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Abstract: This paper presents a novel three-phase transmission line model for electromagnetic
transient simulations that are executed directly within the time domain. This model relies on
distributed and frequency-dependent parameters, as well as employs modal transformation for
its implementation. The single-phase model of the exact equivalent π-circuit is utilized for each
propagation mode. This model combines discrete components, such as resistors, inductors, and
capacitors, to accurately emulate the transmission line behavior via linear circuit elements. This
model can be seamlessly integrated into various electrical circuit simulation software, thus allowing
easy utilization and incorporating time-varying elements to analyze transmission lines. The JMarti
model, which comes by default in the Alternative Transient Program, and the numerical Laplace
transform method implemented in MATLAB were utilized to validate the proposed solution across
various scenarios. An advantage of this model is its independence from the prior calculation of travel
time and its exemption from convolutions, inverse Laplace transforms, and Fourier transforms, thus
streamlining the simulation process.

Keywords: electromagnetic transients; transmission line model; transposed line; linear circuit
elements; time-domain analysis; vector fitting

1. Introduction

Multiconductor transmission line (MTL) models used in simulating electromagnetic
transients must consider the electromagnetic coupling among the phases to accurately cal-
culate voltages and currents along the transmission line (TL). In this context, two methods
are widely used for solving TL equations: the first method involves direct calculations in
the phase domain, while the second method performs calculations in the modal domain.

When calculations are performed directly in the phase domain, the universal line
model (ULM) emerges as the predominant representation [1]. The ULM considers that the
line parameters are distributed along the distance. In addition, it considers the frequency-
dependent effect, that is, the skin effect in the conductors and earth is considered when
calculating the longitudinal parameters of the TL. The ULM synthesizes a TL through
its characteristic admittance matrix Yc and through its propagation function matrix H. It
then transforms both matrices into rational functions to obtain its solution in the time
domain using recursive methods. The accuracy of ULM also depends on the previously
calculated travel times used to approximate the rational functions of the propagation matrix
H [2]. Such travel times are usually obtained based on the minimum-phase method of
identification [3].

In TL models, where the calculations are performed in the modal domain, the diverse
phases of the MTL are represented in the modal domain by n propagation modes [4,5]. Each
of these modes behave as a single-phase TL. Notably, no mutual parameters exist between
these propagation modes in the modal domain. The employment of modal transformation
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permits the utilization of single-phase models to compute currents and voltages within
MTLs. This approach widens the array of the available TL models suitable for simulating
electromagnetic transients. It also paves the way for developing new single-phase models
that are explicitly tailored for MTLs.

To obtain precise responses for voltages and currents, the calculation of modal transfor-
mation must be performed for each frequency. Numerous algorithms have been proposed
for computing modal transformation matrices in the literature. These include the New-
ton–Raphson (NR) method [6], the Schur–Cholesky approach [4], sequential quadratic
programming techniques [7], and the Levenberg–Marquardt algorithm [8]. To avoid ar-
tificial mode switching, especially when dealing with non-transposed TLs [6], the NR
algorithm is commonly employed. The NR algorithm features a seamless variation of eigen-
vectors across frequencies. This advancement significantly enhances transient responses
when compared to other methodologies. For the transient analysis in the time domain,
the transformation of the results from the frequency domain to the time domain can be per-
formed using inverse Laplace or Fourier transforms [9]. Currently, the most used method
in the literature is the numerical Laplace transform (NLT), which was described in [10].
The use of the NLT method is a very popular choice for validating various models of elec-
trical networks [11], such as models of cables and overhead lines [12], power transformer
models [13], and power electronic converter models [11]. Nonetheless, the NLT method is
only applicable to small systems of power, thus limiting its utilization for examining the
interactions within larger power grids.

Although the combination of NR and NLT offers excellent accuracy for the TLs, the
voltage and current calculations performed in the frequency domain cannot be conducted
with the presence of time-varying elements, such as in fault simulation or circuit breaker
switching [14]. Such elements have well-known characteristics in the time domain but do
not have their representation in the frequency domain, thus making it difficult to simulate
the transient response [15].

Among the MTL models for obtaining the transient response developed directly in
the time domain, some of the solutions that rely on modal transformation are, for example,
the Bergeron model, the π circuit cascade model, and mainly the JMarti model; these are
all implemented in transient electromagnetic (EMT) programs such as the Alternative
Transient Program (ATP). The use of the JMarti model is very popular for validating new
TL models, as shown in [5,16,17].

The model that uses the “nominal π-circuit” of the TL comes from an approximation
of the exact equivalent π-circuit for short- and medium-length lines [18]. Because it is
formed by a resistor, an inductor, and two capacitors, the nominal π-circuit is simple to
implement in circuit simulation software since it allows for the analyzing of the transient
response in the time domain for phenomena with frequency ranges on the order of a few
hertz. For phenomena with frequency ranges on the order of kilohertz, it is necessary to
use a cascade connection of nominal π-circuits. This solution is often employed when
there is no need to account for frequency influence. However, for phenomena where it
is necessary to consider frequency influences, as proposed by the authors in [19], the in-
clusion of frequency dependence in cascaded π-circuits is recommended. The process is
performed by employing a rational approximation of the longitudinal parameters of the
line. The synthesis of such parameters allows for obtaining an equivalent electric circuit
for the longitudinal parameters of the line while also incorporating the frequency effect.
Nonetheless, the cascaded connection of π-circuits is an approximation as it overlooks the
distributed of the line parameters, as noted in [20].

Some of the TL models that are developed directly in the time domain are based on
the method of characteristics [21]. The models proposed by J. Marti [22] and Bergeron [23]
are among them, thus bringing significant advantages over cascaded π-circuits when
incorporating the distributed parameters per unit length (pul) of the line.

Bergeron’s model was previously used to solve hydraulic systems, but one can apply it
to calculating voltages and currents in TLs when using a proper analogy. The original form
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of Bergeron’s model does not account for the frequency dependence in the longitudinal
parameters of the line. Recently, in [23], the frequency dependence was incorporated into
Bergeron’s model by the authors. The proposal is grounded in the impedance synthesis Z,
which is expressed using circuit elements as a rational approximation.

J. Marti’s model, which incorporates the frequency dependence within line parameters,
is one of the most frequently utilized representations. Characterized by the use of a
characteristic impedance Zc and the propagation function H, the model avoids the necessity
of having to use the inverse Laplace transform. For both functions, it is possible to perform
their respective rational approximations, thus enabling the simulation in the time domain
through the recursive convolution method.

In general, a rational approximation can be conducted using the Bode method, as de-
scribed in [24], and it is similar to the approach taken in ATP software. Alternatively, it can
be accomplished using the vector fitting technique, as proposed in [25,26], or via techniques
based on Green’s functions, as suggested in [27]. To perform the rational approximation
of H, J. Marti’s model, one must associate a time delay τ to the H function; this refers to
the wave propagation time, and it is also used in Bergeron’s and ULM models. However,
this dependency on the computation of the time delay τ can impact the accuracy of the
transient response, as highlighted in [28].

In this context, the authors in [29] presented a new single-phase TL model that was
developed directly in the time domain, which considers the TL’s pul parameters and the
frequency effect. The model synthesizes the exact equivalent π-circuit of the TL using
an electrical circuit composed of an association of discrete elements (resistors, inductors,
and capacitors). The equivalent π-circuit of the TL is widely used in the literature and
is sometimes called the exact equivalent π-circuit [30]. The term “exact” denotes such a
representation performed in the frequency domain without the use of approximations [31].
It is also known as the “long π” model as it represents a long-distance line using a single
π-circuit [32], or simply an π-circuit equivalent representation [33]. In this way, by using
the equivalent π-circuit directly in the time domain, the authors in [29] overcame some
of the limitations of the aforementioned models. This is because the proposed approach
allows for the simulation of electromagnetic transients directly in the time domain, and
this is achieved without the prior calculation of the delay time τ, as well as without the use
of inverse Laplace or Fourier transforms.

However, single-phase TL models do not address practical issues, as they are not
in power systems. On the contrary, three-phase TL models are necessary to make them
useful and practical for engineers. The three-phase lines are predominantly designed to
function under balanced conditions, and to achieve this condition, transposing TLs are
commonly employed.

Given the above, the primary goal of this paper is to use the model developed in [29] to
represent the symmetrical and ideally transposed three-phase TLs. The procedure is carried
out using modal transformation, which allows for the decomposing of the three-phase
TL into three propagation modes, each of which behave as an independent single-phase
line [34]. Thus, an exact equivalent π-circuit formed by circuit elements is implemented
for each propagation mode. These propagation modes are connected with an arrangement
of ideal transformers, which represent the modal transformation, thus resulting in the
novel TL model. In order to validate the model, the proposed model is implemented
within ATP/ATPDraw. In addition, comparisons are made with the JMarti model, which
comes by default within the ATP software (version 7.0p7), as well as with the NLT method
implemented in MATLAB. This comparison encompasses various scenarios involving low-
and high-frequency transients.

The remainder of this paper is organized as follows. Section 2 presents a synthesis of
the admittance curves that constitute the equivalent π-circuit of the TL using circuit ele-
ments. Section 3 describes the modal transformation applied in a three-phase TL. Section 4
presents equations for the admittance curves of Yπ and Yzπ in the frequency domain for the
three propagation modes. Section 5 describes the procedure for implementing the proposed
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model in circuit simulation programs such as ATP. Section 6 discusses some of the sim-
ulation results. Thus, the admittance curves Yπ and Yzπ are obtained as a function of the
frequency for a three-phase TL. Their behavior as a function of the number of poles used in
the rational approximation is also investigated. The simulation results in the time domain
consider low-frequency transients during the line energization, and the high-frequency
transient results from the lighting occurring at the sending end are also presented. Section 7
presents the main finding of the study and possible future work.

2. Exact Equivalent π-Circuit of a TL Formed by Circuit Elements

The circuit illustrated in Figure 1 represents the exact equivalent π-circuit of a TL. In
this context, terminals A and B represent the sending and receiving of the line. The parame-
ters IA and IB are the longitudinal currents, while the transverse voltages at these terminals
are designated as VA and VB. The exact equivalent π-circuit can be characterized by a
series admittance, which is denoted as Yzπ . This admittance is linked between terminals
A and B, along with a shunt admittance, and is designated as Yπ , which is connected to
both terminals. Expressions (1) and (2) correspond to the admittance curves of Yzπ and Yπ ,
respectively.

A B

VB

+

-

VA

+

-

IA IB 

Soil

Yπ

Yzπ

Transmission Line

Yπ

Figure 1. Representation of the transmission line through the exact equivalent π-circuit.

Yzπ(ω) =
1

Zc(ω)sinh(γ(ω)d)
(1)

Yπ(ω) =
tanh(γ(ω)d/2)

Zc(ω)
(2)

where Zc(ω) and γ(ω) are the characteristic impedance and the propagation constant,
as calculated from (3) and (4), respectively [22].

Zc(ω) =

√
Z(ω)

Y(ω)
(3)

γ(ω) =
√

Z(ω)Y(ω) (4)

In Equations (3) and (4), Z(ω) and Y(ω) represent the longitudinal impedance and
transverse admittance of the line in pul, where ω = 2π f is the angular frequency in rad/s,
and f is the frequency in Hz.

Z(ω) = R(ω) + jωL(ω) (5)

Y(ω) = G(ω) + jωC(ω) (6)

It is observed that the exact equivalent π-circuit represents the single-phase TL while
incorporating the frequency effect, that is, by considering the skin and soil effects on the
conductor. However, this model can only be represented in the frequency domain [35].
Its representation in the time domain was recently proposed in [29]. This approach relies
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on the synthesis of the admittance curves of Yzπ and Yπ of the equivalent π-circuit, as
shown in Figure 1; furthermore, this is achieved using only passive elements like resistors,
inductors, and capacitors. The method consists of approximating the frequency domain
admittance curves of Yzπ and Yπ using rational functions through the utilization of the
vector fitting (VF) algorithm [36–38]. In the algorithm, the general rational function F(s) in
Equation (7) is employed to represent the frequency domain admittance curves of Yzπ and
Yπ , as explained in [39,40].

F(s) =
Np

∑
j=1

(
rj

s− pj

)
+ D + E s (7)

where rj and pj denote the j-th residue and j-th pole, respectively, and with Np representing
the number of poles and residues in the rational function. The term s corresponds to
the complex angular frequency, while D and E are real coefficients, both of which are
considered null in this study. The residues and poles can be either real or complex numbers,
and they can result in two distinct types of functions, which form the partial fractions
outlined in the general Equation (7). The rational function formed of real numbers is
represented as Yr(s) in (8), and it corresponds to a series resistor–inductor (RL) circuit,
as illustrated in Figure 2a. On the other hand, the other rational function is constructed
using a pair of conjugate complex numbers, denoted as Yc(s) in (9), and it corresponds to
an electrical circuit, as shown in Figure 2b [40].

Yr(s) =
rk

s− pk
(8)

Yc(s) =
rm

s− pm
+

r∗m
s− p∗m

(9)

LkRk

(a)

Rm1 Lm

Rm2

 Cm

(b)

Figure 2. Representation of rational function equivalents: (a) real pole; (b) complex poles.

Expressions (10) and (11) were used to calculate the elements Rk and Lk of the equiva-
lent RL circuit, as shown in Figure 2a. In turn, the Expressions (12) to (15) were used for the
calculation of elements Rm1, Rm2, Lm, and Cm of the equivalent RLC circuit, as shown in
Figure 2b, respectively [41].

Rk =
pk
rk

(10)

Lk =
1
rk

(11)

Lm =
1

rm + r∗m
(12)

Rm1 = − pmrm + p∗mr∗m
2rm2 (13)

Cm =
(rm + r∗m)2

rmr∗m(pm − p∗m)2 (14)
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Rm2 =
rm + r∗m

C(pmr∗m + rm p∗m)
(15)

For each partial fraction that composes Equation (7), an equivalent electrical circuit
branch was obtained. Figure 3 shows the connection of the RL and RLC branches,which
are associated in parallel and synthesize the generic admittance that represents the rational
function F(s).

Real Poles

Complex Poles
u

Rm1 Lm

Rm2

 Cm

LkRk

v

Figure 3. Representation of a circuit for a generic admittance representing a rational function.

The connections of terminals u and v for the admittance curves of Yzπ and Yπ in
representing the equivalent π-circuit of the TL are illustrated in Figure 4.

Yzπ
uz vz

uy

vy

uy

vy

Transmission Line

A B

Soil

Yπ Yπ

Figure 4. Representation of a transmission line through circuits that represent the admittance.

3. Representation of a Perfectly Transposed TL in the Mode Domain

We derived current and voltage equations for a three-phase TL, as shown in Figure 5,
while considering the electromagnetic coupling among the phases; this is commonly
achieved by expressing the line within the modal domain. In this context, the three-phase
TL is represented through its three propagation modes, each of which behave like a single-
phase TL, as shown in Figure 6.

A B
Transmission line

IBf3(t)

IBf2(t)

IBf1(t)

IAf3(t)

IAf2(t)

IAf1(t)

VAf3(t)

VAf2(t)

VAf1(t)

VBf3(t)

VBf2(t)

VBf1(t)

+

-

+

-

+

-

+

- - -

+

+
phase 1

phase 2

phase 3

Figure 5. Representation of the three-phase transmission line.
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Propagation mode α A B

+

-

+

-

Propagation mode βA B

+

-

+

-

Propagation mode 0 A B

+

-

+

-

Figure 6. Propagation modes of the three-phase transmission line.

The TL shown in Figure 5, when considered ideally transposed, is characterized by
its longitudinal impedance matrix Z and its transverse admittance matrix Y , which are
written as shown in (16).

Z =

Zp Zm Zm
Zm Zp Zm
Zm Zm Zp

; Y =

Yp Ym Ym
Ym Yp Ym
Ym Ym Yp

 (16)

The conversion from the phase domain to the modal domain is accomplished through
a modal transformation matrix Tv. This matrix’s columns consist of the eigenvectors related
to the eigenvalues that result from the matrix product ZY , as described in [6]. Consequently,
the matrices Z and Y are converted into the modal domain using Equation (17) [42,43].

Zmod = Tv
−1 Z Tv

−T ; Ymod = Tv
−1 Y Tv

−T (17)

In the context of a three-phase and ideally transposed TL, the Clarke matrix expressed
in (18) can be used as the matrix Tv [44].

Tv =


2√
6

0 1√
3

− 1√
3

1√
2

1√
3

− 1√
6
− 1√

2
1√
3

 (18)

By substituting the matrix Tv into Equation (17), one can derive the longitudinal
impedance Zmod and the transverse admittance of the line Ymod, which are both represented
in the modal domain, as expressed in (19).

Zmod =

Zα 0 0
0 Zβ 0
0 0 Z0

; Ymod =

Yα 0 0
0 Yβ 0
0 0 Y0

 (19)

Hence, with the application of the Clarke matrix (18), both matrices Z and Y are
decomposed into their precise modes. This approach considers the frequency influence on
the TL parameters, regardless of the line’s geometry [4].

4. Representation of Propagation Modes Using the Exact Equivalent π Circuit

In order to use the exact equivalent π-circuit in the representation of three-phase
lines, the TL represented in the phase domain, as shown in Figure 5, must be decomposed
into three propagation modes, that is, α, β, and zero, according to Figure 6. For each
propagation mode, an admittance of Yzπ and an admittance of Yπ are obtained, which
will compose the exact equivalent π-circuit of the respective mode, as shown in Figure 7.
The admittance of Yzπ for the modes α, β, and zero are obtained from (20), (21), and (22),
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respectively. The admittance of Yπ for modes α, β, and zero are obtained from (23), (24),
and (25), respectively.

zπα

πα VBαπα

zπβ

πβ VBβπβ

zπ0

π0 VB0π0

Figure 7. Representation of the propagation modes through exact equivalent π-circuits.

Yzπα(ω) =
1

Zcα(ω)sinh(γα(ω)d)
(20)

Yzπβ(ω) =
1

Zcβ(ω)sinh(γβ(ω)d)
(21)

Yzπ0(ω) =
1

Zc0(ω)sinh(γ0(ω)d)
(22)

Yπα(ω) =
tanh(γα(ω)d/2)

Zcα(ω)
(23)

Yπβ(ω) =
tanh(γβ(ω)d/2)

Zcβ(ω)
(24)

Yπ0(ω) =
tanh(γ0(ω)d/2)

Zc0(ω)
(25)

All of the admittance curves of Yzπ and Yπ for the three propagation modes are
synthesized by circuit elements, and this is achieved using the technique described in
Section 2. Thus, one can represent each propagation mode by an exact equivalent π-circuit,
which is formed by circuit elements.

5. Methodology for the Implementation of a Proposed Model in ATP Software

In the implementation of the three-phase model in circuit simulation programs such
as ATP, the transformation of voltages and currents from the phase domain to the modal
one, and vice-versa, is performed with the use of an arrangement of ideal transformers, as
described in [5]. In this method, each ideal transformer’s turns ratio and polarity represent
a Clarke matrix component in Equation (18). Figure 8 shows the generic implementation of
the three-phase model in ATPDraw software (version 7.0p7).

The ideal transformers connected at end A result in the phase-to-mode and mode-to-
phase transformations at the sending end of the line. In the same way, the ideal transformers
connected at end B perform the mode-to-phase and phase-to-mode transformations at the
receiving end. For each propagation mode of the TL, the circuits formed by the admittance
curves of Yzπ and Yπ can be implemented in ATPDraw software by manually inserting the
RLC circuits, or by creating a routine to automate and generate the RLC circuits within the
LIB component, as shown in [29,45]. In this work, the LIB component was used.
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Thus, the simulations of the three-phase model were carried out entirely in circuit
simulation programs, in which voltages and currents were simultaneously available in the
phase and modal domains.

Phase 1

Phase 2

Phase 3
CLARKE´S

MATRIX

A B

propagation mode α

Yzπα

Yπα Yπα

A B

propagation mode β

Yzπβ

Yπβ Yπβ

A B

propagation mode 0

Yzπ0

Yπ0 Yπ0

Phase 1

Phase 2

Phase 3
CLARKE´S

MATRIX

Figure 8. Implementation of proposed model in the ATPDraw software.

6. Results and Discussion

The simulation results were obtained by considering a TL with the profile shown in
Figure 9. Each phase (1, 2, and 3) comprised four conductors, each with a radius of 1.021 cm,
a spacing of 0.40 m, and a resistivity of 0.0799 Ω/km. The soil resistivity was assumed to
be 1000 Ω·m. Longitudinal parameters were calculated by considering the soil and skin
effects, with frequency values varying between 0.1 Hz and 100 kHz.

0.
4 

m

0.4 m

24.4 m28 m

Height

9.27 m

Phase 1

Phase 2 Phase 3

ρsoil = 1000  (Ω.m)

Grosbeak

r = 1.021 cm

Figure 9. Perfectly transposed three-phase TL geometry.
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6.1. Rational Approximation of the Admittance Curves of Yzπ and Yπ in the Propagation Modes

The admittance curves of Yzπ and Yπ for the three propagation modes were obtained
for a TL of 400 km. The number of poles used to approximate the two admittance curves
and their respective propagation modes are shown in Table 1.

Table 1. The number of poles for the settings of Yzπ and Yπ for the propagation modes.

Poles
Modes α and β Mode 0

Settings Yzπ Yπ Yzπ Yπ

1 30 20 60 50
2 100 80 60 50
3 400 260 60 50
4 1200 570 60 50

Figure 10 shows the magnitude and phase of the exact admittance of Yzπ for the
modes α and β, which correspond to Yzπα and Yzπβ, respectively, as well as with the curves
that represent their approximate functions with 30, 100, 400, and 1200 poles. According
to Table 1, the numbers of poles were chosen randomly but in ascending order (up to
1200 poles), whereas the curve was adjusted until the end of the resonance peaks. It was
observed that the curve with 400 poles overlapped with the reference value over a wide
range of frequencies. In turn, it did not match the reference for frequencies at which the
magnitude of admittance Yzπα was already more attenuated.

Frequency (Hz)
100 102 104 106

|Y
zπ

| (
S)

10-4

10-3

10-2

|Yzπ|
30 Poles
100 Poles
400 Poles
1200 Poles

(a)

Frequency (Hz)
100 102 104 106

Ph
as

e 
(d

eg
re

e)

-200

-100

0

100

200
Yzπ

30 Poles
100 Poles
400 Poles
1200 Poles

(b)

Figure 10. Admittance Yzπ of the α and β modes: (a) Magnitude. (b) Phase.

The zero-mode admittance Yzπ0 presented few resonance peaks. Consequently, the num-
ber of poles used to perform the rational approximation was much smaller, as seen in
Figure 11. This plot shows the magnitude and phase for the zero mode of the exact admit-
tance Yzπ0, as well as for the curves of their approximate functions with 15, 30, and 60 poles.

Figure 12 shows the magnitude and phase of the exact admittance curves of Yπα and
Yπβ for the α and β propagation modes, as well as for the curves of their approximate
functions with 20, 80, 260, 570, and 1500 poles. The numbers of poles were chosen according
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to those that could adjust the admittance of Yπ , and the number chosen was the amount
necessary to adjust Yπ to the same frequency ranges as the admittance of Yzπ . It was
observed that the adjusted curve with 1500 poles overlapped with the reference value until
the end of the resonance peaks.

Frequency (Hz)
100 101 102 103 104

|Y
π

| (
S)

10-4

10-2

|Yzπ|
15 Poles
30 Poles
60 Poles

(a)

Frequency (Hz)
100 101 102 103 104

Ph
as

e 
(d

eg
re

e)

-150

-100

-50

0

50

100

150

Yzπ
15 Poles
30 Poles
60 Poles

(b)

Figure 11. Admittance Yzπ of the zero mode: (a) Magnitude. (b) Phase.

Frequency (Hz)
100 102 104 106

|Y
π

| (
S)

10-6

10-4

10-2

|Yπα|
20 Poles
80 Poles
260 Poles
570 Poles
1500 Poles

(a)

Frequency (Hz)
100 102 104 106

Ph
as

e 
(d

eg
re

e)

-50

0

50

Yπα

20 Poles
80 Poles
260 Poles
570 Poles
1500 Poles

(b)

Figure 12. Admittance Yπ of the α and β modes: (a) Magnitude. (b) Phase.

Figure 13 shows the magnitude and phase of the exact admittance for the zero
mode, Yπ0, as well as for the curves of its functions that were approximated with 10,
20, and 50 poles. It was observed that the admittance of Yπ0 required a much smaller
number of poles for the approximation, as did the zero-mode admittance of Yzπ0.
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Figure 13. Admittance Yπ of the zero mode: (a) Magnitude. (b) Phase.

6.2. Time-Domain Analysis

The three-phase TL formed by circuit elements was implemented and simulated
within the ATP/ATPDraw environment to analyze the transients in the time domain. From
the approximate admittance curves of the 400 km three-phase TL defined in Section 6.1,
the equivalent π-circuits were formed for each propagation mode, and they were synthe-
sized with the number of poles shown in Table 1.

The simulation in ATP/ATPDraw was performed using a notebook with an Intel®

i7-3630QM processor (Intel, Sao Paulo, Brazil) and 4 GB of random access memory (RAM)
while always considering a time step ∆t = 0.1 µs. Despite the huge amount of circuit
elements, the simulation time for setting 3 (400 poles) was around one minute, whereas for
setting 4 (1200 poles) it was around three minutes. Settings 1 and 2 took around 20 s and
45 s, respectively.

6.2.1. Low-Frequency Analysis

The low-frequency transient simulations were initiated by energizing the line with
a DC voltage source of 1 pu. When a switch connected to the sending end of the TL was
closed at t = 0 s, only phase 1 was connected, while phases 2 and 3 were short-circuited.
The receiving end of the line was left open, as illustrated in Figure 14. To assess the results
obtained with the proposed model, reference values were calculated utilizing the NLT.

A Bt=0 s

1 p.u. +
-

phase 1

phase 2

phase 3

VBf3(t)

VBf2(t)

VBf1(t)

α

Transmission line

+

-

+

-

+

-

Figure 14. DC voltage source connected to phase 1.
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Figure 15 shows the voltages at the receiving ends, specifically VBα(t) and VBβ(t) for the
α and β modes in the time domain, respectively. In both cases, the reference voltage was
computed using the NLT, and it was then compared with the corresponding voltage, VBβ(t),
which was obtained from the ATP/ATPDraw software. The voltages in the β mode, that is,
VBβ(t) were zero.
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Figure 15. Open-circuit voltages at the receiving end of modes α and β: (a) transient up to t = 60 ms;
(b) first reflection wave.

Despite the significant difference in the number of poles between settings 1 and 4,
Figure 15 evidences that the difference between the voltage curves for those two settings in
the α mode was insignificant.

Figure 16 shows the voltage at the receiving end of the zero mode in the time domain
that corresponded to VB0(t), as well as to the voltages obtained by simulating the novel
model in ATP/ATPDraw. According to Table 1, all settings have the same number of poles,
thus leading to identical results. The same number of poles was used because, with only
a few poles, the settings achieved an excellent result during the transient analysis. As such,
this strategy was adopted in the study to analyze only the influence of the α and β modes
on the voltage results in the phase domain, and this was performed because the number of
poles used in these propagation modes was much larger.
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Figure 16. Open-circuit voltages at the receiving end of the zero mode.

Figures 17 and 18 show the voltages at the receiving end in the phase domain. From
the analysis of the curves, it is possible to observe that, for setting 1, the distortions in the
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phase domain are not so severe, despite the small number of poles compared to setting 4.
Setting 3 already presents an excellent result for low-frequency transients. It was observed
that the voltages VB f 1(t) and VB f 2(t) did not have distortions in the case of setting 4; this
was also especially the case for setting 3, which was not adjusted until the end of the
resonance peaks for the admittance of Yzπ . The curve obtained with setting 3 was found to
be identical to that of setting 4 and the reference curve.
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Figure 17. Open-circuit voltage at the receiving end of phase 1 during an energization: (a) transient
behavior up to t = 16 ms; (b) occurrence of the first reflection wave.
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Figure 18. Open-circuit voltages at the receiving end of phases 2 and 3 during an energization:
(a) transient behavior up to t = 16 ms; (b) occurrence of the first reflection wave.
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6.2.2. High-Frequency Analysis

The electromagnetic transients at higher frequencies result by applying an atmospheric
impulse to phase 1 at the sending end of the TL. In contrast, phases 2 and 3 remain short-
circuited, and the receiving end of the line is left open, as depicted in Figure 19.

A B
phase 1

phase 2

phase 3
i(t)

VBf3(t)

VBf2(t)

VBf1(t)

+

-

+

-

+

-

Transmission line

Figure 19. Open-circuited TL with an atmospheric impulse applied at the sending end of phase 1.

Lightning is characterized by a current source that represents a double exponential
function with an amplitude of 1 kA, a front time of 1.20 µs, and a tail time of 50 µs [46].
When considering a three-phase TL of 400 km, the equivalent π-circuits were synthesized
with the number of poles according to Table 1.

J. Marti’s model was chosen as a reference benchmark for all the simulation results
in ATP/ATPDraw. Figure 20 shows the voltage at the receiving end at phase 1. Figure 21
represents the voltages at the receiving ends of phases 2 and 3, which had the same behavior.
The curve corresponding to setting 1 denoted the behavior of a model that used only a few
poles, and which, consequently, had a distorted response.
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Figure 20. Open-circuit voltage at the receiving end of phase 1 during an atmospheric impulse event:
(a) transient behavior up to t = 16 ms; (b) occurrence of the first reflection wave.

The difference between the other settings is easier to observe in Figures 20b and 21b.
Even with a much smaller number of poles, the curve for Setting 2 produced a very
satisfactory result. The curves for settings 3 and 4 overlapped with the reference value.
This behavior evidences that, with the number of poles used in setting 3, it is already



Energies 2023, 16, 7192 16 of 19

possible to obtain an excellent high-frequency response for the three-phase TL when using
the proposed model.
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Figure 21. Open-circuit voltage at the receiving end of phases 2 and 3 during an atmospheric impulse
event: (a) transient behavior up to t = 16 ms; (b) occurrence of the first reflection wave.

7. Conclusions

This paper presents a novel model for representing the perfectly transposed three-
phase transmission lines in the time domain. The model, developed in the modal domain,
was obtained from synthesizing the exact equivalent π-circuit for each propagation mode,
which was achieved using a combination of discrete passive elements. The model considers
the distributed parameters of the transmission line and considers the frequency dependence
in the line. In other words, the calculation of longitudinal parameters incorporates skin
effects and soil influences. Moreover, in addition to considering constant soil parameters,
the proposed model allows for the inclusion of frequency-dependent soil electrical parame-
ters. The synthesis process employs the vector fitting (VF) technique to obtain the poles
and zeros of the rational functions that approximate the admittance curves of Yzπ and Yπ ,
which are of the respective exact, equivalent π-circuits.

The main disadvantage of the proposed model is the presence of numerous resonance
peaks in propagation modes α and β, which necessitates a high number of poles and,
consequently, a larger number of circuit elements for synthesizing the equivalent π-circuit.
Nevertheless, the required simulation time interval in ATP/ATPDraw remains manageable.

The proposed model was tested by considering electromagnetic transients composed
of a wide range of frequencies, thus leading to accurate results. By modeling the transmis-
sion line using only ideal transformers and linear circuit elements, one can implement the
model in most electrical circuit simulation software, and this is achieved using time-varying
elements to simulate the transmission lines.

In summary, the novel approach incorporates the essential characteristics of the exact,
equivalent π-circuit by accounting for distributed and frequency-dependent parameters.
The primary advantage lies in the ability to simulate electromagnetic transients directly in
the time domain, thus obviating the need for calculating the propagation time τ in advance,
and thus not requiring a resort to complex mathematical operations such as convolutions,
inverse Laplace transforms, or Fourier transforms.
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Future work will include optimizing the simultaneous adjustment of the admittance
curves of Yzπ and Yzπ through a more in-depth study, all the while considering the max-
imum frequencies of adjustment by aiming at reducing the number of poles and, con-
sequently, the number of circuit elements used in the model. Additionally, there is an
intention to extend the model’s applicability to encompass non-transposed and asymmetric
transmission lines. Finally, the plan is to compare the proposed model with experimental
results, as was presented in [17].
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