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Abstract: An accurate power state is the basis of the normal functioning of the smart grid. However,
false data injection attacks (FDIAs) take advantage of the vulnerability in the bad data detection
mechanism of the power system to manipulate the process of state estimation. By attacking the
measurements, then affecting the estimated state, FDIAs have become a serious hidden danger that
affects the security and stable operation of the power system. To address the bad data detection
vulnerability, in this paper, a false data attack detection method based on weighted least squares
(WLS) and an adaptive interpolation extended Kalman filter (AIEKF) is proposed. On the basis of
applying WLS and AIEKF, the Euclidean distance is used to calculate the deviation values of the
two-state estimations to determine whether the current moment is subjected to a false data injection
attack in the power system. Extensive experiments were conducted to simulate an IEEE-14-bus
power system, showing that the adaptive interpolation extended Kalman filter can compensate for
the deficiency in the bad data detection mechanism and successfully detect FDIAs.

Keywords: false data injection attacks; adaptive interpolation extended Kalman filter; state estimation;
Euclidean distance; smart grid

1. Introduction

The modern power system is developing towards intelligence, and plenty of intelligent
devices, such as smart meters and sensors, promote the transformation of the power system
in the modes of power generation, transformation, transmission, and distribution, which
makes the smart grid a typical cyber–physical system (CPS) [1,2]. In a smart grid, the
supervisory control and data acquisition (SCADA) system collects and analyzes real-time
data from field devices across the network. Finally, the SCADA reports back to the control
center, which then makes adjustments to the power generation and distribution of the grid
based on this information [3].

The susceptibility of the power cyber–physical system (CPS) to cyber attacks is a result
of the unpredictable nature of sensor data in the perception layer and the unrestricted
communication channels for data exchange [4,5]. Among the many types of cyber attacks,
attacks against smart grids and industrial control systems are the most common; the
damage caused to the system cannot be underestimated, seriously affecting the normal
production activities of society. For example, in 2010, the “Stuxnet” virus attack on a
Belarusian enterprise, which caused anomalies in uranium enrichment centrifuges and
generators at the Iranian nuclear power plant, resulted in damage to many pieces of
equipment [6]. In 2015, Black Energy, a cyber virus targeting the power grid, caused power
outages at some Ukrainian power plants, disrupting the power supply to many factories in
the Ivano-Frankivsk region and affecting production [7]. The investigation revealed that
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the incident resulted in the malicious deletion of historical grid measurements stored in the
SCADA, which made recovery extremely difficult.

A false data injection attack (FDIA) is a novel attack method specifically targeting the
integrity of state estimation data in the power CPS [8,9]. The attackers inject false data,
which affects the power flow calculation, control decisions, etc., through smart grid sensors,
controllers, and remote control units to tamper with the original data of the grid. This
situation can potentially result in the malfunction of grid equipment and, in severe cases,
the complete paralysis of the power network, which not only poses a significant threat to
grid security but also carries the potential for substantial economic losses. Figure 1 shows the
structure of a smart grid system and an illustration of an FDIA.

Smart Grid

Electricity Generation

Electricity Transmission

Electricity Distribution

Electricity Consumption

Equipments

Sensors

Meters

Remote Terminals

S

C

A

D

A

Measurements

Acquisition

Energy Management System

Optimal power flow

Automatic Generation Control

Economic Dispatch

Emergency Analysis

State 

Estimation

False 

Measurements

S

C

A

D

A

Misleading 

Instruction

Attacker

Figure 1. Illustration of an FDIA in a smart grid.

Liu et al. [10] first introduced the topic of FDIAs in the literature, where it was
hypothesized that an attacker could access the current configuration information of a
smart grid and manipulate meter or sensor measurements. Such an attack could insert
false data into specific state variables, avoiding detection by current bad data detection
algorithms. Yang et al. [11] delved into the challenge of determining the most effective
attack strategy. This strategy, known as an injection attack strategy, involves selecting a
specific set of meters to manipulate in a way that maximizes the resulting damage. They
not only formalized this problem but also developed efficient algorithms to pinpoint the
ideal set of meters for such attacks. It is important to highlight that even if these attacks are
isolated to specific devices, their impact on the smart grid can be catastrophic due to the
grid’s intricate interconnections. As described by He et al. [12], electricity theft by attackers
by modifying smart meter data has seriously affected utility security. Therefore, many
researchers have devoted themselves to the detection of false data injection attacks in order
to safeguard the security of the smart grid.

When the power system is subjected to malicious false data injection, the state estima-
tion result of the WLS under attack is updated in real time by incorporating an estimation
algorithm of an extended Kalman filter, which has a hysteresis in its state estimation process,
and by observing disparities in the estimation outcomes produced by the two algorithms,
making it possible to detect the FDIA. Meanwhile, to improve the accuracy and reduce the
linearization error of the EKF, the adaptive interpolation strategy is introduced. Therefore,
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in this paper, we propose a detection method based on WLS and AIEKF. Considering that
the two algorithms have different degrees of correspondence to real-time information, the
FDIA can be effectively detected. The main contributions can be summarized as follows:

• Considering the linearization error of the EKF algorithm in state estimation in a power
system, the adaptive interpolation strategy is introduced. The pseudomeasurements
between two consecutive measurements are inserted by linear interpolation to improve
the estimation accuracy.

• We propose a novel FDIA detection method that combines AIEKF and WLS, marking
the first instance of their joint application in this context.

• We conduct many experiments on an IEEE-14-bus power system to demonstrate the
proposed algorithm’s performance in detecting FDIAs. The result shows that the
method can effectively detect FDIAs.

The remainder of the paper is structured as follows. Section 2 provides an overview
of relevant literature pertaining to the detection of FDIAs. Section 3 outlines the system
model employed in this study. In Section 4, we delve into the details of the proposed AIEKF
algorithm. In Section 5, the detection principle is described. The experiments and results
are presented in Section 6. Finally, in Section 7, we present our concluding remarks and
suggest directions for future work. A list of abbreviations and acronyms is provided in
Table 1.

Table 1. A list of abbreviations and acronyms.

Abbreviations and Acronyms Full Name

AIEKF Adaptive interpolation extended Kalman filter

BDD Bad data detection

CPS Cyber–physical system

EMS Energy management system

FDIAs False data injection attacks

LNR Largest normalized residual

PMUs Phase measurement units

RMSE Root mean square error

SCADA Supervisory control and data acquisition

WLS Weighted least squares

2. Related Work

Since the concept of FDIAs was introduced, the issues related to FDIAs have received
a great deal of attention in both academic research and industry. Many scholars have
studied bad data in state estimation and proposed corresponding detection methods for
FDIAs based on their research. Although FDIA detection algorithms differ from each other,
the algorithms can be classified into two categories [13]: model-based algorithms and
data-driven algorithms.

2.1. Model-Based Detection Algorithms

Nowadays, with the increasing degree of interconnection of power systems in smart
grids, the simple use of weighted least squares is no longer applicable, and many vari-
ants have emerged. Moslemi et al. [14] introduced an innovative cyber attack detection
technique based on maximum likelihood estimation. This method capitalizes on the near-
chordal sparsity (NCS) characteristics of the power grid to establish a robust framework
for addressing the corresponding maximum likelihood estimation problem. Furthermore,
they broke down this detection approach into a series of localized maximum likelihood es-
timation problems. This approach not only safeguards privacy but also mitigates potential
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issues. Chen et al. [15] introduced a novel method for detecting FDIAs using kernel density
estimation. This method utilizes the concept of kernel density estimation, which utilizes
historical data to estimate the probability distributions of both measurements and control
commands. Additionally, it calculates confidence intervals for these estimates at a specified
significance level. Zhao et al. [16] proposed a method that employs short-term state predic-
tion in smart grids to detect spurious data injection attacks. This method utilizes real-time
and predicted states to pinpoint potential false data injections by analyzing the differences
between them. By continuously monitoring and comparing the accuracy of short-term state
predictions, this approach enhances the security and resilience of smart grid systems by
improving the detection of malicious attacks. Li et al. [17] proposed a detection method
based on the watermark embedding technique. The method uses a dynamic watermark
embedding technique to embed security-enhancing markers (watermarks) into the grid
measurement data to ensure the integrity and authenticity of the data. Then, the data
embedded with the watermark are processed and detected using the EKF algorithm to
identify possible faulty data insertion attacks. Through the joint application of dynamic
watermarking and EKF, this method can improve the detection capability of smart grid
systems against FDIAs and provide increased security. The above methods cannot be
used alone; they must be used with the help of some determination methods to determine
the existence of FDIAs. Some determination methods are available, such as Euclidean
distance [16,18], maximum normalized residuals [19,20], chi-square testing [18,21], Cumu-
lative sum testing [22,23], Kullback–Leibler distance [14,24], and cumulative error sum of
squares probability density curves [25,26].

2.2. Data-Driven Detection Algorithms

In contrast to detection algorithms that rely on system models, data-driven detection
algorithms operate without the need for system parameters and models. The process
of detecting FDIAs is independent of these factors, and it relies on a large amount of
historical data from the smart grid to speculate on future data [13]. Mahi-Al-Rashid
et al. [27] proposed an innovative approach for countering FDIAs. They employed a
CNN-LSTM-based self-encoder sequence-to-sequence architecture for prediction-assisted
anomaly detection. Additionally, they suggested an adaptive optimal thresholding method
based on consumption patterns to identify unusual behaviors. Yu et al. [28] proposed
an online method for detecting FDIAs that merges wavelet transform with deep neural
networks. This approach involves extracting features from grid sensor data using wavelet
transform and subsequently employing a deep neural network for real-time detection. This
methodology effectively enhances the security and reliability of the smart grid system by
identifying potential attacks as they occur. Wang et al. [29] combined Kalman filtering with
recurrent neural networks. The actual state of the grid was first estimated using Kalman
filtering. Next, the estimated state was modeled and predicted using recurrent neural
networks. By analyzing the disparity between the predicted state and the real measured
data, the system can identify the existence of FDIAs. Jorjani et al. [30] introduced a novel
algorithm designed for the detection of FDIAs in AC state estimation. This algorithm
employs outlier detection techniques to the outcomes of state estimation because the attack
may lead to data inconsistencies between buses, resulting in an abnormal graph structure.
The above methods can be proven to detect FDIAs.

3. System Model

The state estimation of the power system usually deeply relies on the system model.
The selection and establishment of the model have a substantial impact on the results of
the system state calculation, which directly lead to the accuracy of the acquired state. State
estimation in the power system is a crucial element within EMS, as it provides essential real-
time information about the grid’s operational status, and it is the basis for other high-level
applications to realize the calculation and analysis.
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The measurements for power system state estimation are collected from the grid by
SCADA or phase measurement units (PMUs). PMUs are able to provide accurate and
synchronized phase measurements for geographically dispersed buses in the grid by taking
advantage of the high accuracy, sub-microsecond time synchronization, and unprecedented
reporting rate [31]. And if the system is completely observable with PMU measurements,
the state estimation process is a linear procedure. The proposed algorithm aims at solving
the linearization of EKF for state estimation. Therefore, the proposed algorithm can be
applied to the mentioned PMU-based state estimation problem by reducing the linearization
steps of the AIEKF algorithm. We can discuss a situation in which there are m measurements
and n state variables. In an AC power system, the connection between measurements and
state variables is characterized by a nonlinear relationship, which can be represented as:

z = h(x) + e (1)

where z ∈ Rm×1 is the measurement vector; x ∈ Rn×1 is the state vector, typically bus
voltage amplitude and phase; e ∈ Rm×1 is the measurement error vector that satisfies
e = (e1, e2, . . . , em)

T ∼ N (0m×1, R); and h(·) represents the nonlinear relationship between
the measurement vector (z) and the state vector (x).

To analyze the correlation between the bus voltage, phase angle, and bus current of the
grid system and determine the nonlinear relationship h(·), we must streamline the power
system branch by representing it through an equivalent circuit, as illustrated in Figure 2.
Subsequently, utilizing the AC model of the power system, we establish the connection
between the state variables and measurements, which can be formulated as follows:

Gij+jBij

Pij+jQij Pji+jQji

Pi+jQi Pj+jQj

jy0 jy0

i j

Figure 2. Power system branch equivalent circuits.

Pi = Vi ∑
j∈T

Vj
[
Gij cos θij + Bij sin θij

]
(2)

Qi = Vi ∑
j∈T

Vj
[
Gij sin θij − Bij cos θij

]
(3)

Pij = V2
i Gij −ViVj

[
Gij cos θij + Bij sin θij

]
(4)

Qij = −V2
i Bij −ViVj

[
Gij sin θij − Bij cos θij

]
(5)

where Vi and Vj are the voltage amplitudes at bus i and bus j, respectively; Pi and Qi
represent the active and reactive power injection of bus i, respectively; Pij and Qij denote
active power flow and reactive power flow from bus i to bus j, respectively; Gij and Bij
denote the conductance and susceptance of the line from bus i to bus j, respectively; θij
denotes the phase angle difference of the line voltage from bus i to bus j; and T denotes the
set buses adjacent to bus i.

3.1. State Estimation

The most commonly used state estimation in power systems is the weighted least
squares method, which is still widely used [32–34]. Under this method, the objective
function (J(x̂)) is the weighted sum of squares of the difference between the measured and
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estimated values. With the smallest objective function value, the obtained x is the closest
approximation to the true state of the system. Based on the weighted least squares method,
the objective function (J(x̂)) can be expressed as:

J(x̂) = [z− h(x̂)]T R−1[z− h(x̂)]. (6)

Then,

x̂ = arg min [z− h(x̂)]T R−1[z− h(x̂)] (7)

To solve the nonlinear WLS problem, we can linearize the measurement equation
around x, then apply the linear WLS method. The final result is expressed as:

x̂k+1 = x̂k +
[

G
(

x̂k
)]−1

HT
(

x̂k
)

R−1
(

z− h
(

x̂k
))

(8)

G
(

x̂k
)
=HT

(
x̂k
)

R−1H
(

x̂k
)

(9)

where k is the k-th iteration index, and H ∈ Rm×n is the Jacobian matrix of the measurement
equation, which can be expressed as:

H =

 ∂Vi
∂V

∂Vi
∂θ

∂Pi
∂V

∂Pi
∂θ

∂Qi
∂V

∂Qi
∂θ

∂Pij
∂V

∂Pij
∂θ

∂Qij
∂V

∂Qij
∂θ


T

(10)

3.2. Bad Data Detection

Traditional methods for detecting bad data, like the chi-square test and largest normal-
ized residual (LNR) test, rely on the results obtained from WLS estimation.

By checking the value of the objective function (J(x̂)), we can determine whether there
are bad data in the power system or not. In particular, in the chi-square test, we need to
perform null hypothesis testing, which can be expressed as:{

J(x̂) > χ2
(m−n),p, Reject H0

J(x̂) ≤ χ2
(m−n),p, Accept H0

(11)

where H0 represents the original hypothesis, i.e., there are no bad data, and χ2
(m−n),p is the

chi-square test threshold with a confidence level of p and a degree of freedom corresponding
to (m− n).

The LNR test stands as another commonly employed approach for bad data detection.
Its core concept revolves around the normalization of measurement residuals, which can
be formulated as follows:

ri =
|zi − hi(x̂)|√

Ωii
(12)

Ω=

[
I − H(x̂)

(
HT(x̂)R−1H(x̂)

)−1
HT(x̂)R−1

]
R (13)

where zi is the ith measurement, Ωii is the ith diagonal entry of Ω, and I is the identity
matrix. If there exit bad data in the power system, the largest normalized residual is larger
than the threshold (ε).

The chi-square test and LNR test are generally effective for detecting natural bad data,
which typically induce large measurement residuals [35].

3.3. FDIA Generation

If an attacker possesses precise information regarding real-time state estimation, net-
work topology, and parameters, they can achieve an elaborate FDIA without being detected.
When measurement meters are tampered with, the measurement (z) changes to z f , and the
attacked measurement (z f ) changes to:
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z f = h(x) + a + e (14)

where a ∈ Rm×1 is the attacked vector.
As an elaborate FDIA, the attacked vector requires a certain condition, which is

expressed as:

a = h(x̂ + c)− h(x̂) (15)

where c ∈ Rn×1 is the deviation of the state variable, and x̂ is the state-estimated vector without
an FDIA.

As indicated by the equation above, FDIAs can lead to an identical measurement resid-
ual vector compared to the condition without an attack. To be specific, the measurement
residuals between the pre-attack and post-attack states can be described as follows:

r = z− h(x̂) (16)

r f = z f − h(x̂ + c) = z + a− h(x̂)− a = z− h(x̂) (17)

The measurement residual between the pre-attack and post-attack states does not
change; hence, an elaborate FDIA is stealthy and can avoid detection by the existing BDD
system based on residuals [36].

4. Dynamic State Estimation Model
4.1. Extended Kalman Filter (EKF)

The physical power information system in an AC power system is inherently complex
and highly multidimensional and nonlinear. The state and measurement equations for
state estimation can be formalized as:

xk = f (xk−1) + ωk−1 (18)

zk = h(xk) + ek (19)

where xk and zk denote the state vector and the measurement vector at time k, respectively;
f (.) denotes the state transfer equation from k− 1 to k; h(.) denotes measurement equation;
and ωk−1 and ek denote the process and measurement noise, respectively, which are
independent of each other.

Since the KF algorithm can only deal with linear system problems, it is not applicable
to nonlinear problems such as power systems, so the EKF algorithm is derived. The EKF
algorithm first uses Taylor’s formula to linearize the nonlinear system, then filters it using
the basic formula of the KF algorithm. Specifically, state Equation (18) carries out Taylor
series expansion at the state estimation quantity (x̂k−1) and ignores items at quadratic
levels and higher. Similarly, measurement Equation (19) carries out Taylor series expansion
at the state prediction quantity (x̃k) and ignores items at quadratic levels and higher. The
linearization models are expressed as:

xk ≈ f (x̂k−1) +
∂ f (x̂k−1)

∂x̂k−1

∣∣∣
x̂k−1

(xk−1 − x̂k−1) + ωk−1

=Fk−1xk−1 + ωk−1 + uk−1

(20)

zk ≈ h(x̃k) +
∂h(x̃k)

∂x̃k

∣∣∣
x̃k
(xk − x̃k) + ek

=Hkxk + ek + yk

(21)

where Fk−1 =
∂ f (x̂k−1)

∂x̂k−1

∣∣∣
x̂k−1

is the Jacobian matrix of the state equation, uk−1= f (x̂k−1)−
∂ f (x̂k−1)

∂x̂k−1

∣∣∣
x̂k−1

x̂k−1 is an externality item, Hk = ∂h(x̃k)
∂x̃k

∣∣∣
x̃k

is the Jacobian matrix of the mea-

surement equation, and yk=h(x̃k)−
∂h(x̃k)

∂x̃k

∣∣∣
x̃k

x̃k is an externality item.



Energies 2023, 16, 7203 8 of 20

On the basis of Equations (18) and (19), the basic formula of the EKF algorithm is expressed
as follows:

(1) Prediction steps:
x̃k|k−1 = Fk−1 x̂k−1 (22)

P̃k|k−1 = Fk−1P̂k−1FT
k−1 + Qk−1 (23)

(2) Update steps:

Kk = P̃k|k−1Hk
T(HkP̃k|k−1Hk

T + Rk)
−1 (24)

x̂k = x̃k|k−1 + Kk

[
zk − Hk x̃k|k−1

]
(25)

P̂k = (I − Kk Hk)P̃k|k−1 (26)

where ˜ and ˆ indicate the predicted and estimated quantities, respectively; I is the identity
matrix; P is the state covariance matrix; Q and R are the covariance matrices of the process
noise and measurement noise error vectors, respectively, which are assumed to be white
Gaussian processes; and K is Kalman gain.

The EKF algorithm is extensively employed for dynamic state estimation in power
systems due to its straightforward model development and efficient computational perfor-
mance in practical engineering applications. However, since the EKF algorithm ignores the
higher-level items in the linearization process, it results in a large truncation error in power
systems with highly nonlinear characteristics, resulting in a decrease in the filtering effect.

4.2. Adaptive Interpolation Strategy

To enhance the dynamic state estimation capabilities of the EKF algorithm in the
power system, an adaptive interpolation method is proposed to strike a balance between
estimation precision and computational efficiency [37].

Based on Equation (18), we need to quantify the nonlinear index of state function f (x)
to obtain η f , which can be expressed as:

ε f = xk − f (x̂k−1)−
∂ f (x̂k−1)

∂x̂k−1

∣∣∣∣
x̂k−1

(xk−1 − x̂k−1) (27)

η f = εT
f Q−1

k ε f (28)

where ε f is the difference between f (x) and the corresponding linear approximation.
Similarly, based on Equation (19), we can obtain the nonlinear index (ηh) of measure-

ment function h(x), which can be represented as:

εh = zk − h(x̃k)−
∂h(x̃k)

∂x̃k

∣∣∣∣
x̃k

(xk − x̃k) (29)

ηh = εT
h R−1

k εh (30)

where εh is the difference between h(x) and the corresponding linear approximation.
As shown in Equations (28) and (30), ε f and εh are normalized by Qk and Rk. Under

the process, ε f and εh are numerically non-negative. Hence, if ε f � Qk and εh � Rk, η f
and ηh are both much less than 1, and the system can be considered quasilinear. Otherwise,
according to the size of the nonlinearization index, the pseudomeasurements must be
added between two consecutive sampling points to increase the sampling rate and reduce
the degree of nonlinearity of the system.

The interpolation factor (r) is closely related to the sizes of ε f and εh. The larger
nonlinearization indices η f and ηh are, the larger the interpolation factor (r) is. Conversely,
the interpolation factor (r) is smaller. It is important to emphasize that ε f = 0 and εh = 0
in the linear system. Therefore, the system does not interpolate.
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The finite state machine model is shown in Figure 3. In practical applications, we can
introduce as many states as required to the FSM model to accommodate the nonlinearity indices.
There are three parameters in each state (i): the interpolation factor (ri), the upper threshold
(Ui), and the lower threshold (Li). In addition, as the state (i) changes, the interpolation factor
is set to ri+1 > ri. The selection of the interpolation factor (r) is shown in Algorithm 1.

The thresholds of each state are different, and they are set depending on different
scenarios. When selecting the thresholds, it is necessary to ensure that the upper threshold
(Ui) is larger than the lower threshold (Li). Furthermore, as Ui and Li become smaller, the
interpolation factor (r) and estimation accuracy increase, and the algorithm consumes more
time. It is important to highlight that the nonlinear indices can take on discrete values. To
maintain small values for both η f and ηh, here is how the process works: If either η f or ηh
exceeds Ui, r parameter is increased to minimize the nonlinear error. Conversely, if both η f
and ηh are below Li, r is reduced to lower computational complexity. The specific values of
r for each state can be found in Table 2.

State 1

State 2

State 3

State 4

ηf1 or ηh1 > U1

ηf2 & ηh2 < L2

ηf3 & ηh3 < L3

ηf4 & ηh4 < L4

Ui: Upper Threshold

Li: Lower Threshold

ηf2 or ηh2 > U2
ηf3 or ηh3 > U3

Figure 3. Finite-state machine (four states).

Algorithm 1 Choose the interpolation factor (r).

State i r = ri
if η f i or ηhi > Ui then

go to the state i + 1
else

η f i and ηhi < Li
go to the state i − 1

end if
Stay in the state i

Table 2. The size of the interpolation factor (r).

State (i) Interpolation Factor (r) Lower Threshold Upper Threshold

i = 1 1 L1 U1

i = 2 3 L2 U2

i = 3 7 L3 U3

i = 4 15 L4 U4

4.3. Adaptive Interpolation EKF (AIEKF)

Building upon the dynamic model outlined in Section 4.1 and the adaptive interpola-
tion approach discussed in Section 4.2, we introduce the AIEKF algorithm in this section.
The AIEKF algorithm effectively strikes a balance between computation time and estima-
tion accuracy, thereby enhancing the performance of the EKF algorithm in power systems.
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A flow chart illustrating the AIEKF algorithm is provided in Figure 4, and its detailed steps
are as outlined as follows:

(1) Initialization: setting the initial state variable (x̂0) and state error covariance (P̂0).
(2) Adaptive Interpolation: In order to strike a compromise between computational

efficiency and estimation precision, the algorithm incorporates an adaptive interpolation
strategy, which comprises three key steps. Initially, we calculate the nonlinearity indices
of the state transition function and the measurement function (referred to as η f and ηh,
respectively) using Equations (28) and (30), respectively. In the next step, we ascertain
the interpolation factor (r) by utilizing a finite-state machine model. Finally, r pseudomea-
surements are introduced between two actual measurements through linear interpolation,
which is designed to mitigate the adverse impacts of nonlinearity.

(3) EKF: On the basis of determining the number of interpolation factors (r), the
power system is estimated using the EKF algorithm. Initially, leveraging the state and its
covariance matrix from time k− 1, we derive a prior estimation at time k in accordance
with Equations (22) and (23). Secondly, the correction of the a priori estimation is used
to obtain an a posteriori estimation according to Equations (24)–(26). Thirdly, filtering is
performed between two consecutive samples based on the size of the interpolation factor.
Then, the above steps are repeated until the end of the sampling time.

Yes

No

Yes

No

Initialization 

Start

Calculating nonlinear metrics for state 

equation  and measurement equation

Determining interpolation factor ‘r’ using 

finite state machine

Increasing pseudo-measurements by linear 

interpolation

State prediction

State update

Number of iterations i < r+1

Time end

End

i = i+1

k = k+1

Adaptive 

Interpolation

EKF

Figure 4. Flow chart of the AIEKF algorithm.

5. Detection of FDIAs

This section proposes a methodology for FDIA detection based on power system
state estimation. As a nonlinear system in the smart grid, it is difficult to guarantee the
estimation accuracy using traditional state estimation methods. Meanwhile, in order to
improve the stability of the detection algorithm, the real-time state information of the grid
buses is solved according to the system model equation and AIEKF algorithm.

Once the attacker begins to tamper with the measuring instruments, the result of
Equation (25) is different from the previous result and expressed as:

x̂ f
k = x̃k|k−1 + Kk[zk + ak − Hk x̃k|k−1 ]

=x̂k + Kkak

(31)
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where x̂ f
k is the estimated state after the FDIA. To better facilitate estimation, ck = x̂ f

k − x̂k
is introduced. Then, for the next time (k + 1), it can be represented as:

x̂ f
k+1 = x̃ f

k+1|k + Kk+1[z
f
k+1 − Hk+1 x̃ f

k+1|k ]

= x̃ f
k+1|k + Kk+1[zk+1 + ak+1 − Hk+1 x̃ f

k+1|k ]

= x̂k+1 + [I − Kk+1Hk+1]Fkck + Kk+1ak+1

(32)

The analysis above highlights that the injection bias is influenced by both the currently
injected false data and the bias present in the previously estimated state. Over time, this
injection bias accumulates and gradually shifts the estimated state closer to the actual
system state. When the power system is subjected to an FDIA, the altered measurements
make the WLS state estimation results swing towards the new mean. For the AIEKF
algorithm, due to the constraints of the state transfer matrix and the fact that its estimation
is jointly determined by the predicted and measured values, the state estimation has some
hysteresis, and only small oscillations occur.

Based on WLS and AIEKF estimation results, considering the influence of bus states on
the system, the Euclidean distance in multidimensional spaces is introduced. The Euclidean
distance detection threshold required in FDIA detection is obtained from historical data,
and the Euclidean distance between two points estimated by WLS and AIEKF states is
calculated online in real time and used as the basis for attack detection. The expression for
the Euclidean distance at time k is expressed as follows:

d(k) =

√
n

∑
i=1

(
x̂WLS

i,k − x̂AIEKF
i,k

)2
(33)

where x̂WLS
i,k denotes the WLS-based state estimation at time k, x̂AIEKF

i,k denotes the AIEKF-
based state estimation, and n denotes the system dimension.

In the n-dimensional grid system state space, the Euclidean distance is employed to
quantify the spatial separation between two points within the same state space at a given
time point. The Euclidean distance of the two state estimation algorithms stabilizes in a
certain range during regular power system operation, which provides a basis for false data
injection attack detection. The detection threshold is expressed as:

τD = max{d(1), . . . , d(n), . . .}+ µ (34)

where µ is the threshold margin, which is introduced to prevent false alarms triggered by
minor data fluctuations while the detection system is operating under normal conditions.

Attack detection is performed by comparing the Euclidean distance between the
detection threshold and the two points in the state space, and when d(k) ≥ τD, it is
considered that there exits an FDIA in the power system; otherwise, it is considered that no
attack occurs. The relation can be expressed as:{

d(k) < τD, No FDIA
d(k) ≥ τD, FDIA

(35)

In order to distinguish between bad data and FDIAs, bad data detection is also required
at the end of the above steps. Only if d(k) ≥ τD and J(x̂) < χ2

(m−n),p hold can we conclude
that the power system is under FDIAs. The proposed FDIA detection method based on
WLS and AIEKF is shown in Algorithm 2.
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Algorithm 2 FDIA detection based on WLS and the AIEKF algorithm

1: Initialize state variable x̂k−1 and state error covariance P̂k−1; the Euclidean distance detection
threshold τD;

2: Obtain the measurements by SCADA at time k;
3: In traditional static state estimation, WLS is widely used to calculate an estimated state vector

x̂WLS
k , x̂WLS

k =
(

HT
k R−1

k Hk

)−1
HT

k R−1
k zk

4: AIEKF
(1) Calculate calculate the nonlinearity indices of the state transition function and the measure-
ment function (referred to as η f and ηh) using Equations (28) and (30);
(2) Ascertain the interpolation factor r by utilizing a finite state machine model;
(3) Interpolate r pseudo-measurement between two actual measurements through linear interpo-
lation;
(4) Execute the state prediction step of the EKF by applying Equations (22) and (23);
(5) Conduct the measurement update step of EKF by applying Equations (24)–(26) to calculate

estimated state vector x̂AIEKF
k , x̂AIEKF

k = x̃k|k−1 + Kk

[
zk − Hk x̃k|k−1

]
5: Calculate the Euclidean distance between two points estimated by WLS and AIEKF states;
6: if d(k) ≥ τD and J(x̂) < χ2

(m−n),p then
7: Exist FDIA and generate early warning;
8: else
9: Continue the state estimation process at time k = k + 1,

10: end if

6. Experiments and Results

This paper introduces a detection approach that relies on state estimation. Considering
the effectiveness of the method in real systems, the power standard IEEE-14-bus system
shown in Figure 5 is used for MATLAB R2021b simulation. The active and reactive power
of each bus are shown in the following Table 3. The data used in this paper come from
MATPOWER trend calculation, which is used to obtain the bus voltage magnitude and
phase-angle truth values, superimposed with zero-mean Gaussian white noise as the
measurements. Furthermore, the estimation computations occur at one-minute intervals,
which aligns with the anticipated average sampling frequency for utilities equipped with
contemporary Energy management systems (EMS).

G

8

7

G

GG

G

124

11

109

14
13

12

6

3

5

Figure 5. The IEEE-14-bus power system.
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Table 3. Active and reactive power injections into system buses.

Bus Generation Generation Load Load
Number Active (MW) Reactive (Mvar) Active (MW) Reactive (Mvar)

1 2.3824 −0.1490 0.0000 0.0000

2 0.4000 0.4904 0.2170 0.1270

3 0.0000 0.2744 0.9420 0.1900

4 0.0000 0.0000 0.4780 −0.0390

5 0.0000 0.0000 0.0760 0.0160

6 0.0000 0.2960 0.1120 0.0750

7 0.0000 0.0000 0.0000 0.0000

8 0.0000 0.3092 0.0000 0.0000

9 0.0000 0.0000 0.2950 0.1660

10 0.0000 0.0000 0.0900 0.0580

11 0.0000 0.0000 0.0350 0.0180

12 0.0000 0.0000 0.0610 0.0160

13 0.0000 0.0000 0.1350 0.0580

14 0.0000 0.0000 0.1490 0.0500

6.1. Comparison of Estimation Effects with WLS, EKF, and AIEKF

Next, the estimation effect of AIEKF proposed in this paper is compared with the
standard WLS and EKF before injecting false data. As shown in Figures 6 and 7, bus 11
was randomly selected to compare the estimation performance of the three algorithms in
60 min. It is clear to see from the figures that although the bus voltage and phase angle
fluctuate up and down with time, the AIEKF achieves superior performance relative to
WLS and EKF in state estimation. To further demonstrate the estimation capability of the
proposed algorithm, the estimation results of the voltage amplitude and phase of each bus
under the three algorithms after stabilization are shown in Figures 8 and 9.
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Figure 6. Bus 11 voltage amplitude estimation.



Energies 2023, 16, 7203 14 of 20

0 10 20 30 40 50 60

t (min)

-5.3

-5.2

-5.1

-5

-4.9

-4.8

-4.7

-4.6

-4.5

-4.4

V
o

lt
a

g
e
 p

h
a

s
e

 (
d
e

g
re

e
)

True value

WLS estimate

EKF estimate

AIEKF estimate

38 40 42

-5.06

-5.04

-5.02

-5

Figure 7. Bus 11 voltage phase estimation.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Bus

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

V
o
lt
a

g
e

 a
m

p
lit

u
d

e
 (

p
.u

.)

True value

WLS estimate

EKF estimate

AIEKF estimate

Figure 8. Bus voltage amplitude estimation.

To validate the efficacy of the AIEKF algorithm introduced in this paper for state
estimation, we use the root mean square error (RMSE) as a metric to assess the accuracy of
the algorithm’s estimations. The RMSE calculation formula is provided below.

RMSE =

√√√√ 1
N

N

∑
i=1

(xi − x̂i)
2 (36)

where xi is the ith component of the true value of the state variable, x̂i is the ith component
of the estimation of the state variable, and N is the dimension of the state variable.
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The RMSE performance metric is calculated in the IEEE-14-bus system, and the results
are shown in Table 4. As shown in Table 4, the RMSE of the AIEKF algorithm is the smallest
of the three algorithms. Compared with WLS and EKF, the RMSE of the AIEKF algorithm
decreases by 79% and 67%, respectively.

Table 4. Comparison of the RMSE of the three algorithms.

Algorithm RMSE

WLS 0.0969

EKF 0.0616

AIEKF 0.0201

6.2. Estimation of the State Variable Before and After FDIA

To assess the viability of the false data injection attack vector strategy, in this paper,
we uses the IEEE-14-bus standard test system for simulation and analysis. An attack
on a local subnetwork, e.g., an attack vector (a), is injected into each bus measurement
value. Meanwhile, it is necessary to ensure that the internal power of the subnetwork
is conserved and that the subnetwork boundary voltage and the transmission power be-
tween the subnetwork and the external network remain unchanged. The introduction
of line blocking constraints leads to the response of the grid security analysis system
so that the attacked measurement value (z + a) is a valid attack value. Under this con-
dition, the attack vector (a = [P3, Q3, P1−2, P2−3, P4−2, Q1−2, Q2−3, Q4−2]

T) is selected as
a = [0.0020,−0.2029, 0.0084,−0.0073,−0.0059,−0.4874, 0.1329,−0.0723]T , and the incre-
ment of the rest of z is zero. Figure 10 shows the change in the measurement distribution
of the system before and after the attack.



Energies 2023, 16, 7203 16 of 20

5 10 15 20 25 30 35 40

Measurement unit

-1

-0.5

0

0.5

1

1.5

2

M
e

a
s
u

re
m

e
n

t 
v
a

lu
e

Pre-attack measurements

False data attack values

Post-attack measurements

Figure 10. Measurement distribution before and after an attack on the IEEE-14-bus power system.

Once the measurements are tampered with, the state variable (x) changes. Assuming
that the system is subjected to a false data injection attack at 75 min, bus 11 is selected to
observe the change in bus voltage magnitude and phase angle before and after the false
data injection attack occurs. State estimation of system buses using the AIEKF algorithm
is performed to improve the stability and accuracy of the detection algorithm. The state
estimation results of the two algorithms are shown in Figures 11 and 12. As shown in
the figures, in the first 75 min without an attack, AIEKF outperforms WLS in terms of
estimation. The system is attacked by false data injection in the 75th minute, and the two
algorithms converge to the state expectation at different moments. It is clear that AIEKF
converges slowly and with small fluctuations, while WLS is affected by a sudden change in
the measurements and converges quickly to the new state value.
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Figure 11. The voltage amplitude change of bus 11 before and after an attack.
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Figure 12. The voltage phase change of bus 11 before and after an attack.

6.3. Detection of FDIAs

Normal operation of the power information physics system produces a certain amount
of error, but the residuals caused by measurement noise and system noise are often very
small—much smaller than the threshold allowed for the detection of undesirable data
errors—so that undesirable data can be prevented from interfering with the system. The
values of J(x̂) before and after an attack determined using weighted least squares are
shown in Figure 13. Before the attack, the value of J(x̂) is 4.5728. When the false data
attack is injected into the system, the value of J(x̂) is 4.7041. It is not difficult to find that
the residual does not change much before and after an attack. The IEEE-14-bus system
has a total of 41 measurements, the redundancy is k = m− n = 41− 27 = 14, and the
significance level (α) is 0.05. According to the statistical chi-square distribution table, the
threshold of bad data detection is 23.685. The residual of the injected attack is within the
threshold. However, the voltage amplitude and voltage phase are changed. The false data
attack vector successfully achieves the attack.
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This paper proposes a detection method based on the computation of the Euclidean
distance between two points in the state space to detect FDIAs. Using Monte Carlo
simulation with 1000 independent experiments, we can obtain the normal-case Eu-
clidean distance distribution. The maximum value is taken as the detection threshold,
i.e., max{d(1), . . . , d(n), . . .} = 1.847. The detection margin (µ) is set to 0.03, and according
to Equation (30), the detection threshold can be derived as τD = 1.85. After an attack, the
Euclidean distance changes to 17.9586. Figure 14 shows the Euclidean distance distribution
based on the two algorithms before and after an attack.
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Figure 14. The Euclidean distance before and after an attack.

As can be seen from the figure, during the first 75 min, when the system is not under
attack, the Euclidean distance between the state points stays within a certain range below
the predefined detection threshold, which indicates that the system does not detect an attack
according to the judgment conditions. When the system is attacked after the 75th minute,
the two algorithms converge to the new state values at different moments. At this moment,
the Euclidean distance of the voltage state estimate fluctuates considerably with the attack
and exceeds the predefined detection threshold. Therefore, FDIAs can be detected, which
triggers the attack alarm system.

7. Conclusions

In this research, we introduce an approach that combines weighted least squares with
an adaptive interpolation extended Kalman filter to detect FDIAs in power systems. AIEKF
effectively reduces the nonlinear errors associated with the extended Kalman filters, leading
to enhanced accuracy in estimating the state of the power system. When a power system is
subject to false data injection attacks, the state estimation weighted least squares statistic
is characterized by a real-time nature, where changes in state variables are instantaneous,
whereas adaptive interpolation extended Kalman filtering is characterized by hysteresis,
and a change in state variables requires a process. Based on the difference between the
two algorithms, the Euclidean distance is introduced as a metric for detecting whether the
system is injected with false data or not. Additionally, the relevant detection threshold is
obtained using Monte Carlo simulation. The experiments show that the method is effective
in detecting false data injection attacks.

Subsequent research will consider the study of the localization of FDIAs and the
development of a new joint estimation algorithm that can simultaneously achieve the
detection and localization of false data injection attacks.
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