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Abstract: The ultimate recovery of shale oil is mostly dependent upon the occurrence and content
of free oil within the nano-scaled pore network of shale reservoirs. Due to the nanoporous nature
of shale, quantitatively characterizing the occurrence and content of free oil in shale is a formidable
undertaking. To tackle this challenge, 12 lacustrine shale samples with diverse organic matter content
from the Chang7 Member in the southern Ordos Basin were selected, and the characteristics of free
oil occurrence were indirectly characterized by comparing changes in pore structure before and after
organic solvent extraction. The free oil enrichment in shale was assessed using the oil saturation index
(OSI), corrected oil saturation index (OSIcorr), and percentage of saturated hydrocarbons. The results
revealed that slit-like interparticle pores with diameters less than 30 nm are dominant in the Chang7
shale. Conceptual models for the pore structures containing free oil were established for shale with
total organic carbon (TOC) content less than 9% and greater than 9%, respectively. Shale samples
with TOC content less than 9% exhibit a well-developed pore network characterized by relatively
larger pore volume, surface area, and heterogeneity. Conversely, shale samples with TOC content
exceeding 9% display a less developed pore network characterized by relatively smaller pore volume,
surface area, and heterogeneity. Larger pore volume and lower organic matter abundance favor the
enrichment of free oil within the lacustrine shale pore network. This study may have significant
implications for understanding oil transport in shales.

Keywords: shale oil; pore structure; Chang7 member; Ordos Basin

1. Introduction

Since significant breakthroughs in shale oil exploration and production in North
American marine strata [1], Chinese geologists have discovered abundant shale oil resources
in lacustrine strata, with shale oil production exceeding 180 × 104 tons in 2020 [2,3]. In
shale reservoirs, oil exists primarily in free and adsorbed forms, with free oil being more
recoverable [4–6]. Petroleum occurrence is closely related to storage space, with free
oil occupying pores and adsorbed oil mainly present on kerogen surfaces [6–9]. The
adsorption of oil on inorganic mineral surfaces is influenced by their wettability [10].
Most inorganic minerals exhibit hydrophilic properties [10,11]. Molecular dynamics and
adsorption experiments have shown that within inorganic pores, the volume of adsorbed oil
is significantly less than that of free oil [12–14]. Hydraulic fracturing enables free oil to flow
through fractures and pores, while adsorbed oil remains less mobile due to its adsorption
nature [5]. The mobility of free oil is influenced by pore size distribution, tortuosity, shape,
and surface properties [15–17]. Compared to marine shale, lacustrine shale exhibits more
complex and diverse pore networks [18,19]. Therefore, characterizing pores containing free
oil is vital for evaluating the recovery potential of lacustrine shale reservoirs.
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Unlike sandstone, shale possesses an extremely minute pore network, and the free
oil within the pores mainly originates from self-charging, which limits our understand-
ing of the controlling mechanism of pore structure on the occurrence of free oil. SEM
observations categorize the types of pores that may contain free shale oil into three cate-
gories: interparticle pores, intraparticle pores, and organic pores [20]. While high-resolution
imaging techniques offer visual morphological images, they cannot directly observe pores
containing free oil or smaller than 10 nm [21,22]. For shale pore characterization, low-
pressure nitrogen adsorption is widely used [16,23,24], providing information on pore
volume, specific surface area, size distribution, overall geometry, and fractal dimension
within the 300 nm diameter range [25–29]. However, characterization of the nanopores
filled with free oil, gas, and water within shale and the determination of their respective
contents remain formidable challenges [16,30]. Nikolaev and Kazak [30], Hu et al. [31],
and Xu et al. [32] summarized shale oil characterization techniques, but results obtained
from different methods often lack consistency and may contradict each other. For instance,
under 3 min isothermal conditions at 300 ◦C, the organic matter (S1, mg HC/g ROCK)
volatilized from shale is often misidentified as free oil [33–35]. However, free and adsorbed
oil can both volatilize below 300 ◦C [33–35] and be simultaneously extracted by organic
reagents [36,37]. OSI, calculated as the ratio of S1 to total organic carbon content (TOC,
wt%), is a reliable parameter for measuring the degree of free oil enrichment [4,38]. Shale
intervals with an OSI exceeding 100 mg/g are generally considered to have commercial oil
production potential [4,39]. Furthermore, shale interlayers with commercial oil production
potential typically exhibit enrichments of weakly adsorbed petroleum components, such as
saturated hydrocarbons [38,40,41]. Additionally, during pyrolysis from 300 ◦C to 650 ◦C,
the organic matter (S2, mg HC/g ROCK) volatilized from shale includes kerogen and heavy
oil [34,42–45]. As organic solvents cannot extract kerogen, the total oil yield (TOY) can
be calculated by subtracting the extracted sample’s S1EX and S2EX from the non-extracted
sample’s S1NEX and S2NEX [4,42–45]. Since TOY is greater than S1, OSI can be corrected as
the ratio of TOY to TOC (OSIcorr) [46]. In summary, the use of multiple technical methods
is necessary in the study of the relationship between pore structures and the occurrence of
free oil.

Previous studies [16,47–53] have combined pore characterization techniques with
organic matter removal methods to investigate the impact of soluble and insoluble organic
matter on the preservation and development of shale pores. Oil extraction with organic
reagents significantly increases the pore volume, indicating that oil occupies the pores and
affects porosity measurements [16,48,51–53]. Removing kerogen with inorganic reagents
yields different changes in pore volume depending on pore type [47,49,50]. When kerogen
is removed from shale containing developed inorganic pores, pore volume increases,
suggesting that kerogen hinders the preservation of these inorganic pores [49]. Conversely,
when kerogen is removed from shale with developed organic pores, a decrease in pore
volume is observed, indicating that organic pores contribute to overall pore volume [47,50].
These studies provided inspiration for this research, suggesting that the characteristics of
shale pores containing free oil could be indirectly inferred by analyzing the changes in
shale pore characteristics before and after free oil extraction.

However, there is limited research on characterizing the occurrence features of free
oil within the pore network of lacustrine shale by contrasting the structures of extracted
and unextracted pores. Studying the characteristics of pores containing free oil enhances
porosity calculations, improves digital rock models, and aids in predicting shale oil pro-
duction potential. In this study, we collected 12 lacustrine shale core samples from the
Chang7 Member of the Triassic Yanchang Formation in the Ordos Basin, China. The TOC
content of these samples was measured, and oil contained in the samples was extracted
with dichloromethane/methanol. The extracted oil was then separated into saturate, aro-
matic, resin, and asphaltene (SARA) fractions. The shale samples underwent low-pressure
nitrogen adsorption, SEM, and HAWK pyrolysis analysis before and after extraction. Three
parameters, OSI, OSIcorr, and the percentage of saturated hydrocarbons, were introduced
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to measure the degree of free oil enrichment. The research objectives encompass comparing
pore structure differences between shales with varying TOC, exploring characteristics of
pores containing free oil in shales with different TOC, and establishing a conceptual model
based on the sample conditions to elucidate the relationship between the occurrence of free
oil and pore structures.

2. Geological Setting

The Ordos Basin, located in the central part of the North China Plate, is a multicy-
cle cratonic basin situated on the Archean–early Proterozoic rigid crystalline basement,
covering an area of approximately 3.2 × 105 km2 [54–57] (Figure 1A). Mountain ranges
surround it: the Yinshan Mountains to the north, the Qinling Mountains to the south,
the Taihang Mountains to the east, and the Ordos Mountains (also known as the Helan
Mountains/Liupan Mountains) to the west [58–60] (Figure 1A). The basin can be divided
into six distinct tectonic units: the Yishan Slope in the central part, the Yimeng Uplift in
the north, the Weibei Uplift in the south, the Jinxi Fault-Fold Belt in the east, the Tianhuan
Depression in the west, and the Western Thrust Belt [54,55] (Figure 1A).
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Figure 1. Maps illustrating the study area and the targeted Chang7 Member. (A) Structural units,
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(B) lithostratigraphic column of the Middle-Upper Triassic Yanchang Formation in the Ordos Basin
(modified after Yang et al. [66]).
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During the Middle-Late Triassic period, collision between the North China and South
China blocks triggered rapid subsidence in the western region of the Ordos Basin, resulting
in a substantial expansion of the lake basin [61–64]. This geological process led to the depo-
sition of fluvial–lacustrine–deltaic sediments, forming a sedimentary succession known as
the Yanchang Formation, which ranges in thickness from 1000 to 1300 m. The Yanchang
Formation is further categorized into 10 members, named Chang10 to Chang1 (from bottom
to top), based on marker beds, sedimentary cycles, and lithological characteristics [63,65,66]
(Figure 1B). Among these members, the Chang7 Member represents the deepest and most
expanded stage of the lake basin [66] (Figure 1B). It consists of sediments ranging from
60 to 120 m thickness, including shale layers measuring 10 to 40 m in thickness [67].

The Chang7 shale holds great significance as an essential source rock and shale oil
reservoir within the Mesozoic oil system of the Ordos Basin [2,41,67–69]. It exhibits notable
mineral compositions, with the highest content of clay minerals (mainly between 40% and
60%), followed by quartz (ranging from 15% to 30%) and feldspar (around 10% to 20%) [70].
Conversely, pyrite and carbonate minerals have the lowest abundance. TOC content in
the Chang7 shale ranges between 3% and 28% [67,69]. The dominant kerogen types found
in the Chang7 shale are primarily type I and type IIa [67,69,71]. Additionally, the thermal
maturity of the Chang7 shale is primarily in the early to peak oil window, with vitrinite
reflectance ranging from 0.6% to 1.0% [69,72].

3. Materials and Methods
3.1. Sample Preparation

Twelve core samples of Chang7 shale with varying TOC contents were collected
from seven wells in the Ordos Basin. The samples were cleaned of mud using deionized
water and air-dried at room temperature (24 ◦C). Each cylindrical core sample was cut
in half perpendicular to the bedding direction using a cutting machine. One half was
further divided into approximately 1 cm2 squares for SEM observation, while the other
half was ground into 40–60-mesh particles using a quartz mortar and pestle, followed by
homogenization. A 20 g portion of particles between 40 and 60 mesh size was used for
low-pressure nitrogen adsorption, while a 40 g portion of particles between 40 and 60 mesh
size was ground into powder smaller than 200 mesh for TOC, HAWK pyrolysis and SARA
separation experiments.

Additionally, the samples used for SEM, low-pressure nitrogen adsorption, and HAWK
pyrolysis experiments were split equally into two parts. Before conducting the experiments,
one part underwent oil extraction using a Soxhlet instrument with dichloromethane/
methanol (97:3, v/v) at a water bath temperature of 60 ◦C. This step allowed for comparing
pore structure and oil content before and after oil removal.

3.2. Experimental Methods

Low-pressure nitrogen adsorption experiments were performed at the Beijing Center
for Physical and Chemical Analysis, while all other experiments were carried out at the State
Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum
(Beijing, China).

3.2.1. SEM

SEM analysis was employed to examine the pore types and morphologies of the
shale samples. Prior to observation, 1 cm2 blocks of the samples, both before and after oil
removal, were polished and subjected to argon ion milling to achieve a smooth surface
for high-resolution imaging. Subsequently, a 10 nm gold coating was applied to enhance
conductivity. SEM imaging was conducted using a Quanta 200F field emission scanning
electron microscope, offering a maximum resolution of 3.5 nm.
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3.2.2. Low-Pressure Nitrogen Adsorption and Fractal Dimensions

Low-pressure nitrogen adsorption was utilized to measure various pore characteristics
in shale samples, including volume, specific surface area, pore size distribution, overall
geometric shape, and fractal dimensions. Before gas adsorption, approximately 2 g of
shale particles with a 40–60 mesh size was placed in a vacuum tube and subjected to a
temperature of 110 ◦C for 8 h to remove air, free water, and organic reagents. Nitrogen gas
adsorption measurements were conducted using an Autosorb IQ isothermal adsorption
instrument at a constant temperature of 77.35 K and a relative pressure (P/Po) range of
0.001–0.995. The instrument software automatically recorded the nitrogen adsorption and
desorption data (Figure 2A). The obtained adsorption data, in combination with various
theoretical models, were used to calculate pore parameters.

Specifically, the Barrett–Joyner–Halenda (BJH) [74] model was employed to determine
pore volume and size distribution, the Brunauer–Emmett–Teller (BET) [75] model was
utilized to calculate the specific surface area and average pore diameter (APD), and the
Frenkel–Halsey–Hill (FHH) [76,77] model was applied to derive the pore surface fractal
dimension (D1) and pore structure fractal dimension (D2). Higher values of D1 and D2
indicate more complex pore surface and pore space, respectively [70]. The calculation of D1
and D2 is described as follows [76,77]:

ln
(

V
Vo

)
= S

[
ln
(

ln
(

Po

P

))]
+ C (1)

where V represents the volume of gas adsorbed at equilibrium pressure P, Vo denotes the
gas volume adsorbed in a single layer, Po represents the saturation pressure of nitrogen, and
S and C are the slope and intercept obtained through fitting Equation (1) to the low-pressure
nitrogen adsorption data (Figure 2B).

D = S + 3 (2)

The fractal dimension D is recorded as D1 when P/Po is within a range of 0.001–0.45
and as D2 when P/Po falls between 0.45 and 0.995 (Figure 2B).
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3.2.3. TOC and HAWK Pyrolysis

TOC analysis was performed using a LECO CS-230 elemental analyzer to quantify the
organic matter content in the non-extracted samples. Approximately 100 mg of powder
with a particle size smaller than 200 mesh was placed in a carbon-free crucible to eliminate
interference from inorganic carbon. Then, the dropwise addition of 5% hydrochloric acid
(5% HCl) allowed for a reaction time of 30 min. Subsequently, the crucible was partially
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submerged in a small beaker containing 5% HCl to dissolve carbonates. After complete
dissolution, the residual hydrochloric acid was thoroughly washed away with deionized
water to prevent instrument corrosion. The sample and the crucible were dried at 80 ◦C for
8 h and analyzed for TOC by adding an iron tungsten solvent.

Pyrolysis was conducted using a HAWK pyrolyzer to analyze the total oil yield (TOY)
and the degree of free oil enrichment in the shale samples. The classic pyrolysis method
described by Behar et al. [78] was employed. Before and after oil removal, each sample
consisted of 20 to 50 mg of powder with a particle size smaller than 200 mesh. For samples
with higher TOC, smaller sample masses were selected to avoid the signal saturation of
the FID detector during pyrolysis. The sample was initially heated from 100 ◦C to 300 ◦C
and held at 300 ◦C for 3 min to determine the existing oil content in the shale (S1, mg/g).
Subsequently, the sample was heated from 300 ◦C to 650 ◦C at a rate of 25 ◦C/min to
measure the existing and directly generated oil content in the shale (S2, mg/g). The highest
pyrolysis rate of S2 corresponded to Tmax (◦C), indicating the thermal maturity of organic
matter. The TOY of the sample was calculated using the following equation [4,42–44]:

TOY = (S1NEX − S1EX) + (S2NEX − S2EX) (3)

where S1NEX (mg/g) and S1EX (mg/g) represent the S1 values of the non-extracted and
extracted samples, respectively, while S2NEX (mg/g) and S2EX (mg/g) represent the S2
values of the non-extracted and extracted samples, respectively.

The degree of free oil enrichment was assessed using OSI (mg/g) and OSIcorr (mg/g),
calculated as follows [4,46]:

OSI = 100 × S1NEX
TOC

(4)

OSIcorr = 100 × TOY
TOC

(5)

3.2.4. Extraction and Fractionation

The separation of SARA fractions was employed to determine the percentage content
of components with different adsorption capacities in petroleum. Non-extracted powder
samples were selected, ranging from 15 to 30 g and with a particle size smaller than
200 mesh. To ensure complete oil extraction, the sample with a higher TOY had a lower
weight. The samples were extracted with dichloromethane/methanol (97:3, v/v) for 48 h in
a Soxhlet apparatus heated in a 60 ◦C water bath. Afterward, 50 mL of petroleum ether was
added to the partially dried extract, and insoluble asphaltenes were filtered through cotton
in a funnel. The filtered solution was passed through a silica gel/alumina chromatography
column and eluted with 30 mL of petroleum ether to obtain saturated hydrocarbons.
Subsequently, the column was eluted with 24 mL of dichloromethane/petroleum ether
(2:1, v/v) to obtain aromatic hydrocarbons. Finally, elution with 15 mL of a mixture of
dichloromethane and methanol (7:1, v/v) yielded the resins. The weight of each fraction
obtained in each step was determined using an electronic balance. The mass proportions of
SARA fractions in the extract were normalized to 100%.

4. Results
4.1. SEM Image Analysis

The SEM analysis results reveal that interparticle pores between mineral particles
are the primary type of pores in the Chang7 shale (Figure 3). Additionally, intraparticle
pores within pyrite framboids, particularly associated with samples exhibiting high TOC
content, are also prevalent (Figure 3B,C). Löhr et al. [21] observed that the organic pores in
certain oil-mature shales become more apparent after solvent extraction. However, in both
non-extracted and extracted Chang7 shale samples, no organic pores were detected on the
surface of kerogen (Figure 3D–I). This finding aligns with Li et al.’s study [49], where they
reported the absence of developed organic pores in the Chang7 shale within the study area.
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The predominant pore shapes in the Chang7 shale are generally slit-shaped, wedge-shaped,
and polygonal, with diameters typically below 300 nm. Pores larger than 300 nm are rare
and isolated within the mineral matrix. Samples with high TOC exhibit fewer pores and
smaller pore diameters compared to samples with low TOC (Figure 3F,I). Notably, the SEM
images illustrate that kerogen occupies most of the space between mineral particles in
samples with higher TOC (Figure 3F,I).

Energies 2023, 16, x FOR PEER REVIEW 8 of 25 
 

 

 
Figure 3. Scanning electron microscopy (SEM) images of the Chang7 shale samples with varying 
total organic carbon (TOC) contents. (A–F) are SEM images of shale samples before extraction. (A–
C) exhibit interparticle pores between mineral particles, intercrystalline pores within pyrite fram-
boids, and intraparticle pores within feldspar grains, respectively. (D–F) reveal a decrease in pore 
size and number, accompanied by an increase in the space occupied by kerogen as the TOC in-
creases. (G–I) represent SEM images of the extracted samples, corresponding to (D–F), respectively. 
(G–I) indicate the absence of organic pores in the extracted kerogen. 

4.2. Low-Pressure Nitrogen Adsorption before and after Extraction 
The results of low-pressure nitrogen adsorption experiments (Table 1) indicate a sig-

nificant increase in the pore volume of all extracted shale samples (Figure 4A). It is be-
lieved that the increased pore space is occupied by free oil and is connected; otherwise, 
the extraction reagent and nitrogen would not be able to enter. Regardless of whether the 
samples were extracted or non-extracted, the pore volume of the Chang7 shale decreases 
with increasing TOC (Figure 4A), suggesting that the Chang7 shale does not possess well-
developed organic pores. Generally, it is accepted that shale with well-developed organic 
pores exhibits a positive correlation between pore volume and TOC [21,79]. When organic 
pores are not developed, an increase in organic matter results in a decrease in quartz and 
clay minerals, leading to the blockage of pores associated with quartz and clay [49]. After 
extraction, the specific surface area of eight samples with TOC less than 9% increased sig-
nificantly, while the specific surface area of four samples with TOC greater than 9% 

Figure 3. Scanning electron microscopy (SEM) images of the Chang7 shale samples with varying
total organic carbon (TOC) contents. (A–F) are SEM images of shale samples before extraction.
(A–C) exhibit interparticle pores between mineral particles, intercrystalline pores within pyrite
framboids, and intraparticle pores within feldspar grains, respectively. (D–F) reveal a decrease in
pore size and number, accompanied by an increase in the space occupied by kerogen as the TOC
increases. (G–I) represent SEM images of the extracted samples, corresponding to (D–F), respectively.
(G–I) indicate the absence of organic pores in the extracted kerogen.

4.2. Low-Pressure Nitrogen Adsorption before and after Extraction

The results of low-pressure nitrogen adsorption experiments (Table 1) indicate a
significant increase in the pore volume of all extracted shale samples (Figure 4A). It is
believed that the increased pore space is occupied by free oil and is connected; otherwise,
the extraction reagent and nitrogen would not be able to enter. Regardless of whether the
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samples were extracted or non-extracted, the pore volume of the Chang7 shale decreases
with increasing TOC (Figure 4A), suggesting that the Chang7 shale does not possess well-
developed organic pores. Generally, it is accepted that shale with well-developed organic
pores exhibits a positive correlation between pore volume and TOC [21,79]. When organic
pores are not developed, an increase in organic matter results in a decrease in quartz and
clay minerals, leading to the blockage of pores associated with quartz and clay [49]. After
extraction, the specific surface area of eight samples with TOC less than 9% increased
significantly, while the specific surface area of four samples with TOC greater than 9%
remained relatively unchanged (Figure 4B). An increase in specific surface area is typically
attributed to an increase in the number of small pores since small pores generally have a
larger specific surface area than large pores [27,80,81]. Furthermore, the APD of samples
with TOC less than 9% exhibited a significant decrease (Figure 4C), which could also be
attributed to increased pores with smaller diameters after extraction. The fractal dimension
is often used to characterize the complexity of geometric structures in natural objects, with
a larger fractal dimension indicating a more complex structure [82]. Fractal dimension D1
primarily reflects the roughness of the pore surface, while fractal dimension D2 mainly
reflects the complexity of the pore space [70]. Fractal dimension D1 did not exhibit any
regular changes in both non-extracted and extracted samples (Figure 4D). However, the
fractal dimension D2 of samples with TOC less than 9% significantly increased (Figure 4E),
indicating that the pore space occupied by free oil in these samples is more complex. On the
other hand, the changes in specific surface area, APD, and fractal dimension D2 of samples
with TOC greater than 9% were relatively small (Figure 4B,C,E), suggesting a relatively
simple structure of the pore space occupied by free oil in these four samples.

Table 1. Pore volume (V), specific surface area (S), average pore diameter (APD), and fractal dimen-
sion (D) of the 12 lacustrine shale samples before and after extraction.

Sample
ID Well Depth

Before Extraction After Extraction
VEX − VNEX

VNEX SNEX APDNEX D1NEX D2NEX VEX SEX APDEX D1EX D2EX

m 10−3 *cc/g m2/g nm 10−3 *cc/g m2/g nm 10−3 *cc/g

5950Z214 Z214 1759.50 17.31 3.93 16.36 2.46 2.60 21.82 7.43 10.52 2.53 2.69 4.51
0590Z214 Z214 1805.90 11.30 1.40 30.91 2.33 2.45 16.70 2.88 22.00 2.39 2.54 5.40
0676Y285 Y285 2806.76 10.89 2.49 16.04 2.31 2.62 13.85 4.89 7.75 2.37 2.78 2.96
3660G138 G138 2736.60 10.17 1.18 33.05 2.28 2.44 15.72 2.58 23.17 2.36 2.53 5.55
2720G138 G138 2727.20 10.31 1.42 27.86 2.31 2.45 15.31 2.61 22.23 2.31 2.52 5.00
2850Y285 Y285 2828.50 10.02 1.35 28.25 2.34 2.48 15.34 4.47 10.79 2.35 2.70 5.32
5450Y285 Y285 2854.50 7.77 1.14 25.98 2.26 2.51 10.53 3.34 8.56 2.24 2.73 2.76
0695G135 G135 1806.95 6.21 1.00 23.81 2.31 2.53 9.59 3.03 11.04 2.40 2.69 3.38
7720L211 L211 2377.20 6.09 0.78 29.73 2.31 2.47 7.35 1.09 25.85 2.21 2.49 1.26
3158G135 G135 1831.58 4.97 0.76 24.99 2.20 2.51 6.03 0.78 29.84 2.27 2.48 1.07
0250L231 L231 2102.50 5.60 0.77 27.88 2.30 2.51 6.47 0.90 27.57 2.27 2.49 0.87
0485L82 L82 2204.85 4.03 0.58 26.71 2.23 2.50 4.22 0.58 27.88 2.16 2.50 0.20

4.3. Organic Geochemical Characteristics

The organic geochemical characteristics of twelve Chang7 shale samples were ana-
lyzed using HAWK pyrolysis, TOC measurement, and SARA fraction separation experi-
ments (Table 2). The non-extracted samples exhibited S1NEX values ranging from 0.48 to
5.53 mg/g, with an average value of 3.01 mg/g. The TOC contents varied from 0.78 to
19.3%, with an average value of 7.91%, while the solvent extract yields ranged from 0.2 to
0.9%, with an average value of 0.67%. Based on Peters’ evaluation criteria [83] for source
rocks, the results suggest that the Chang7 shale qualifies as a good to excellent source
rock. The TOY values, calculated using Equation (3), ranged from 1.15 to 12.34 mg/g,
with an average value of 6.82 mg/g. Figure 4F illustrates that S1NEX initially increases and
then reaches a relatively stable level as TOC increases, whereas TOY gradually rises with
increasing TOC. This indicates that samples with higher organic matter content retain more
shale oil, with a significant portion existing in the form of kerogen adsorption in S2NEX. The
TmaxEX values, obtained after extraction, better reflect thermal maturity compared to the
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TmaxNEX values observed before extraction since the “carry-over” effect is mitigated by the
extraction process [84]. The TmaxEX values for the Chang7 shale ranged from 441 to 451 ◦C,
with an average value of 446 ◦C, indicating that the Chang7 shale is in the peak oil window
of maturation. The OSI values of the Chang7 shale ranged from 27.85 to 71.79 mg/g, with
an average value of 47.56 mg/g, while the corrected OSI (OSIcorr) values ranged from 60.93
to 150 mg/g, with an average value of 102.72 mg/g. According to Jarvie [6], recovering
shale oil from shales with an OSI value below 100 mg/g presents challenges and requires
in situ transformation to enhance productivity. The SARA fraction analysis revealed that
the percentages of saturated hydrocarbons, aromatic hydrocarbons, and NSO compounds
ranged from 7.96 to 57.35% (average: 32.64%), 11.76 to 26.96% (average: 19.37%), and 30.88
to 75.16% (average: 48%), respectively.
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Table 2. Organic geochemical characteristics of the 12 lacustrine shale samples before and
after extraction.

Sample
ID Well Depth

Before Extraction After Extraction
EOM Sat Aro NSO TOY OSI OSIcorr

S1NEX S2NEX TmaxNEX TOCNEX S1EX S2EX TmaxEX

m mg/g mg/g ◦C % mg/g mg/g ◦C % % % % mg/g mg/g mg/g

5950Z214 Z214 1759.50 0.48 1.74 445 0.78 0.06 1.01 448 0.20 57.35 11.76 30.88 1.15 61.19 146.61
0590Z214 Z214 1805.90 1.50 6.78 440 2.71 0.08 4.44 446 0.53 40.23 18.66 41.11 3.76 55.39 138.85
0676Y285 Y285 2806.76 2.05 7.24 446 3.27 0.08 5.91 449 0.48 40.82 14.87 44.30 3.30 62.63 100.82
3660G138 G138 2736.60 2.79 8.91 434 3.98 0.11 7.20 443 0.75 44.73 14.53 40.74 4.39 70.05 110.22
2720G138 G138 2727.20 3.36 14.33 441 4.68 0.10 10.57 443 0.84 40.12 19.48 40.41 7.02 71.79 150.00
2850Y285 Y285 2828.50 2.99 12.34 447 5.20 0.11 9.35 449 0.79 38.01 19.31 42.68 5.87 57.50 112.88
5450Y285 Y285 2854.50 2.92 19.06 449 7.62 0.11 15.19 451 0.73 33.94 21.10 44.95 6.68 38.34 87.71
0695G135 G135 1806.95 3.25 18.57 444 8.35 0.14 15.03 446 0.90 24.01 19.74 56.25 6.65 38.91 79.61
7720L211 L211 2377.20 2.74 22.39 447 9.59 0.18 17.38 447 0.53 23.75 25.31 50.94 7.57 28.56 78.91
3158G135 G135 1831.58 3.30 41.60 441 11.85 0.26 33.26 441 0.73 7.96 16.88 75.16 11.38 27.85 96.03
0250L231 L231 2102.50 5.25 52.97 444 17.62 0.25 45.63 444 0.88 19.54 23.78 56.68 12.34 29.80 70.03
0485L82 L82 2204.85 5.53 39.72 446 19.30 0.34 33.15 447 0.73 21.16 26.96 51.88 11.76 28.65 60.93

Note: EOM (%) = extracted organic matter; Sat (%) = saturates; Aro (%) = aromatics; NSO (%) = resins +
asphaltenes.

5. Discussion
5.1. Characteristics of Pores Where Free Oil Occurs
5.1.1. Morphology of Pores Hosting Free Oil

The shape of the hysteresis loop obtained from low-pressure nitrogen adsorption ex-
periments is associated with specific, well-defined pore structures. The International Union
of Pure and Applied Chemistry (IUPAC) has identified four common hysteresis loops, each
representing distinct pore shapes (Figure 5) [25,29]. Consequently, by eliminating the free
oil present in the sample’s pores and analyzing the resulting change in the hysteresis loop,
we can deduce the shape of the pores where the free oil occurs.
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Among the non-extracted samples of Chang7 shale, except for 5950Z214, which ex-
hibits a hysteresis loop type between Type H2 and Type H3, the remaining samples predom-
inantly display Type H3 hysteresis loops (Figure 6). These Type H3 loops correspond to
slit-shaped pores found between platy particles [25,29]. The distinction observed in sample
5950Z214 may be attributed to significantly lower TOC and TOY levels than the other
samples (Figure 6A and Table 2). After eliminating the free oil from the pores, samples
with TOC values below 9% exhibit a transition in hysteresis loop type, shifting towards
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a type between Type H3 and Type H2. Conversely, samples with TOC values above 9%
maintain Type H3 hysteresis loops. For the extracted samples with TOC values below 9%,
the hysteresis loop lacks the characteristic plateau observed in Type H2 loops when the
relative pressure (P/Po) exceeds 0.9 (Figure 6A–H). This indicates that the post-extraction
pore shape primarily remains slit-shaped. SEM analysis confirms the presence of numerous
slit-shaped pores in the Chang7 shale samples (Figure 3). However, after extraction, the
hysteresis loop expands (Figure 6A–H), resembling the Type H2 loop, which suggests
the emergence of a complex pore network characterized by significant variations in pore
cavity and throat sizes, such as ink-bottle-shaped pores [29,85]. The fractal dimension
D2 of samples with TOC values below 9% increases notably after extraction (Figure 4E),
further supporting the existence of a complex pore network. Furthermore, the desorption
branch of the nitrogen adsorption isotherm after extraction does not fully converge with the
adsorption branch, as is particularly noticeable in samples 0676Y285, 2850Y285, 5450Y285,
and 0695G135 (Figure 6C,F–H). This phenomenon indicates the entrapment of nitrogen
within narrow-throated pores. Conversely, extracted samples with TOC values above 9%
exhibit no significant changes in pore shape (Figure 6I–L), which aligns with the minimal
alteration in their fractal dimension D2 (Figure 4E). Based on these findings, it can be
inferred that the pores harboring free oil in all samples are predominantly slit-shaped.
In samples with TOC values below 9%, the pores containing free oil possess a complex
network structure with notable variations in pore cavity and throat sizes. Conversely, in
samples with TOC values above 9%, the pores occupied by free oil are relatively small,
with no substantial differences in pore cavity and throat sizes. Consequently, following
the extraction of free oil from the pores, the nitrogen adsorption isotherm undergoes more
pronounced changes in samples with TOC values below 9% compared to those with TOC
values above 9%.

5.1.2. Dominant Pore Sizes in Pores with Free Oil Occurrence

The BJH model [74] of low-pressure nitrogen adsorption enables the calculation of the
differential pore volume distribution (dV/dD or dV/dlog(D)). This distribution serves as
an indicator for the variation in the number of pores with different diameters. It is worth
noting that dV/dlog(D) is equal to ln(10)·D·dV/dD, and they are applicable under different
conditions [86,87]. dV/dD is more suitable for describing materials like shale, which are
primarily composed of micropores (<2 nm) and mesopores (2–50 nm) [86,87].

Among all the Chang7 shale samples, both before and after extraction, the dV/dD
value corresponding to pores with a diameter less than 30 nm exhibits the highest mag-
nitude (Figure 7). This result indicates an overwhelming abundance of pores with a
diameter smaller than 30 nm. Notably, after extraction, there is a significant increase in
the dV/dD value associated with pores less than 30 nm in samples with TOC less than
9% (Figure 7A–H). However, the increase in the dV/dD value corresponding to pores
larger than 30 nm is negligible (Figure 7A–H). In the case of samples with TOC greater
than 9%, there is also a notable increase in the dV/dD value for pores less than 30 nm
compared to pores larger than 30 nm (Figure 7I–L). Nevertheless, the increase in dV/dD is
considerably smaller than that observed in samples with TOC less than 9% (Figure 7I–L).
These observations suggest that, in the Chang7 shale, the pores where free oil is present
are predominantly less than 30 nm in diameter, whereas pores larger than 30 nm may be
dispersed within small pore networks. Furthermore, compared to shale samples with TOC
greater than 9%, the Chang7 shale samples with TOC less than 9% exhibit a more extensive
development of the pore network occupied by free oil.

5.1.3. Pore Volume Distribution in Pores Hosting Free Oil

The BJH model [74] for low-pressure nitrogen adsorption can be used to calculate the
incremental pore volume distribution (dV), which characterizes the relative contribution
of pores with different diameters to the total pore volume. The results indicate that larger
pore sizes correspond to higher dV values in both non-extracted and extracted samples
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(Figure 8), suggesting a more significant contribution of larger pores to the total pore
volume. Moreover, pores with diameters exceeding 30 nm contribute substantially more to
the total pore volume compared to those with diameters below 30 nm (Figure 8).

Energies 2023, 16, x FOR PEER REVIEW 13 of 25 
 

 

minimal alteration in their fractal dimension D2 (Figure 4E). Based on these findings, it 
can be inferred that the pores harboring free oil in all samples are predominantly slit-
shaped. In samples with TOC values below 9%, the pores containing free oil possess a 
complex network structure with notable variations in pore cavity and throat sizes. Con-
versely, in samples with TOC values above 9%, the pores occupied by free oil are relatively 
small, with no substantial differences in pore cavity and throat sizes. Consequently, fol-
lowing the extraction of free oil from the pores, the nitrogen adsorption isotherm under-
goes more pronounced changes in samples with TOC values below 9% compared to those 
with TOC values above 9%. 

 

Figure 6. Low-pressure nitrogen adsorption isotherms of non-extracted and extracted shale samples
with varying TOC contents.



Energies 2023, 16, 7205 13 of 22Energies 2023, 16, x FOR PEER REVIEW 15 of 25 
 

 

 
Figure 7. Differential pore volume distribution of 12 non-extracted and extracted shale samples with 
varying TOC contents. 

5.1.3. Pore Volume Distribution in Pores Hosting Free Oil 
The BJH model [74] for low-pressure nitrogen adsorption can be used to calculate the 

incremental pore volume distribution (dV), which characterizes the relative contribution 
of pores with different diameters to the total pore volume. The results indicate that larger 
pore sizes correspond to higher dV values in both non-extracted and extracted samples 
(Figure 8), suggesting a more significant contribution of larger pores to the total pore 

Figure 7. Differential pore volume distribution of 12 non-extracted and extracted shale samples with
varying TOC contents.



Energies 2023, 16, 7205 14 of 22

Energies 2023, 16, x FOR PEER REVIEW 16 of 25 
 

 

volume. Moreover, pores with diameters exceeding 30 nm contribute substantially more 
to the total pore volume compared to those with diameters below 30 nm (Figure 8). 

 
Figure 8. Incremental pore volume distribution of 12 non-extracted and extracted shale samples 
with varying TOC contents. 

Following the extraction process, noticeable increases in dV values were observed for 
pores of various diameters in samples with a TOC less than 9% (Figure 8A–H), with the 
exception of samples (0676Y285, 2850Y285, and 5450Y285) from well Y285. However, the 
dV values for pores with diameters larger than 50 nm in these three samples decreased 

Figure 8. Incremental pore volume distribution of 12 non-extracted and extracted shale samples with
varying TOC contents.

Following the extraction process, noticeable increases in dV values were observed for
pores of various diameters in samples with a TOC less than 9% (Figure 8A–H), with the
exception of samples (0676Y285, 2850Y285, and 5450Y285) from well Y285. However, the
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dV values for pores with diameters larger than 50 nm in these three samples decreased
after extraction (Figure 8C,F,G), possibly due to their unique pore structure. These par-
ticular pores were not completely filled with free oil, and the extraction of free oil led to
an enlargement of their pore sizes beyond the upper limit of the low-pressure nitrogen
adsorption measurement. Consequently, the corresponding dV values decreased. There-
fore, the decrease in dV values for pores larger than 50 nm in these three samples after
extraction should be considered as the volume of pores filled with free oil. For samples with
a TOC greater than 9%, there was a slight increase in the dV values for pores larger than
30 nm, while the dV values for pores smaller than 30 nm remained relatively unchanged
(Figure 8I–L). Overall, the removal of free oil from pores through extraction resulted in a
more significant increase in dV values for samples with a TOC less than 9% compared to
those with a TOC greater than 9%. However, the dV values for all samples did not show a
significant increase within any specific diameter range (Figure 8), indicating that free oil in
the Chang7 shale does not accumulate in pores of a particular size. The difference in pore
volume between samples before and after extraction represents the volume of pores filled
with free oil, which exhibits a positive linear correlation (R2 = 0.76) with the pore volume of
the samples after extraction (Figure 9). These results suggest that the pore volume occupied
by free oil in the Chang7 shale is primarily provided by pores with diameters larger than
30 nm, and the volume of pores filled with free oil increases with the total pore volume of
the shale. Consequently, shale with lower TOC possesses relatively larger volumes of pores
where free oil is present.
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5.2. The Relationship between Pores and Free Oil Enrichment

The OSI, OSIcorr, and percentage of saturated hydrocarbons serve as indicators for
assessing the level of free oil enrichment in shale. When the OSI value of shale surpasses
120 mg/g, it suggests the presence of nonindigenous oil, while an OSI value exceeding
200 mg/g indicates a nearly certain presence of nonindigenous oil [88]. The OSI value
appears to be linked to oil mobility in shale, with free oil exhibiting greater mobility than
adsorbed oil. Production outcomes from various shale oil plays in the United States and
Russia have confirmed that an OSI value greater than 100 mg/g serves as a reliable criterion
for identifying productive intervals [4,89]. The OSIcorr represents the correction value for
OSI calculated using Equation (5). Generally, successful shale oil plays exhibit low polar
compound content and yield shale oil enriched in low-polarity compounds [38]. In terms
of petroleum components’ adsorption capacity on kerogen surfaces, the order is as follows:
n-alkanes < iso-alkanes < aromatics < resins and asphaltenes [7,38,90]. Consequently, the



Energies 2023, 16, 7205 16 of 22

percentage of saturated hydrocarbons also stands as a crucial parameter for evaluating the
degree of free oil enrichment. OSI, OSIcorr, and the percentage of saturated hydrocarbons
exhibit a strong positive linear correlation with each other, demonstrating the comparability
of these three parameters in characterizing the degree of free oil enrichment in shale
(Figure 10).
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In the Chang7 shale, the OSI, OSIcorr, and percentage of saturated hydrocarbons exhibit
a positive linear correlation with the pore volume after extraction and the volume of pores
occupied by free oil (Figure 11A–F). This correlation suggests that the degree of free oil
enrichment in the Chang7 shale increases with the expansion of storage space. On one hand,
an increase in shale pore volume heightens the likelihood of pore connectivity, providing
room for the migration and storage of free oil. When free oil detaches from kerogen and
enters water-wet pores, capillary forces are a resistance to the aggregation of free oil [10,91].
Pores with larger diameters have lower capillary resistance and contribute to the efficiency
of oil and gas molecule diffusion [92–94]. On the other hand, in shale with less developed
organic pores, larger pore volumes are associated with lower TOC (Figure 4A), reducing
the amount of oil adsorbed on kerogen surfaces. Furthermore, oil farther from the oil-wet
kerogen surface has lower viscosity and higher relative permeability [91,95]. No correlation
is observed between the OSI, OSIcorr, and percentage of saturated hydrocarbons and the
APD after extraction (Figure 11G–I). The APD after extraction represents the average
diameter of overall pores in shale, rather than the average diameter of pores hosting free oil.
Currently, there is no effective method to determine the impact of oil-bearing pore diameter
on the enrichment of free oil in shale.

Based on the analysis of changes in shale pore structure following extraction, a novel
conceptual model for shale oil occurrence was established (Figure 12). This model con-
tributes to the improvement in digital core modeling and the comprehension of oil occur-
rence characteristics in shale. According to this model, shale with a TOC content below 9%
exhibits larger pore volumes, more developed pore networks, and a higher abundance of
free oil compared to shale with a TOC content exceeding 9%. The predominant pore type
in shale is slit-shaped inorganic pores. Prior to extraction, some formations of water, gas,
or low molecular weight organic matter in these pores may have already been lost during
coring and storage [96,97]. After extraction, shale with a TOC content below 9% reveals a
complex pore network with significant variations in pore cavity and throat diameters, while
the changes in pore structure in shale with a TOC content exceeding 9% are less prominent.
Shale with a TOC content exceeding 9% contains more kerogen, leading to pore network
blockage and increased adsorbed oil content. Due to the strongly polar components in
adsorbed oil on kerogen surfaces, complete extraction using dichloromethane/petroleum
ether (2:1, v/v) is impossible. Some oil in dead pores remains unextracted as it is unable to
contact with the solvent. Additionally, in the pore network of the Chang7 shale, pores with
a diameter below 30 nm demonstrate numerical superiority, while pores with a diameter
exceeding 30 nm provide greater space for free oil accumulation.
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6. Conclusions

The pore structure, petroleum content (S1 and TOY), and parameters related to free
oil enrichment (OSI, OSIcorr, and the percentage of saturated hydrocarbons) before and
after the extraction treatment of lacustrine shale with varying TOC content reveal a close
relationship between free oil enrichment and pore structure. The research findings hold
significant implications for comprehending shale oil occurrence patterns, refining digital
rock models, and enhancing the accuracy of shale oil resource estimation. The key research
findings are summarized as follows:

(1) After the extraction of free oil from the pores, shale samples with TOC content below
9% exhibit a more substantial increase in pore volume, specific surface area, and
complexity compared to shale samples with TOC content exceeding 9%. This suggests
that a well-developed pore network favors the enrichment of free oil.

(2) Pore volume and TOY display contrasting trends as TOC increases, indicating that higher
kerogen content hinders pore network development and increases petroleum adsorption.

(3) In all Chang7 shale samples, free oil primarily resides within slit-like interparticle
pores with diameters exceeding 30 nm. However, in samples with TOC content
below 9%, there is a noticeable difference in the cavity and throat sizes of the pores
occupied by free oil, whereas the opposite is observed in samples with TOC content
exceeding 9%.
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M.S.; data curation, F.Y. and C.A.; writing—original draft preparation, F.Y.; writing—review and
editing, F.Y., G.L. and M.S.; visualization, F.Y., C.L., Y.L. and C.A.; supervision, F.Y. and G.L.; project
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published version of the manuscript.
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