example, to the requested efficiency and the need for privacy. Cloud computing is
the primary choice when computational performance is the priority. However, edge
and fog architectures are gradually gaining ground to cover the need for privacy and
distributed processing.
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• Training process: Since the algorithms have evolved into trainable models, the pro-
cess that we follow to train them has become a critical part of NILM. The choice
of process is strongly connected to the underlying computation platform. Since the
distributed paradigm with edge nodes that carry computational tasks is now feasible,
FL paradigms are gaining hype over their centralized alternatives.

• Challenges: The choice of one or the other platform, algorithm, learning paradigm,
and data strategy may solve several issues but can also set important challenges that
must be handled to optimize the NILM quality, efficiency and performance.

• Future directions: A complete study of the NILM landscape must also comprise an
analysis of the next steps. These future directions can be based on recent advances
and future directions in related research domains such as AI and ML.

In the following sections, we discuss the above-mentioned concepts, providing more
details on the algorithms proposed in the last decade for neural NILM while summarising
the findings from different reviews. We also focus on the learning paradigm of federated
NILM, emphasizing its advantages and the challenges that are still open. To the best of the
authors’ knowledge, the current manuscript is the first to provide an overview of federated
NILM frameworks. At the end of this article, we discuss the future directions of Neural
and Federated NILM, taking into account the overall trends in AI and ML research and
projecting them onto the NILM industry.

Table 1. Main concepts included in recent NILM reviews.

[26] [9] [27] [28] [25] [29] [30] [31] [32] [33] Our Study

Basic NILM concepts
Definitions 3 3 3 3 3
Problem formulation 3 3 3 3

Algorithms design
Feature extraction 3 3 3 3 3 3 3
Preprocessing 3 3 3 3
Postprocessing 3 3 3
Learning algorithm 3 3 3 3 3 3 3 3 3 3 3
FL 3 3 3

Evaluation
Datasets 3 3 3 3 3 3 3 3 3
Metrics 3 3 3 3 3 3 3 3
Toolkits 3 3 3
Computing platforms 3 3 3

Comparative study 3
Qualitative 3 3
Quantitative 3 3 3 3

4. Data Engineering for NILM

The emergence of ML algorithms in NILM scholarship highlighted the importance
of data engineering to enhance the disaggregation performance for different appliances.
Thus, this aspect received particular attention from recent systematic reviews. The current
manuscript groups three main data processing steps under the term data engineering:
data preprocessing, feature extraction, and postprocessing techniques. Nonetheless, fea-
ture extraction received relatively more attention from the selected set of reviews than
preprocessing and postprocessing techniques adopted in different contributions.

The preprocessing techniques adopted in different contributions were covered in two
reviews, mainly [27,33]. The authors of [27] highlight two main techniques considered
mandatory for the majority of algorithms: (i) handling sampling rates and missing data,
and (ii) balancing. The first technique, handling sampling rates and missing data, is related
to the quality of the data sets during training and is leveraged to address potential technical
problems that may occur in real setups (i.e., hardware and communication issues). The
second technique provides a balance between the ON states/events of each appliance
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and the OFF states/events. The latter problem is mainly caused by residential appliances
being OFF most of the time. In addition to the previous two techniques, the authors of [33]
provided an overview of data augmentation techniques adopted mainly to address the
underrepresented classes.

An overview of the types of features in NILM was suggested in five different reviews,
mainly [9,25,28,31]. A consensus between all these reviews can be concluded where three
types of features were highlighted: steady-state features, transient features, and exter-
nal/nontraditional features. We emphasize that all three types of features are handcrafted
features. Further details about each type are provided in Figure 2. Alternatively, the re-
views presented in [27,32] provide a classification of NILM features based on the sampling
frequency required, where they offered a clear distinction between low-frequency and
high-frequency features, as follows:

• High-frequency sampling: This approach involves collecting data at a high rate, such
as at a rate of one to several times per second [32]. This can provide a high level of
detail and resolution, leading thus to improved accuracy. The majority of transient
features require high sampling rates.

• Low-frequency sampling: This approach involves collecting data at a lower rate, such
as at a rate of once per minute or once per hour. This can be less resource-intensive
but may also result in a lower level of detail and accuracy.

Considering post-processing techniques, only reviews presented in [31,33] provided
an overview of existing approaches for NILM algorithms. One of the main findings of the
quantitative analysis provided by the first review (i.e., [33]) was the enhancement that can
be achieved, where they found that 28% to 54% of improvement was recorded in related
work. Consequently, it is to conclude that postprocessing techniques are a key factor in
improving existing algorithms. In this regard, Figure 2 illustrates three techniques that
were suggested for signal postprocessing [31] in the case of NILM. Yet, further research is
required on existing postprocessing techniques for NILM and their potential taxonomies.

It was widely acknowledged in all the reviews that ML and AI models are the most
prominent algorithms in the NILM scholarship in recent years. Consequently, data engineer-
ing techniques are of enormous importance to future NILM developments. Nonetheless,
our analysis reveals that recent reviews only focused on the feature extraction phase while
providing less attention to preprocessing and postprocessing techniques, even though there
is evidence that these two steps can enhance the final performance.

5. NILM Algorithms, Comparison, and Evaluation Setups

The non-intrusive monitoring of the operation and energy consumption of appliances,
especially in household setups that consist of a large variate of loads and specific usage
patterns, has been recognized as an essential task for more than three decades, with the
seminal work of Hart that defined the task [8]. Since then, several techniques have been
proposed, broadly categorized into the major groups depicted in Figure 3.

The first group of solutions was mostly based on combinatorial optimization tech-
niques, which assumed that the total load was the result of a combination of appliances
(with known loads) that operate in different states (even not operating at all) and tried to
find the combination of appliances and states that better matches the overall load measure-
ment. Taking this one step further, hidden Markov models (HMM) attempted to model the
task using a probabilistic approach concerning the appliances that operate at every moment
and the state they are on. In the last decade, technological advancements in neural networks
and the underlying infrastructures that support their operations, as well as the abundance
of training data, gave rise to the ML approaches for NILM and mainly to neural NILM,
which demonstrated state-of-the-art performance under a variety of training conditions
(e.g., high sampling rates, enough computational capacity).
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Figure 3. Historical development of NILM.

The problem of non-intrusive monitoring of appliances’ load based on the disaggre-
gation of the measurements from a single monitoring device is usually approached in the
literature by breaking it into smaller tasks. Given a known inventory of appliances for
a household, these tasks comprise (a) the detection of different states for each appliance,
(b) the extraction of signatures per state and appliance, and (c) the classification of each
measurement to the most promising combination of appliances’ states [34]. Instead of
monitoring the operation of each appliance on a second-by-second basis, some NILM
techniques simply identify state change events and consequently record the start and end
time of an appliance usage and the total energy consumed [35]. Alternatively, Neural NILM
models provide a point-to-point solution for each appliance.

Convolutional neural networks (CNNs) can be employed to detect state-change events.
As suggested in [35], a current sequence of length L2 is transformed in an image of L× L
pixels and is fed to a CNN, which is then trained to identify appliances initially on a single
load task. This task allows distinguishing between appliances when a single appliance is on
at each moment. This is taken one step further by establishing a multi-load identification
task, in which the model is trained to distinguish between all possible load combinations.
The main restriction of such approaches is that the number of appliances in a household
can be large. Consequently, the respective number of combinations that must be identified
at any moment becomes huge.

Energy measurement data are usually considered to be in the form of time series
or sequences. Consequently, the respective DNN architectures that capture the temporal
semantics of input have also been employed. More specifically, recurrent neural networks
(RNNs) have been used in [36] as an alternative to combinatorial optimization. RNNs
successfully reconstruct the appliance signatures for the aggregated measurements and
can perfectly fit appliances they have already been trained on. However, they need help to
generalize on unseen appliances or power states and require vast amounts of data and a
lot of computational power to be trained. In an attempt to improve the generalization of
RNNs, authors in [37] employ gated recurrent units (GRU) and show that they outperform
the RNN baseline. In the same direction, authors in [38] suggest using LSTM-RNNs to
tackle the vanishing gradient problem better whilst learning the long-term patterns that
constitute the appliances’ signatures in the multi-state and multi-appliance setup.

The autoencoders (AEs) represent another architecture commonly used to extract more
coherent input data representations. As such, they can be used to extract the features that
compose the signature of the various appliances. They are composed of encoding and
decoding layers, and at training time, they learn to optimize the output so that it better
resembles (if not identical) the input. After training, the encoder is used to obtain the repre-
sentation of the input to a different dimension. A stochastic variation of autoencoders is the
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denoising autoencoders (dAEs), which introduce noise to the input so that the autoencoder
does not learn the identity function (i.e., f(x) = f) during training. Consequently, the energy
disaggregation task can be approached as a denoising problem, utilizing techniques that
can transfer a noisy overall consumption from multiple appliances to a “clean” consump-
tion of each individual appliance, using as input either active, reactive, apparent power,
current, voltage, or any combination of them.

Denoising AEs employs a 1-D convolutional layer in the encoder part to feed the input
measurements in segments (few seconds windows) and another 1-D convolutional layer
in the decoder, with the size that depends on the size of the appliance activations [39].
They can be trained using synthetic datasets that combine the measurements of various
appliances and aim to reconstruct each appliance’s signature in the output. Authors
in [40] have combined dAEs with RNNs to combine the merits of ANNs and HMM-based
methods. Using dAEs, they obtain the signatures of the appliances, and by feeding them to
the LSTM, they can identify the most promising combination of appliances (and modes)
that corresponds to the aggregated consumption at any moment.

The review presented in [33] on the DNN approaches for low-frequency NILM begins
with the increased requirements for processing high-frequency NILM data and continues
with the evaluation of various NN-based techniques that combine CNNs with LSTMs,
GRUs, and other RNN variations or even with generative adversarial networks (GANs)
and AEs (denoising or variational autoencoders) in an attempt to improve the classification
accuracy of collective appliance signals. The main challenge for the different algorithms
relates to the overall performance, which is usually affected by the dataset used, the
sampling frequencies, the input features, the metrics used for evaluation, etc. The choice
of the best parameters for all the above can significantly affect the final performance as
much as the architecture. According to [21], a best practice for developing DNN models
is the automation of hyper-parameters tuning and selecting the appropriate architecture.
Using toolkits that aggregate multiple alternative architectures allows for finding the best
solution at each NILM setup.

Table 2 provides an overview of the main dilemmas, as titled in [27], or degrees of
freedom, as titled in [33], existing for NILM algorithms. Further considerations were
also revealed in the considered reviews. Nonetheless, we only present the ones that
appeared in a maximum number of reviews to be able to contrast their findings to highlight
what is widely acknowledged. Three main design choices were found to be controversial
in the NILM scholarship. We provide the advantages and drawbacks of each one of
them in Table 2. Furthermore, we summarise the findings reported in different reviews
whenever available. Other considerations included supervised vs. unsupervised [27],
RNN vs. CNN [27,33], causal vs. non-causal [27,33], sequence-to-point vs. sequence-to-
Sequence [27]. These conclusions and findings remain limited since they were achieved
through a direct comparison of reported values in different contributions and should be
considered with a high amount of caution.

The evaluation of NILM algorithms is generally performed using widely acknowl-
edged ML metrics and NILM datasets. Nonetheless, some evaluation metrics dedicated
only to NILM models can also be identified [41] though receiving little attention in recent
NILM reviews since they are less commonly used. However, despite their seldom use, these
metrics could show a better summary of disaggregation results since they focus on the
NILM problem by design. NILM datasets also received significant attention from existing
reviews where the sampling rate and the data quality remain the main concern. Further-
more, NILM toolkits are an important part of the evaluation as they improve research
efficiency. This aspect was only covered in two reviews [26,31] revealing that available
NILM toolkits emphasize the algorithms without considering the available hardware and
network infrastructure, which is critical for the real-time monitoring of appliances. In this
direction, lightweight models [42] that combine CNNs for learning features and simple
classifiers to detect appliances seem to be promising solutions. Another solution for scala-
bility is using FL approaches [43], which can move the processing load from a centralized
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to a decentralized approach taking advantage of several low processing power devices to
solve the same task. Federated NILM solutions can also support privacy since data are
not shared across nodes or with a centralized server [44], but also open new challenges for
researchers, which are discussed in more detail in the following section.

Table 2. Main NILM dilemmas as discussed in recent reviews [9,26–28,31].

Classification Regression Multi-Target Single Target Event-Based Eventless

Advantages
Reveals
On/OFF
states

Do not
require
thresholding

Reduce the
training time
Computationally
efficient

Custom model per
appliance

Efficient with high
sampling rates
Training can be
avoided when
needed

Suitable for all types
of appliances Good
generalization with
DL model

Drawbacks
Require
thresholding
approaches

Data
complexity

Convergence
issues due to
different
operational
characteristics

Computationally
expensive, no
minimization of
the sum between
real aggregate and
predicted targets

Require complex
hardware,
scalability issues

Most algorithms
require a huge
amount of data for
training

Findings
unveiled in
NILM
reviews

Limited conclusions due
to the high dependency
of the performance of the
classification approach
on the preprocessing step.

Simultaneous learning
provides more robust
models, majority of
best models are
multi-target, multi-target
drastically reduces
the computational burden

Eventless are better for
commercialization, Eventless DL
demonstrated the best
generalization abilities,
Event-based are relatively
superior considering
performance but highly
dependent on the event detector.

6. Federated NILM

FL [45–47], also referred to as collaborative learning, is a learning paradigm that
Google introduced in 2017 to protect the privacy of its clients. Following this learning
paradigm, the model is sent to the client rather than the data uploaded to a cloud server.
Figure 4 illustrates the main steps of the learning process. It starts in a central server
responsible for initializing the model’s weight and sharing them with the clients. Upon
the reception of the global model, each client executes a training task using its local data
for a number of iterations and sends the new weights of the model back to the central
server. Once the central server has received the local models, it will aggregate them to
obtain an updated version of the global model. The process is repeated for several rounds
until convergence is achieved. The most popular aggregation algorithm is known as the
FedAvG [48], which relies on calculating the average of the weights of local models as an
aggregation mechanism. The weighted average can be used when the size of local datasets
differs for clients participating in the training. Several variants of this scheme exist in the
literature, considering different aspects [46]. For example, peer-to-peer FL enables direct
clients’ communication and eliminates the central node [45]. More precisely, each client
broadcasts their model to the other clients contributing to the training round. Considering
this variant of FL, the goal is to achieve a fully decentralized training process without the
need for a central server considered a single point of failure. Other variants of FL also exist
but remain out of the scope of the current manuscript.
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The upgrade of the electrical grid in many countries around the globe, with the
advanced metering infrastructure and edge devices, offers the possibility of adopting an
FL paradigm for efficient grid management. It was extensively adopted in the case of load
forecasting (e.g., [49]) and power generation prediction for renewable energies (e.g., [50]).
Nonetheless, only a handful of contributions have explored the adoption of this learning
paradigm in NILM scholarship: ten contributions for residential load disaggregation, one
for solar energy disaggregation, and only one for investigating security aspects of FL in
smart grids with respect to load disaggregation. Table 3 summarises the ten studies that
investigated FL in the case of residential load disaggregation.

Table 3. FL frameworks for residential load disaggregation

Main Contribution Model Dataset Tested Appliances Metric Best Results Worst Results Limitations

[51]
Distributed federated load dis-
aggregation with domain trans-
ferability

Seq2Point
REFIT
REDD
UKDALE

KTL MW DW WM
FRZ MAE KTL 7.23 FRZ 24.25 Reported only the MAE

[52] Address the problem of co-
modeling in NILM GDBT

REFIT
REDD
UKDALE

WM DW FRZ MW MAE MW 6.89 FRZ 18.86 Costly communication
overhead

[53] A novel aggregation algorithm
for nested tasks learning GRU RNN Pecan

Street DRY OVEN AC EV F1 EV 0.83 Oven 0.14 Convergence issues

[54] Extensive comparative evalua-
tion of FL- NILM Seq2Point UKDALE FRZ DW WM F1 FRZ 0.78 WM 0.41 Tested only on data from

training buildings

[44]
Model’s compression and col-
laborative learning with per-
sonalisation

SeqPoint REDD
REFIT WM FRZ DW MW F1 FRZ 0.58 WM 0.32 Very low F1-scores

[55]

FL-based NILM focusing on
both the utility optimization
and the privacy-preserving by
incorporating differential pri-
vacy

TEMPORAL
POOLING

UKDALE
REFIT
REDD

Frz DW WM F1 WM 0.43 DW 0.13 Tested only on data from
training buildings

[56]
Optimal model selection prior
aggregation to enhance perfor-
mance

Seq2point REFIT WM KTL DW DRY
MW F1 MW 0.96 DRY 0.87 Tested only on data from

training buildings

[57]
Evaluation of the noise effect of
differential privacy on the per-
formance

Seq2point UKDALE
REDD FRY MW KTL F1 FRZ 0.86 KTL 0.22 Tested only on data from

training buildings

[20] Evaluation of a decentalized FL
framework Seq2Point REFIT DW MW FRZ KTL

WM MAE MW 0.025 DW 0.07
No evaluation of the gain
on the communication
bandwidth

[19] A new short deep NILM model
for FL

Short
Seq2Point UKDALE DW MW FRZ WM MAE

F1
DW
DW

20
0.58

MW
MW

61
0.10

A limited number of
nodes used for training
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An FL framework for NILM was suggested in [51], where transfer learning was
used between different domains. The goal of the contribution was to protect consumers’
privacy and overcome the problem of non-identically distributed data. Three public data
sets were considered during the evaluation setup, where the main focus was to establish
a comparison with centralized load disaggregation schemes. The results showed high
potential for the suggested FL approach. Nonetheless, transfer learning from one domain
to another one demonstrated poor results and showed that fine-tuning is required. Despite
the extensive evaluation of the disaggregation performance, the previous study provided
no analysis of the communication cost and model efficiency, and little attention was given
to the hardware requirements of the edge devices. These limitations were also admitted
in [56] and highlighted as future direction. Furthermore, the authors stressed the need to
upgrade NILM toolkits with federated/decentralized trainers, enabling further research
in this respect. Both of the previous studies adopted a Seq2Point model, which shows the
strength of this model in the case of FL for load disaggregation. More precisely, even short
versions of this model provide very competitive results as demonstrated in [19] where the
authors suggested shortening the Seq2Point baseline trained following an FL paradigm
revealing promising results despite the low number of training clients. A similar study
focusing on transfer learning was suggested in [53], where a model-agnostic meta-learning
approach was introduced to enable task-specific learning and allow data owners to adjust
the models based on the tasks. In this regard, the FL is augmented with a meta-learning step
at each round. The evaluation setup demonstrated enhanced disaggregation performance
but with a longer time required for convergence.

The FL was further tested in combination with differential privacy in [57] where the
Seq2Point [14] baseline was leveraged during the experimental setup. The evaluation
showed that this combination provides good results in the case of the fridge, which exhibits
a period consumption pattern but failed in the case of hand-operated appliances, mainly
the kettle and microwave, which are directly related to daily routines. Furthermore, they
demonstrate that differential privacy causes poor results due to the noise added where
smaller epsilon values allow mitigating privacy attacks. Still, higher values provide similar
privacy leakage to the standard FL framework. A similar study was presented in [55],
evaluating the impact of noise added on the overall disaggregation of a standard federated
NILM framework. The evaluation was performed using a temporal pooling model on
three different data sets. It resulted in the amount of added noise drastically hindering the
disaggregation task, thus achieving similar conclusions to work presented in [57].

The performance of a classification federated NILM algorithm was investigated in [54],
combining FL with state-of-the-art NILM models for state classification. An extensive
evaluation was conducted during this study and demonstrated competitive results. How-
ever, it mainly concentrated on using testing data from the same buildings included in the
training, which may have led to biased conclusions. A multi-target federated NILM was
suggested in [44]. The proposed framework leverages a multi-target learning paradigm
to train a single model for all the target appliances with pruning techniques to compress
the model. The experiments on three real datasets demonstrated an acceptable trade-off
between privacy and disaggregation performance but with a relatively low performance,
mainly a low f1-score.

Interestingly, a federated decision tree algorithm was designed in [52] for load disag-
gregation leveraging a two-state voting process and node-level parallelism for co-modeling
NILM. During the model training phase, the server receives the local training results. It
makes the final decision to select the model parameters used to split the tree nodes, in-
cluding features and the corresponding thresholds. The local clients are responsible for
data preprocessing, tree structure initialization, gradient computation, local histogram
establishment, local split finding, and model updating. The voting thus results in a list of
top-K candidate features chosen based on the maximum variance gain on local machines
forwarded to the central server that will select candidate features based on majority voting.
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Unfortunately, designed this way, the algorithm suffers from privacy leakage of partial
feature indexes.

Despite the interesting findings of previous studies, a shared shortcoming between is
their high on to the central node. More precisely, all previously presented works adopt a
client-server architecture where the server represents a single point of failure. To overcome
this issue, a fully decentralized FL approach was evaluated in [20] by adopting a circle
topology instead of a star topology to optimize clients’ communication. The experimental
setup highlighted equivalent results to the centralized FL approach. However, the author
did not evaluate the gain/loss in the communication bandwidth in the case of the decen-
tralized FL. Furthermore, each node in the circle topology is a point of failure. Further
research is thus required to develop a mechanism that allows to re-establish the circle in
the case of failures.

The best and worst results reported for each framework are illustrated in Table 3.
The results obtained on unseen buildings were chosen whenever available. Moreover,
the F1-score is the most common metric among the different contributions. It is clear
from the table that the results drastically differ between appliances. The highest f1-score
was reported in the case of the washing machine upon optimal model selection before the
aggregation in [56]. Meanwhile, the worst value was reported for the case of the dishwasher
in [55]. Apart from indicating the low quality of FL frameworks, these results highlight the
tremendous challenge that training on several appliances from different buildings could
impose. The low values reported in [44,55] are linked to the approaches added to the
standard federated framework, that is, compression and differential privacy. Overall, the
reported results are acceptable, especially in the case of approaches that consider training
data from different buildings and were tested on unseen buildings, simulating thus the
most realistic scenario.

To the best of the authors’ knowledge, all NILM toolkits are only based on centralized
training. Therefore, it becomes challenging to experiment with existing implementations
of different models using a federated framework since it requires extra-coding efforts. To
address this gap, we extend NILMtk with a disaggregator that allows the simulation of
federated training setups. The suggested extension is fully compatible with the new API of
the toolkit [58]. It allows specifying the different buildings contributing to the training as
well as the number of randomly selected clients in each training round. Figure 5 illustrates
the different steps followed by the suggested code. Furthermore, the FedAvg algorithm is
used for aggregating the locally trained models. Thus, the suggested code assumes that
the same data are available for different clients. The full version of the code can be found
in [59]. The disaggregator is compatible with all seq2point models implemented in [21],
where the model type can be specified as a hyperparameter for the FL framework.

B1 B2 B3 B4

B5 B6 B7 B9

B10 B11 B12 B14

B15 B16 B18 B19

F1-score

MAEbuilding

Figure 5. Flowchart of the simulated scenarios.
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7. Case Study
7.1. Data Preprocessing and Evaluation Method

The study considers data from the REFIT [15] dataset, which contains data from
20 households in the UK. For each household, the data set contains both sub-metered
data as well as aggregated data sampled every 8 s. We consider 8 households as clients
during training to simulate a small energy community. Furthermore, a subset of the data
measured over 15 days is used for the local training of each client. The tests are performed
considering a single appliance, the fridge. The choice of this appliance is justified by its
wide availability in the buildings of the considered dataset, which aligns with the goal of
our study and the designed scenarios.

Before training, the data was preprocessed following several steps. First, the data are
normalized using a z-normalization. Afterward, a sliding window is used with a window
length of 13 min, following a sequence-to-point learning paradigm. Finally, the data are
split into training and validation data for each client (85% for training and 15% for testing).
Furthermore, the global model is tested on the eight households contributing to the training
and eight households not included in the training subset, with one household used for
validation during training.

Two evaluation metrics are used to assess the performance of the global model at the
end of the simulation; mean average error (MAE) and the F1-score. The metrics are defined
as follows:

MAE =
1
N
·

N−1

∑
t=0
|ŷt − yt| (1)

where, yt is the actual power consumption, ŷt is the estimated power consumption, and N
represents the number of samples. As an absolute measure, MAE is reported in Watts.

F1− score =
2 · Precision · Recall
Precision + Recall

(2)

where the Precision = TP/(TP+FP), Recall = TP/(TP + FN). Moreover, the thresholds used to
define the confusion matrix for the considered appliance were fixed to 50 watt.

7.2. Simulation Setup

The simulation study is conducted on a computer with a 3.3 GHz AMD Ryzen proces-
sor and 16 GB of memory with NVIDIA GeForce RTX 3060. Moreover, the implementation
leverages the federated NILM disaggregator previously described. Despite the importance
of hyper-parameter optimization, this aspect was not a primary concern in the current study.
We are rather interested in evaluating the potential of adopting FL in NILM scholarship,
considering large-scale data. Instead, a widely acknowledged model was adopted, that is,
the Seq2Point [14] model that demonstrated outstanding performance compared to state-
of-the-art models [58]. Furthermore, the standard FedAVG [60] algorithm is considered
for the aggregation of local models, where stochastic gradient descent (SGD) is used as an
optimizer with a learning rate of 0.0001 and momentum of 0.9. Based on previous findings
in related work [58], the Seq2Point converges after 50 epochs. Thus, the number of training
global rounds has been set to 10, with 5 and 10 local training epochs. All the code and the
experimental setup are made available in a public repository [59].

7.3. Experimental Results
7.3.1. Evaluated Scenarios

The overall FL framework is described in Figure 5, along with the different steps
included in the training process. Furthermore, we adopted four different scenarios sum-
marised in Table 4. In each round, only a subset of all the clients is selected for training.
The selection process is performed based on a random selection. The table illustrates
the number of clients selected in the training subset of each round for the four federated
scenarios. Furthermore, we will evaluate the effect of local training epochs on performance.
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In summary, the goal is to assess the effect of two main aspects on the training: (i) the effect
of more extensive data and (ii) the effect of the number of local training iterations. To the
best of the authors’ knowledge, this paper is the first to investigate the effect of these two
aspects on disaggregation performance.

Table 4. Evaluated scenarios.

Scenario Clients in Subset Local Epochs

1 4 5

2 8 5

3 4 10

4 8 10

7.3.2. Results of the Global Model

The different scenarios evaluated during this study resulted in a set of global models
that were obtained following an FL process. The evaluation results of these models in terms
of MAE and F1-score are illustrated in Table 5.

Table 5. Disaggregation results for different buildings of the REFIT dataset.

Buildings of the Training Subset Buildings Not in the Training Subset

MAE F1-Score MAE F1-Score

Min Mean Max Min Mean Max Min Mean Max Min Mean Max

1 20.9 32.5 47.1 0.41 0.54 0.69 11.7 30.5 43.2 0.25 0.49 0.64

2 29.4 37.5 49.3 0.37 0.55 0.73 17.7 34.1 44.7 0.38 0.56 0.69

3 23.7 34.7 51.3 0.41 0.54 0.69 12.9 31.4 42.8 0.29 0.54 0.67

4 25.4 34.3 47.7 0.50 0.57 0.74 27.8 30.0 43.5 0.38 0.54 0.66

The first part of Table 5 summarises the results obtained for different scenarios in the
case of clients participating in the training rounds. As the table illustrates, the values ob-
tained in different scenarios are acceptable considering the low number of communication
rounds adopted in the experimental setup compared to related work and the fact that the
data are not Independent and identically distributed (non-IID), i.e., the data are not drawn
from the same distribution. Notably, the global models are able to fit certain clients more
than others, which can be clearly perceived when contrasting the minimum and maximum
values for each scenario. When comparing scenario 1 and scenario 3, which differ in terms
of the number of clients included in the training set, a slight enhancement in the F1-score is
clearly observed with a higher number of clients. This observation, however, is not valid in
the case of the MAE. Similar conclusions can be established when comparing scenarios 3
and 4. One reason behind this observation could be the heterogeneity of the fridge’s signa-
ture between different buildings of the REFIT dataset in terms of duration and magnitude,
which influences the learning process. One possible solution to overcome this obstacle
could be the adoption of min-max normalization to scale all the values in the range of 0–1
before training instead of a z-normalization. This trend is further confirmed in the case of
new clients (i.e., clients not included in the training set), where the models of all scenarios
demonstrated good generalisability performance. These findings are interesting since they
demonstrate that using only a small subset of the data would provide comparable results
to more clients, leading to a more efficient resource allocation on edge.

Despite the fact that a higher number of clients with a higher number of local iterations
provide better results, the case of unseen buildings from Table 5 clearly shows that adopting
a higher number of local iterations could be leveraged in cases where there are constraints
on the communication infrastructure to achieve equivalent results with a smaller number



Energies 2023, 16, 991 16 of 22

of clients. The previous conclusion is more evident in the case of clients not included in the
training subset as measured per scenarios 2 and 3.

8. Challenges and Future Directions

Despite all these advancements in NILM scholaship, many challenges are yet to
address. We provide in Figure 2 the main challenges depicted from the considered NILM
reviews, along with potential future directions where existing relations in a dashed line. In
addition to these challenges, we identify several other research gaps in NILM research that
are detailed in the following.

One of the main challenges of NILM methods is to respond in a time comparable to
intrusive methods that employ sensors and smart plugs. This need for real-time disaggre-
gation of energy consumption information requires the handling of large amounts of data
in an efficient manner. The main issue for NILM systems is to develop efficient algorithms
that tackle the difficulties occurring in each step of the NILM process, from data collection
to estimate the power consumed by each appliance at every moment. The individual
challenges in each step of the process need thorough examination and are detailed in
the following.

The NILM process begins with data collection, which strongly affects the quality
of the final results. The higher the collection frequency, the better the disaggregation
quality. This is mainly because, in frequencies below 1 Hz, only steady-state features
can be extracted, which makes it difficult to distinguish between appliances with very
similar consumption profiles (i.e., states with similar power values). Measuring in higher
frequencies (above 1 Hz) allows the extraction of transient features, which can help to
identify the small differences between such appliances, mainly occurring in a transient state
or when the appliance switches among different states. The combination of steady-state
and transient features compose the power signature of each appliance and can be very
helpful in NILM tasks [61]. Nonetheless, the previous sampling rates are not common in
real power grids where the data are generally collected every 15 or 30 min. This aspect
needs thus to be investigated more by either adapting existing models or developing new
models for real deployments.

Increasing the sampling frequency can improve the disaggregation quality but in-
troduces computational and communication burdens to the NILM process, which has
to be considered. Data congestion will become a problem for communication networks
whenever the data frequency exceeds 1.7 Hz. Consequently, the advantages of NILM
will be significantly diminished if the communication bandwidth is increased due to the
high-cost of communication networks. The data communication issues constitute an im-
portant challenge, especially for cloud-based NILM methods, which need large amounts of
data to be transmitted and thus require high bandwidth connections. A solution to this
problem can be processing aggregate energy usage data at the edge [44]. The latter solution
can also be used to overcome the security and privacy issues that relate to the collection
and transfer of energy usage data to the cloud. Although the aggregated data reduce the
exposure of private information related to specific appliance usage, there is still a place
for privacy breaches [62]. Examples include the ability to infer home occupancy, to expose
consumers’ appliance usage habits [63], or even their interests when very high sampling
rates are employed [64].

The second step of the NILM process refers to the detection of appliance events,
from turn-on and turn-off to mode and continuous state changes. The main challenges
in this step relate to the correct detection of the event time of occurrence and the correct
distinction between appliances, especially in composite situations. Appliances, having
a high fluctuation to the steady-state power during their on-state, are hard to identify.
Similarly, devices with a long transition state between modes, or at least longer than the
disaggregation method expects, are also hard to detect. Both high fluctuation and long
transition are operation features of electric or electronic appliances. They can either be
learned using lots of training data or captured using several heuristics. They constitute the
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signature of an appliance, but given the wide range of brands, models, etc., it is tough to
detect them properly during NILM.

If we consider a household with multiple and diverse appliances that can be turned
on or off (or change state) at any moment, even simultaneously (e.g., using a multi-plug)
then the task of NILM becomes even harder. If, in addition, we assume that the same NILM
model is used to detect events in multiple households and the fact that each household
has its composition of appliances (or appliance combinations), then more efficient and
adaptive disaggregation algorithms are needed. Such algorithms must quickly adapt to
the household setup and provide real-time event detection after a short load monitoring
and analysis period. Furthermore, appliance transfer learning (ATL) and domain transfer
learning (DTL) are required to exploit these models in smart grids. However, the trans-
ferability of these models remains challenging and problematic. This aspect was carefully
investigated in [9] listing recent contributions with ATL or DTL concepts. Alternatively,
unsupervised approaches can be used as suggested in [27]. A detailed discussion of transfer
learning in the case of NILM is presented in [31]. As highlighted in the latter, transferability
approaches are a recent research stream in NILM scholarship. Thus further research is
required to address this aspect and improve the testing accuracy on unseen buildings.

To distinguish between various types of appliances, NILM systems employ special
features extracted from the power consumption footprints of individual appliances. Such
features, which compose the appliance’s signature for each state change action, capture how
the appliances work or change their states and are connected to the internal components of
each appliance (such as motors and resistors). These steady-state features can be connected
with the different states of the appliance, such as the active or reactive power, the current,
and the voltage when the appliance is on, off, on standby, or in any other state. Although
they can be easily measured, the challenge is to detect the different states of the device before
creating its signature. Clustering and pairing methods are used to extract the appliance
signatures and find the patterns of appliances used at every moment [65]. Another group of
features related to the transition between two states, the transient features, are also gaining
attention in NILM tasks. Still, they require higher sampling rates and more computational
power to process and extract.

The more modern and proficient NILM methods, instead of directly applying heuris-
tics to extract features and detect events from the measurement data, have evolved towards
learning patterns (i.e., features) that can then be employed to learn the significance of
each appliance. This is closer to the notion of representation learning [66,67] and can take
advantage of DL architectures, such as encoder-decoders, to split the event detection step
into two sub-steps: the feature learning and the detection of state changes.

The high computational demands of DL techniques instantly turned researchers to
high-performance computing architectures and to cloud-based approaches, where learning
and inference tasks can be carried out more efficiently. However, the deployment of cloud-
based NILM algorithms for large loads of measurement data imposes more challenges for
companies in the domain. First of all, large data loads require increased computational
resources to be processed, which in turn blows up the cost of computational energy and the
total carbon emissions [68]. Cloud-based methods cannot be completely real-time since we
need time to transfer and process data to the cloud. Usually, the NILM systems’ working
flow works by transferring hourly power measurement segments from the metering device
to a cloud database and from there to the algorithm, which further reduces the time
efficiency of the approach.

NILM methods, either heuristic-based or DL based, either supervised or unsupervised,
require processing lots of data and computational resources for training and inference.
The open challenge in the direction of state change event detection using neural NILM is
efficiently using the available resources to solve the task in a resource and cost-effectively.
Edge-based NILM methods that use compressed or light models [69], trim the feature
space [70], and employ hardware-based implementations on FPGAs. Other MCUs [71,72]
seem to be a viable solution toward distributed NILM. The main restriction of edge-based
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NILM implementations is that their models are only used for inference and not for learning,
which means that either the models are re-trained on the cloud or trained only once and
never adapt to changes in the household appliance load. In the former case, data must be
sent to the cloud for training, thus increasing the risk of privacy exposures. In the latter
case, when a new appliance is added to the household inventory or when devices are
moved or combined, the model may fail to adapt to the changes.

It is unarguable that adopting FL could address some of the previously presented gaps.
Nonetheless, its application in the NILM industry still is in its infancy, and many aspects
are yet to address, including (i) disaggregation performance, (ii) the nonavailability of
appliance-level data, and (iii) security aspects. In regard to the disaggregation performance,
the fact that local energy datasets of different clients are not identically distributed (i.e., not
drawn from the same data distribution [46]) remains a major obstacle to achieving state-of-
the-art performance compared to centrally trained models. The reason behind this issue is
consumers’ heterogeneous routines reflecting directly on their energy consumption [11]. A
careful look at the literature of FL [45–47] would reveal several techniques that can help
mitigate this effect, including robust aggregation algorithms and clustering of the clients.
While the first was only investigated in [53] with a limited experimental setup, the second
technique has not been covered in the existing literature. Future work could investigate
the adoption of hierarchical aggregation schemes leveraging the clustering of clients with
similar load profiles to enhance the disaggregation performance. Furthermore, scholars
have given little attention to the effect of local training iterations on disaggregation and the
computational resources of edge devices.

Considering the nonavailability of sub-metered data in households, a handful subset
of clients could be chosen on a voluntary basis to contribute to the training. Despite the fact
that the previous solution is viable, it could induce high costs and maintenance require-
ments. Furthermore, ground truth data are commonly only available for specific appliances
(e.g., fridge, washing machine) attached to a smart plug. However, other appliances, such
as HVAC systems, are more energy-consuming and would be more interesting to identify.
In this case, a more straightforward solution would consist of adopting a semi-supervised
learning paradigm leveraging publicly available energy datasets to build a pre-trained
model that will be refined using unlabelled local energy datasets of the clients, thus offering
a compromise between cloud-based and federated NILM algorithms. Moreover, it is widely
acknowledged that standard FL schemes [46] are highly sensitive to data injection attacks.
A study in this respect was conducted in [73] for the case of load disaggregation. The study
revealed significant evidence of the vulnerability of federated load disaggregation where
the operational states of appliances can easily be deduced and thus the daily activity. The
adoption of blockchain technology is an up-and-coming solution in this regard. Yet, little
to no attention was given to this aspect in related work.

Despite these limitations, federated NILM can be a prominent solution that combines
the merits of edge-based model training and collaborative training through model exchange.
However, we highlight that the nonavailability of suitable toolkits remains a major obstacle
in this regard. More precisely, NILM toolkits fall short in keeping up with on-the-point
technologies and frameworks [21], including FL. In addressing this gap, we suggest an
extension of the most recent NILM toolkit Deep-NILMtk [21], with a federated trainer fully
compatible with NILMtk and seq2point models implemented in the toolkit, that is, three
baselines and the UNET-NILM model [74]. Our goal is to provide NILM scholars with a tool
that would facilitate experimentation with different aspects and scenarios of FL. However,
further efforts are also required (e.g., implementing different aggregation algorithms).

9. Conclusions

The current study provided a meta-analysis of load disaggregation intending to ad-
dress three main research questions. The first one concerns the available taxonomies, where
our analysis demonstrated that two main taxonomies exist for neural NILM:
(i) based on features and (ii) based on the learning algorithm, considered a subclass of
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the first one. As far as NILM concepts are considered, we identify that some concepts
were more investigated in recent reviews, including feature extraction, learning algorithms,
and evaluation setups. Preprocessing and postprocessing techniques, along with FL and
computing platforms, received less attention. A main limitation of this first part is that
all the findings are highly related to the set of selected systematic reviews. Consequently,
we provided an overview of federated NILM approaches in the second part. Among
FL aspects that were investigated in the scope of load disaggregation, the non-IIDness
nature of energy data, the aggregation algorithms, and differential privacy were among
the most frequent. As far as the aggregation performance is considered, federated load
disaggregation provided acceptable results. Yet, they remain relatively low compared to
values reported in quantitative analysis of recent NILM reviews. The non-IIDness of the
data remains the main challenge in this regard.

To further investigate other aspects of FL, the current manuscript presented a case
study considering different buildings of the REFIT data set. Even though limited, the results
and the findings obtained from the simulation study demonstrate promising results for
efficiently exploiting resources available on the edge while delivering acceptable disaggre-
gation results on both seen and unseen buildings. Finally, considering both centralized and
FL approaches, a summary of the main challenges yet to be addressed in NILM research
was presented.
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