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Abstract: Grid-connected photovoltaic (PV) power systems are one of the most promising tech-
nologies to address growing energy demand and ecological challenges. This paper proposes smart
switching to mitigate inrush currents during the connection of single-phase transformers used in
PV systems. An effective inrush current mitigation contributes to the reliability of PV systems. The
inrush current severity is influenced by the pseudorandom residual flux at the transformer core and
the energization point-on-wave. The most common approach to avoid inrush currents is controlled
connection, which requires prior knowledge of the residual flux. However, the residual flux can differ
in each case, and its measurement or estimation can be impractical. The proposed smart switching
is based on a comprehensive analysis of the residual flux and the de-energization trajectories, and
only requires two pieces of data (φRM and φ0, flux values of the static and dynamic loops when
the respective currents are null), calculated from two simple no-load tests. It has a clear advantage
over common approaches: no need to estimate or measure the residual flux before each connection,
avoiding the need for expensive equipment or complex setups. Smart switching can be easily im-
plemented in practical settings, as it considers different circuit breakers with distinctive aperture
features, making it cost-effective for PV systems.

Keywords: photovoltaic; single-phase transformer; inrush current; residual flux; hysteresis

1. Introduction

The installation of photovoltaic (PV) power systems has increased in recent years,
as an important renewable energy option to meet the growing energy demand and the
environmental challenges [1,2]. The general configuration of a single-phase grid-connected
PV system with a transformer is depicted in Figure 1. It comprises a PV array, a DC–DC
converter, a single-phase inverter, an LCL filter, and a load connected to the grid through a
single-phase saturable transformer [3].

Connecting the transformer to the distribution grid or recovering from grid faults can
cause high inrush currents through the primary winding when the ferromagnetic core is
driven into saturation. Inrush current may lead to undesirable events, such as incorrect
operation of protective relays, mechanical damage to the transformer windings, excessive
stress on the insulation, and disturbances that can affect the power quality of the grid and
neighboring facilities [4–8]. Inrush current is detrimental to utility cables, as the current
spike causes a voltage drop in the system. The weaker the transmission/distribution line,
the more pronounced this voltage drop will be. This, in turn, potentially causes other loads
to drop or even adjacent PV systems to operate with low voltage. If there are several PV
systems on a single connected line, there could be a pattern of systemic voltage drops [9].
Grid codes are now being revised worldwide to limit transformer inrush currents. Avoiding
inrush currents increases the reliability of a grid-connected PV system and the security and
stability of the power grid.

The techniques for inrush current reduction in single-phase transformers can be classi-
fied into four general types: (1) external device insertion [10–16], (2) methods that change
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the transformer design [17–21], (3) residual flux reduction [22–26], and (4) controlling
the energization point-on-wave [27–31]. The first two approaches can be expensive and
impractical and do not completely eliminate inrush currents [21].
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Figure 1. Typical configuration of a single-phase grid-connected PV system.

The last two approaches are intricately linked to each other. When a transformer is
de-energized, a residual flux can remain in the iron core due to the hysteresis characteristics
of ferromagnetic materials. The determination of the most favorable energization point-
on-wave, crucial for avoiding inrush current, relies on the value of this residual flux. The
energization point-on-wave and the residual flux (in an indirect manner) are the only
controllable parameters among all those on which the inrush current depends.

To achieve controlled energization, prior knowledge of the residual flux is essential. To
address this challenge, there have been publications focusing on measuring and estimating
the residual flux [32–39], as well as pre-setting a known residual flux value [40]. Since
the residual flux can be different before each energization, it becomes necessary to consis-
tently measure or estimate it before energizing the transformer using these approaches.
This requires continuously acquiring signals and performing online calculations. Further-
more, most methodologies require specialized equipment and complex setups, typically
implemented only in laboratories, resulting in unsuitability for specific applications.

The smart switching for inrush current elimination proposed in this paper avoids the
need to measure or estimate the residual flux before each energization, which results in
a more simplistic methodology than those in the literature. Figure 2 presents a compar-
ison between the flowchart of common approaches and the proposed smart switching,
while Figure 3 provides a comparison between the experimental setups. It can be seen
that the proposal is more simplistic and avoids the stages of measuring, eliminating, or
presetting the residual flux, with the corresponding savings in specific equipment and/or
processing costs.

Removing the need to measure the residual flux is possible by using only two pieces of
data (calculated from two no-load tests which characterize the static hysteresis loop and the
de-energization flux trajectories): φRM (the flux value of the green point in Figure 4a) andφ0
(the flux value of the red point in Figure 4a), or the corresponding voltage points-on-wave,
αRM and α0, along with an understanding of the used breaker technology.

Although the proposed smart switching is also applicable to SCR and IGBT breakers,
the SCR breaker is a more cost-effective solution for large power systems.

The rest of the paper is organized as follows. Section 2 analyses the inrush current
phenomenon, along with the residual flux and its de-energization trajectories. It also
discusses the essential characteristics required for an accurate simulation of de-energization
and inrush current in a transformer model. Section 3 introduces the proposed smart
switching to eliminate inrush currents. The results are presented and discussed in Section 4.
Finally, Section 5 summarizes the main conclusions.
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2. Analysis of Inrush Current and Residual Flux
2.1. Transformer Models for Residual Flux Prediction

The iron losses in a transformer core can be divided into three general categories:
hysteresis losses, classical eddy-current losses, and excess or anomalous losses [41,42]. The
hysteresis losses are considered static because their value per cycle does not depend on the
frequency. The hysteresis losses are proportional to the involved area within the hysteresis
loop, whose evolution depends on past or historical values. The eddy losses are considered
dynamic because their value per cycle is frequency dependent [43–45]. As the classical
eddy losses and the excess losses do not influence the residual flux, both components are
grouped in this paper as eddy losses. Then, the no-load current i1 is given by the current
due to hysteresis losses, iH, plus the current due to eddy losses, iE, as shown in Figure 4.

The only way to characterize the residual flux is with a hysteretic core model [46],
i.e., a model with a memory-like effect or a storage-like effect. The most common ones
are Jiles–Atherton (JA) and Preisach. A correct hysteretic core modeling must include the
following components (Figure 4b):

(1) An internal hysteresis loop (red line in Figure 4). This loop is caused by the core
magnetization and the hysteresis losses and cannot be directly measured through the
classical no-load test. It is commonly referred to as the static hysteresis loop since it is
independent of frequency;

(2) An external hysteresis loop (blue line in Figure 4). This loop is directly measurable,
and it is composed of the internal hysteresis loop plus the eddy losses. It is referred to
as the dynamic loop because of the eddy losses frequency dependence.

A single-phase transformer can be modeled by both an electric and a magnetic circuit.
Figure 5 depicts four distinct unloaded single-phase transformer models, all sharing the
same electric circuit but featuring different magnetic circuits with various types of core
modeling. These differences in core modeling result in varying predictions for residual flux.

The electric circuit includes the winding resistances, R1 and R2, the constant leakage
inductances, Ld1 and Ld2, and the induced primary voltage, due to the core magnetic
flux, φ.
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residual flux ranges for the four types of models.

As the residual flux is physically retained in the core when the transformer is discon-
nected, the modeling must also include a storage function to trap such flux. The magnetic
inductance (also called transference), LE, in the magnetic circuit represents the eddy losses,
while LH (only present in Type II and Type IV) represents the internal loop hysteresis
losses. Note that the hysteresis losses in Type I and Type III are embedded into a hysteretic
nonlinear reluctance R. The magnetic inductances LE and LH could be placed into the
electric circuit as parallel resistances by applying the duality principle [47], as made in most
research papers.

The main features of these four types of models are as follows:

• Type I. Reluctance R is hysteretic and capable of reproducing major and minor loops,
both symmetric and asymmetric ones. JA and Preisach models, in their original static
versions, are the best examples of this type. This type of model can accurately predict
all the residual flux values inside the allowable range;

• Type II. Non-hysteretic reluctance R is able to reproduce major loops when combined
with LH. The set composed of LH and the magnetic switch provides the memory and
storing features to this model. If the magnetic switch is closed due to a transformer
de-energization event, the current through LH (representing the residual flux) will
continue circulating indefinitely. The magnetic switch is closed when the following
conditions are met simultaneously: current i1 is null and magnetic potential at LH is
null. This model predicts the residual flux values inside the allowable range;

• Type III. Hysteretic reluctance R can only reproduce a unique and rigid major loop [48].
Inevitably, this model can only lead to the maximum or minimum residual flux values;

• Type IV. Non-hysteretic reluctance, R, can reproduce major loops when combined
with LH. This model always leads to a null residual flux value.

Only the Type I (with JA and Preisach) model is used in this paper. JA and Preisach
hysteresis models are detailed in Appendix A.

2.2. Residual Flux and De-Energization Trajectories

This section describes the trajectories during the de-energization transient. To the
authors’ knowledge, these trajectories are not sufficiently well explained in the literature,
especially when the residual flux range is of concern.
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Figure 6 illustrates two representative de-energization transient trajectories. Let us
now consider that the circuit breaker aperture starts at the instant marked with a blue circle
in Figure 6a. The flux trajectory follows the major loop illustrated in the figure until the
residual flux reaches the value φRM. Note that only the internal hysteresis loop has been
taken into account because the eddy losses do not influence the achieved residual flux.
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In the example in Figure 6b, the circuit breaker aperture initiates at a different instant.
In this case, the flux follows the trajectory of an asymmetric minor loop until the residual
flux reaches a value φR, which is smaller than φRM.

The above two examples are representative of all de-energization transients in the
hysteresis loop:

(1) Transients that follow the major loop because the breaker aperture does not provoke a
change in flux direction;

(2) Transients that follow an asymmetric minor loop because the breaker aperture pro-
vokes an abrupt change in flux direction.

Based on this, four different regions in the hysteresis loop can be highlighted. Each
zone leads to different well defined residual flux values because the transience in the
hysteresis loop depends only on the instant of breaker aperture initiation. This instant of
aperture initiation is best characterized by the corresponding supply voltage point-on-wave
(with reference to the maximum of the voltage) and is called herein the de-energization
point-on-wave, αD.

If the disconnection starts at point-on-wave, αD, between 90◦ and αRM (between points
1 and 2 in Figure 4), the residual flux will always be φRM. On the contrary, the residual
flux will always be −φRM if the switching point-on-wave is between 270◦ and 270◦ + αRM
(between points 3 and 4). The values of αRM and 270◦ + αRM vary for each transformer and
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depend on core parameters. Their values are calculated from the no-load tests detailed in
Section 3.2.

The possible residual flux values in the remaining two zones are as follows. If αD is
between αRM and 270◦ (between points 2 and 3), the residual flux reaches a value between
φRM and −φRM (green stripe in Figure 4). However, there is no ambiguity, as the specific
value will be uniquely defined by the specific minor loop trajectory which follows, which
will depend only on αD. The opposite happens for the region between 270◦ + αRM and 90◦

(between points 4 and 1): the residual flux reaches a value within the range −φRM to φRM.
This dependence on de-energization point-on-wave is shown in Table 1.

Table 1. Possible residual flux values.

Points on
Figure 4

De-Energization
Point-on-Wave αD

Residual Flux Range φR Trajectory

1 to 2 90◦ to αRM φRM Major loop
2 to 3 αRM to 270◦ φRM to −φRM Minor loop
3 to 4 270◦ to 270 + αRM −φRM Major loop
4 to 1 270 + αRM to 90◦ −φRM to φRM Minor loop

Figure 7 illustrates two de-energization trajectories at two different circuit breaker
interruption speeds. It can be seen that the interruption speed only influences the de-
energization trajectory of the external loop and the decaying time of i1. In contrast, the
de-energization trajectory of the internal loop and the decay time of iH are uniquely
determined by the hysteretic reluctance (e.g., that in the Type I model in Figure 5). Thus,
the residual flux reached is the same for both breaker speeds. As the residual flux only
depends on iH, the interruption speed and the eddy losses have no influence on the residual
flux φR. This is also stated in [49] as follows: “the residual flux pattern is determined by
static characteristics of the core”. In summary, it can be said that, once the current begins to
be interrupted and the flux begins to decay, the value of the future residual flux is already
predetermined.
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Figure 7. De-energization trajectories and their respective current waveforms (i1 and iH)
at two different interruption speeds of the circuit breaker: (a) abrupt interruption and
(b) soft interruption.
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3. Inrush Current Elimination
3.1. Circuit Breakers

Current chopping (or simply chopping) in a circuit breaker is the phenomenon in
which the current is forcibly interrupted before the natural current zero-crossing. In power
systems, the vacuum or SF6 circuit breakers and the unused air blast circuit breakers
have chopping capability. In contrast, the old and unused oil circuit breakers do not have
chopping capability.

In this paper, three different circuit breakers have been used to de-energize and
energize the tested transformers:

1. SCR-based breaker: Semiconductor breaker composed of two antiparallel silicon-
controlled rectifiers. Once the trip signal is sent, the current is not interrupted until
its natural zero-crossing, and this happens regardless of the load nature (resistive
or inductive). As a consequence, no electric arc is produced. This null chopping
capability can be assimilated to that in oil breakers;

2. Electro-mechanical contactor: Circuit breaker with chopping capability. If the load is
inductive, an electric arc is produced and the interruption will not be instantaneous,
but the current will be brought to zero before its natural current zero-crossing. This
chopping capability can be assimilated to that in vacuum or SF6 breakers;

3. IGBT-based breaker: Semiconductor breaker composed of two IGBTs (each one with
an antiparallel diode) connected in series with a common emitter. It has high chopping
capability, with a low clearance time at any instant, regardless of the nature of the
load. No electric arc is produced. Its high chopping capability cannot be assimilated
into any power system breaker.

There is a time lapse between the trip signal and the start of the breaker opening (or
de-energization point-on-wave). In the SCR breaker, this delay is on the order of hundreds
of microseconds. Thus, the trip signal must be sent, at least, around 10◦ before the desired
zero-crossing. In the IGBT breaker, the delay is in the order of microseconds. Then, this
delay can be neglected in the IGBT breaker, and trip signal and point-on-wave terms can be
used indistinctly. In the contactor, the delay could be on the order of several milliseconds
(5 to 10 milliseconds). This delay is undetermined because it depends on the instant at
which the trip signal is sent. Thus, the de-energization point-on-wave cannot be controlled
in the contactor.

3.2. Smart Switching for Inrush Current Elimination

Power transformers are typically designed to operate slightly above the knee point of
the saturation curve. A slight increase in flux beyond this point leads to a noticeable rise in
magnetizing current. After the energization, the maximum theoretical flux peak can reach
two times the rated flux peak plus the residual flux, φMAX = 2φPEAK + φR = 2·

√
2φN + φR,

if the primary winding resistance and the primary leakage inductance are neglected.
The basic principle to eliminate flux asymmetry and thereby minimize inrush currents

is to ensure that the prospective flux at energization matches the residual flux. Thus, the
optimal energization point-on-wave occurs when the prospective flux equals the residual
flux. Although there are two energization points-on-wave for each residual flux value, for
simplicity, only one of them will be considered in this paper.

It has been shown that the residual flux is only determined by the de-energization
trajectory, which is only influenced by the de-energization point-on-wave. Therefore, the
magnitude of the inrush current can be determined by controlling the de-energization and
energization points-on-wave.

The proposed strategy comprises two steps. First, forcing that the residual flux after
de-energization is at its maximum value (φRM or −φRM). For simplicity, only φRM is
considered in this paper. The second step is to energize the transformer at the optimum
energization point-on-wave for φRM. It is proposed to use φRM because this value can
be accurately determined as the crossing of the internal hysteresis loop with the positive
vertical axis.
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The next issue is the determination of the internal loop by the following straightfor-
ward method: a no-load test at nominal frequency and a second test at another frequency.
Both tests must be made at rated flux. To maintain rated flux in the core, the supply voltage
must be U = UN·(f /f N). Then, iH can be calculated according to

iH = i1 − iE = i1 −
u1

RE
= i1 −

u1

∆U/∆I
(1)

where u1 and i1 are the primary voltage and current from the nominal frequency test,
and ∆U/∆I is the ratio of change of primary voltage and current between both tests.
Alternatively, these two frequency no-load tests can be replaced by only one no-load test at
a very low frequency f (e.g., 2 Hz). This low-frequency test provides the internal loop as
i1 ≈ iH, and it must be made at rated flux.

To force φRM, the de-energization point-on-wave αD must be between 90◦ and αRM
(Table 1). The angle αRM can be obtained as

αRM = 180◦ − asin
(

φRM

φN PEAK

)
≈ 180◦ − asin

(
ωφRM√

2UN

)
(2)

The current interruption of a no-load transformer with an IGBT breaker can provoke
large overvoltages because the interruption of this breaker is typically abrupt. These
overvoltages can damage the transformer isolation. To avoid this, the de-energization trip
signal must be sent to the IGBT breaker when the current is near zero (see Figure 8). This
de-energization point-on-wave, α0, can be calculated as

α0 = 180◦ − asin
(

φ0

φPEAK

)
≈ 180◦ − asin

(
ωφ0√

2U1

)
(3)

where φ0 is the instantaneous flux when i1 is null, whose value can be obtained from the
external loop.
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In the case of the contactor, the current interruption is not abrupt. Thus, no over-
voltages are produced and αD can take any value between 90◦ and αRM (see Figure 8).
Althought αD cannot be controlled in the contactor, the study of its behavior is profitable
because its chopping capability can be assimilated to that of vacuum and SF6 power
system breakers.
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Finally, the trip signal of the SCR breaker can be sent at any instant because there
are only two possible de-energization points-on-wave (see Figure 8). As a consequence,
residual fluxes −φRM and φRM will always be achieved.

On the other hand, neglecting the primary winding resistance and the primary leakage
inductance, the flux after energization is given by

φ = φR +

√
2U1

ω
[sin(ωt)− sin(αE)] (4)

which illustrates that the energization transient flux is affected by the energization point-
on-wave, αE, and φR. To avoid the subsequent inrush current, the offset in Equation (4)
must be null. Then, if φR is equal to φRM, the optimal αE is

αE = 180◦ − asin
(
φRM

φPEAK

)
= αRM (5)

A whole smart switching strategy to avoid inrush current in single-phase transformers
of PV systems is illustrated in Figure 9 and summarized in Table 2.
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Table 2. Smart switching to avoid inrush currents.

Laboratory Tested
Breakers

Equivalent Power
System Breakers

Trip
Signal

De-Energization
Point-on-Wave, αD

Residual Flux Energization
Points-on-Wave, αE

SCR breaker Oil breakers 180◦ + α0 to α0 α0 φRM αRM

Contactor Vacuum and SF6
breakers 90◦ to αRM * 90◦ to αRM φRM αRM

IGBT breaker - α0 α0 φRM αRM

* Neglecting the delay between the trip signal and αD.

Finally, if the de-energization cannot be controlled, a compromise solution must be
adopted: the recommendation is to energize at a point-on-wave of 0◦ (when the voltage is
at its positive peak). This energization point-on-wave is optimal to avoid inrush current
when φR is null. Thus, the flux peak will be equal to or lower than φMAX = φPEAK + φR =√

2φN + φR.

4. Experimental Results and Discussion

The analysis of the residual flux and its de-energization trajectories was supported
by several experiments conducted on two different single-phase transformers of 320 VA,
120/72 V, short-circuit reactance 0.046, and 0.07 pu, which are denoted as T1 and T2. Each
experiment consists of two stages: (a) transformer de-energization at a desired point-on-
wave and (b) transformer energization at upward zero-crossing of the voltage, which results
in the most severe positive inrush current when φR is null. As the residual flux cannot be
measured directly, it has been estimated offline using the resultant inrush, as proposed
in [50]. The IGBT and SCR breakers have been used because the absence of electric arc
allows a clearer comprehension of the residual flux phenomenon. In each experiment, αD
is varied from 0◦ to 360◦ in steps of 10◦. The subsequent energizations have been achieved
at a constant αE = 270◦, in order to validate the residual flux value. It can be verified
that the results are consistent with the residual flux analysis discussed in Section 2.2. The
maximum residual flux value, obtained from the mentioned frequency no-load tests in
Section 3.2 and using Equation (1) is φRM = 0.326 pu for T1 and φRM = 0.344 pu for T2.
These values fall within the typical range established for small transformers in [46]. From
Equation (2), it is calculated that, when the energization point-on-wave when IGBT breaker
is used, αRM = 166.7◦ for T1 and αRM = 165.9◦ for T2. From the classical no-load test, it is
determined that the instantaneous flux value, when i1 is null (crossing between the vertical
axis and the external loop), is φ0 = 1 pu for T1 and φ0 = 0.94 pu for T2. Lastly, Equation (3)
yields the de-energization point-on-wave α0 = 132.5◦ for T1 and α0 = 138.4◦ for T2.

The results corroborate the dependence of the residual flux on αD and also corroborate
that there is no dependence on the interruption speed. Some external loops and the
corresponding external de-energization trajectories obtained during the experiments with
the IGBT and SCR breakers are depicted in Figure 10 and Figure 11, respectively.

The obtained inrush currents in the experiments with the SCR breaker were always of
the same amplitude. These results confirm that the de-energization with the SCR breaker
always leads to residual fluxes −φRM and φRM.

Transformers T1 and T2 have also been simulated in the Matlab environment to
validate the residual flux values obtained experimentally, each one with a JA and a Preisach
core model, as these two models are able to adequately represent the residual flux behavior.
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Figure 10. Measured external loops and de-energization trajectories when the IGBT breaker is used.
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The value of LE is calculated from the previously mentioned two no-load tests
(Section 3.2) at two different frequencies with the same flux level:

LE =
N1

2

RE
=

N1
2

∆U/∆I
(6)

where N1 is the number of primary winding turns. The winding parameters, R1, R2, Ld1,
and Ld2, have been estimated with the classical short-circuit test.

The JA model parameters have been adjusted manually. The Preisach Distribution
Functions (PDFs) of the Preisach models have been calculated with the centered cycles
method [51]. This method uses a set of steady-state symmetrical internal loops at different
voltages. The internal loops are obtained as explained in Section 3.2.

In all simulations, the circuit breaker is supposed to be ideal (close to the behavior of
the IGBT breaker). Figure 12 shows the residual flux values as a function of αD, obtained
from JA and Preisach simulations, as well as the values estimated from the experiments.
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There is close agreement between experiments and simulations, and the results validate the
presented analyses of the residual flux and the de-energization trajectories.
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The Jiles–Atherton and Preisach hysteresis models have yielded accurate predictions
of the residual flux, even when parameter estimation in both models has been based on
limited information (only from no-load tests). The inclusion of additional information from
asymmetric minor loops in the parameter estimation process does not result in significant
improvements in the prediction of residual fluxes.

The proposed strategy to avoid large inrush currents was validated for the SCR and
the IGBT breakers. Figure 13 shows inrush currents of different severity for transformer T1
with a de-energization point-on-wave αD = 90◦. In this figure, both switchings have been
made with the SCR breaker. Figure 13a corresponds to the worst case of inrush current
(around 12 pu), as the energization point-on-wave is αE = 270◦. It is important to take into
account that, for large transformers, the maximum residual flux values are larger (around
0.7 pu) and the resulting inrush currents with this approach can be more severe. Figure 13b
shows the resulting currents with the proposed smart switching using the SCR and the
IGBT breakers. As can be seen, there is no overcurrent.

Lastly, Figure 14 depicts the compromise solution (energization point-on-waveαE = 0◦)
when the de-energization cannot be controlled. The inrush current is less severe, with a
first peak around 1 pu. This demonstrates that good results can be obtained even with
uncontrolled de-energization when the energization is adequately controlled.

The measurements and simulations results validate the following:

1. The residual flux values are bounded by the internal hysteresis loop, i.e., between
−φRM and φRM. The maximum residual flux value, φRM, is not given by the red point
in Figure 4, but by the green point, i.e., φ0 is not φRM. Note that φRM is incorrectly
marked in many textbooks as the red point in Figure 4;

2. The eddy losses do not influence the residual flux;
3. The residual flux is independent of the interruption speed of the circuit breaker and

solely depends on the starting point of de-energization;
4. The proposed smart switching for de-energization and subsequent energization ef-

ficiently avoids the inrush currents through a more simplistic method than those in
the literature;

5. The smart switching only requires two pieces of data (obtained from only two simple
no-load tests, which characterize the static hysteresis loop and the dynamic loop):
φRM and φ0, or the corresponding voltage points-on-wave αRM and α0, along with
understanding of the used breaker technology.
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The proposed smart switching can also be implemented, without modifications, to a
three-phase PV system only if the transformer is a three-phase bank (three single-phase
units) with a star–star connection. However, if the transformer is of the three-legged type,
or there is a delta connection, the proposal cannot be directly implemented as described in
this paper. Major changes would be necessary, although the theory regarding residual flux
and de-energization trajectories remains the same.

5. Conclusions

The transient de-energization trajectories of the transformer have been analyzed in this
paper for three main purposes: (1) understanding its behavior, (2) predicting residual flux
values, and (3) to propose a smart switching methodology to avoid inrush currents in single-
phase grid-connected PV systems that is more simplistic than the literature methodologies.

Regarding the first point, in this paper, it has been demonstrated that (a) the range
of residual flux values is determined by the internal hysteresis loop, while eddy losses
have no influence, and (b) the residual flux value is independent of the circuit breaker
interruption speed and only depends on the de-energization point-on-wave.

The proposed smart switching only requires two pieces of data (obtained from only
two simple no-load tests): φRM and φ0, or the corresponding voltage points-on-wave αRM
and α0, along with understanding of the used breaker technology. Opposite to the literature
methodologies, the proposed strategy does not require one to estimate the residual flux
or to preset a known value before each energization, avoiding complex measurement
setups and continuous signal acquisition during each de-energization. It can be applied to
any power transformer installed on the grid or in industrial facilities, extending beyond
transformers in laboratories.

The implementation of the smart switching increases the reliability of a grid-connected
PV system. This approach effectively reduces mechanical stress and other hazardous
effects experienced by the transformer, protecting them from damage and prolonging their
operating life. Additionally, voltage fluctuations in the grid are substantially reduced and
false tripping of protective relays is prevented, ensuring a more stable power supply. This,
in turn, safeguards voltage-sensitive loads from interruptions.

Although the proposed smart switching is applicable to SCR and IGBT breakers
with equal results, the SCR breaker is a more cost-effective suitable solution for large
power systems.
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Appendix A. Transformer Core Models

Appendix A.1. Static Jiles–Atherton Model

The general relation among the flux density, B, the magnetization, M, and the magnetic
field intensity, H, is

B = µ0(H + M) (A1)
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where µ0 is the vacuum magnetic permeability. The JA model describes the relation
between M and H by using an anhysteretic curve Man − Heff (anhysteretic magnetization as
a function of the effective field strength). The original JA model uses a modified Langevin
function for this anhysteretic curve. This paper uses the function proposed in [52] for a
better fit of the hysteresis loop because it depends on more parameters than the modified
Langevin function:

Man = sgn(Heff)

[
a1|Heff|+ |Heff|b

a3 + a2|Heff|+ |Heff|b

]
Ms (A2)

where Ms is the saturation magnetization and a1, a2, a3, and b are positive constants, with
two constraints: a2 ≥ a1 and b must be a positive integer (with a common value of 2).

The JA model is defined by the following differential equation [52–55]:

dM
dH =

c dMan
dHeff

+
δM(Man−M)

δk
µ0
−α(Man−M)

1−c

1−αc dMan
dHeff

Heff = H + αM

(A3)

where α, c, and k are parameters and δM and δ are calculated as follows [52–55]:

δM =


0 if H < 0 and Man −M ≥ 0
0 if H ≥ 0 and Man −M ≤ 0
1 otherwise

δ =

{
1 if H ≥ 0
−1 otherwise

(A4)

Appendix A.2. Static Preisach Model

The main idea of the Preisach model is that the magnetic field in a ferromagnetic
material can be considered as a set of elementary hysteresis loops called hysterons, which
only have two states: +1 and −1. They are illustrated in Figure A1. A switching field
couple, which can be expressed by the plane (α, β), characterizes a hysteron. Representing
the saturation flux density and saturation magnetic field intensity as BSAT and HSAT,
respectively, when H = HSAT, all hysterons are positive and the flux density is B = BSAT.
At the other tip of the loop, if H = −HSAT, all hysterons are negative and B = −BSAT.
This means that α and β are bounded to the range [−HSAT, HSAT]. As hysteresis is an
energetically dissipative phenomenon, the following constraint must be accomplished:
α ≥ β. These conditions define a triangle in the plane (α, β), known as the Preisach triangle,
depicted in Figure A1b.
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The static Preisach model can be defined mathematically by a surface integral as
follows [56–58]:

B =
x

α≥β
µ(α,β)γα,β(H)dαdβ (A5)

where γα,β( ) is the operator associated with each hysteron and µ(α,β) is the Preisach
Distribution Function (PDF), which depends on the core and determines the weight of each
hysteron. The value of γα,β depends on the actual input, H(t), and the previous state and
is defined as [56–58]

γα,β(H) =


+1 H > α

previous output β < H < α

−1 H < β

(A6)
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