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Abstract: The purpose of this research work was to examine the hydroelectric potential of wastew-
ater treatment plants by harnessing the kinetic and/or potential energy of treated wastewater for
electricity generation. Such a concept encapsulates the essence of renewable energy and resonates
with international sustainable development mandates and climate change adaptation strategies. The
primary objective was to analyze the performance parameters of the Francis turbine, a key component
of this energy generation system. An experimental analysis encompassed model tests on the Francis
turbine, simulating varied flow conditions using the GUNT turbine. Additionally, historical data from
the Toruń Wastewater Treatment Plant (WWTP) 2018 annual wastewater discharge were employed to
validate the findings and shed light on real-world applications. The tested efficiency of the Francis
turbine peaked at 64.76%, notably below the literature-reported 80%. The turbine system’s overall
efficiency was approximately 53%, juxtaposed against the theoretical value of 66.35%. With respect
to the Toruń WWTP data, the turbine’s power output was highest at 24.82 kW during maximum
wastewater flow, resulting in a power production of 150.29 MWh per year. The observed turbine
efficiencies were consistent with the previously documented range of 30% to 96%. The turbine
displayed optimal outputs during heightened flow rates and maximized production at more frequent,
lower flow rates throughout the year. Implementing such turbines in wastewater treatment plants
not only aligns with global renewable energy goals but also boasts lower construction costs and
environmental impacts, primarily due to the utilization of existing infrastructure. Furthermore,
wastewater flow consistency counters the seasonal variability seen in conventional water treatment
plants. These findings pave the way for more energy-efficient design recommendations for turbines
within wastewater treatment and hydropower plants.

Keywords: turbines; hydropower plants; wastewater systems; energy potential; renewable energy
sources; micro hydro turbine; Poland

1. Introduction

Hydroelectric power plants use the energy of flowing watercourses (run of river), the
energy stored in water reservoirs (storage), the difference in water level between reservoirs
(pumped storage), or the energy of ocean waves and tides to generate electricity [1,2].
This water is sent each time to the turbine and then to the generator and the transmission
network, where it is passed on to the power grid and delivered to consumers [3].

These facilities are usually located directly on rivers, above (upstream) or below
(downstream) water reservoirs (i.e., natural or man-made dams), in the form of a system of
upper and lower reservoirs, in a cascade of water reservoirs, in diversion (energy) channels,
as underground power plants, or in seas and oceans [4]. Water sources used in this type of
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facilities can be natural (watercourses, reservoirs, seas, and oceans, among others) or anthro-
pogenic: industrial (e.g., flushing systems in industrial plants), agricultural (e.g., irrigation
systems) and municipal (e.g., water treatment plants, sewage treatment plants, rainwater
tanks in urban areas, landfills) [5,6]. The major advantage of using hydropower systems
that use anthropogenic water sources is their predictability. For example, in wastewa-
ter treatment plants (WWTPs), in most cases, water flows to the plant constantly, which
ensures the stability of the operation of such a system, in contrast to the use of natural
water flow in rivers, which is variable in time [7,8]. Another advantage is the reduction
in greenhouse gas emissions in such plants, which can use water energy as a supplement
to conventional sources based on non-renewable fuels, e.g., hard coal and lignite, natural
gas, and petroleum [9]. Moreover, in contrast to hydropower plants located on rivers or
water reservoirs, siting such a solution in an existing anthropogenic facility limits several
environmental impacts, for example, the migration of aquatic organisms, alteration of
conditions for transport, and accumulation of bottom sediments, resettlement of people,
or effects on oxygen and thermal conditions of water within hydropower plants [10,11].
Anthropogenic objects are also usually monitored in the context of various water quality
parameters and environmental impacts, which facilitates using such a solution [12].

Globally, there is great potential for the use of wastewater flow in WWTPs to generate
electricity through hydropower plants; about 360 km3 of municipal wastewater is generated
annually, of which 11.4% is treated and reused in WWTPs (equivalent equal 78,082.19 m3

s−1). Another 41.4% is treated and discharged to receiving waters (283,561.6 m3 s−1) [13].
For comparison, the average annual water discharge from the Amazon River basin ranges
from about 10,000 to 225,000 m3 s−1 [14]. In 2022, total hydropower generation worldwide
was 4326.76 TWh (Europe: 697.70 TWh, Poland: 2.06 TWh) [15,16]; assuming that an aver-
age of 82.8 m3 is needed to generate 1 MWh (example of U.S. gross electricity consumption
for hydropower) [17], that is a total of 358.26 km3 of water. This means that wastewater
has great potential for electricity generation: on average, similar to all the water used for
hydropower worldwide in 2022, or 4347.77 TWh (estimated values). In 2020, the amount of
municipal wastewater produced in Europe was 55 km3, the largest amount in Russia, Spain,
and France (12.32, 5.68, and 5.12 km3, respectively), and in Poland—2.17 km3 [13]. The
potential for electricity production from sewage in this region with the above assumptions
was equal to 664.24 TWh (Poland: 26.21 TWh). The calculated values are indicative only
and would require separate scientific research.

Hydropower investments align with international energy policies. In the European
Union, for example, the European Green Deal aims to achieve at least 42.5% renewable en-
ergy share of final energy consumption by 2030 [18]. In addition, hydropower development
is part of the International Energy Agency’s goal of net zero carbon dioxide emissions by
2050 [19], or the United Nations Sustainable Development Goals; in particular, “affordable
and clean energy” (goal 7), “climate action” (goal 13), and “clean water and sanitation”
(goal 6) [20], among others. For the above reasons, research on the use of hydropower in
WWTPs may become more important soon.

As mentioned, turbines play an important role in a hydroelectric power plant’s gen-
eration capacity. A water turbine is an engine that converts the energy of flowing water
(kinetic and/or potential) into useful work (rotational energy) [21]. The whirlpool created
by the water flow generates torque, which is used to generate electricity by generators in a
hydroelectric power plant [22].

Turbines can be subdivided into, e.g., based on their type and system [23]. The first
subdivision refers to the diversification of energy conversion. It distinguishes impulse
turbines (splash turbines), which use the energy of the velocity hitting the shells attached
to the circumference of the rotor (e.g., Pelton, Turgo, and Banki), and reaction turbines
(thrust turbines), which use the pressure energy exerting pressure on the rotor of the blades
(e.g., Francis, Kaplan, and propeller) [24,25]. The second division results from the chosen
design solutions, e.g., (a) based on the location of the turbine in an open chamber, in a
spiral, in a tube, in a siphon, with bell inlet, twin, (b) based on the location of the turbine
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shaft: horizontal, diagonal, vertical (c) based on the number of rotors: single rotor and
multirotor [26].

The Francis turbine is one of the most commonly used turbines in hydroelectric power
plants; it was invented in 1948 by James Francis based on his improved designs by other
engineers: Benoît Fourneyron and Jean-Victor Poncelet [27]. The Francis turbine consists of
a rotor, an intake tube, a control wheel, and a specially made casing, usually in the shape
of a spiral. During the operation of the device, the flow changes its direction from radial
to axial, and the water leaves the turbine through the intake pipe [28]. The classification
of the Francis turbine according to the range of speed characteristics is as follows: slow
speed—speed ratio from 50 to 150 and hydraulic gradient >110 m; medium speed—151–250
and 50–110 m; and high speed—251–450 and <50 m [29]. The device is suitable for a wide
range of flows and hydraulic heads; according to a review of technologies used in low-head
hydropower plants by Loots et al. (2015) [30], the Francis turbine operates in the range of
flows from 0.05 m3 s−1 to 60 m3 s−1, a hydraulic head from 2 to 500 m, with an output
power (capacity) of the turbine from 1 kW to 1000 MW. The efficiency of this type of solution
is assumed to be about 80% when the flow is used from 50 to 100%, while it is 0% when the
flow is used up to 20% [31].

An important aspect of the operation of hydropower plants is their profitability [32].
It is estimated that the cost of electrical and mechanical components ranges from 20%
in large hydropower plants up to as much as 60–70% in some cases [33] (especially in
micro hydropower plants with a capacity below 100 kW and a head less than 10 m [34]).
The operating costs of water turbines decrease with the capacity and head. Among the
Kaplan, Pelton, and Francis turbines tested, Francis turbines are considered the most
profitable in micro hydropower plants [24]. Also gaining importance are, among others,
axial flow pumps as turbines due to their low price and easier implementation compared
to other types of turbines [35]. Important aspects in the operation of this turbine are
energy performance, tip leakage flow, and cavitation performance [36,37]. The use of
hydropower energy technology in wastewater treatment plants can also be a way to recover
energy [8,38], in addition to, among others, the following solutions: rainwater collection
systems, hybrid water supply systems, co-digestion and cogeneration systems, and use of
sewage sludge [39–41].

This study aims to determine the hydropower potential of using treated wastewater
discharged from the WWTP. This paper presents a model study using a Francis turbine
from GUNT Geraetebau GmbH–Barsbüttel, Germany (catalog number HM 150.20), an
analysis of the turbine’s operating parameters based on model and literature tests, and a
determination of the energy potential of using this solution using the example of the central
WWTP in Toruń (i.e., northern Poland, Central Europe). This plant was selected because it
uses a Francis turbine in a small hydroelectric power plant. It utilizes the top water from
the secondary sedimentation tanks, which is discharged into a system of top and bottom
water basins. It is one of the few plants in Poland that uses treated wastewater to generate
energy. Our findings show that it is possible to verify the profitability of such solutions and
formulate recommendations and guidelines for their operation.

The findings of this study can serve as a foundation for crafting turbine design rec-
ommendations in both hydropower plants and WWTPs. This aligns with the goals of
sustainable development and international energy policy, which envisage increasing the
share of renewable energy sources and reducing greenhouse gas emissions. Additionally,
this type of analysis of the functioning of micro hydro turbine performance installed in a
wastewater treatment plant based on model studies in Poland has not been performed so
far, which is an innovative element. As mentioned, this research has potential due to the
possibility of using wastewater for hydropower purposes on a larger scale.

The rest of the manuscript is organized as follows: Section 2 presents brief informa-
tion about the study site, experimental campaign, and overall methodological approach;
Section 3 presents the main results and discusses their relevance regarding the benefit of
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recovering clean energy from the waste treatment plants. Finally, the main conclusions
drawn from this study are presented in Section 4.

2. Materials and Methods
2.1. Francis Turbine Model Tests

The results of tests performed on a hydro turbine and mathematical formulas were
used to calculate the hydropower potential for the selected research facility. For the
model tests conducted in the water laboratory of Prof. Julian Wołoszyn at the Institute of
Environmental Engineering of the Wrocław University of Environmental and Life Sciences,
an experimental Francis turbine from GUNT Geraetebau GmbH (Barsbüttel, Germany)
with the catalog number HM 150.20 (Figure 1) was used [42].
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Figure 1. Francis turbine GUNT HM 150.20 (GUNT Geraetebau GmbH, Barsbüttel, Germany) used
in model tests (K. Mastalerek).

The main elements of the turbine are:

• Inlet pipe with a manometer mounted on it (Figure 2a);
• Rotating shaft with weights (Figure 2b);
• Steering system (Figure 2c);
• Impeller (Figure 2d);
• Outlet pipe (Figure 2e).

Turbine rotational speed was measured using a Benetech GM8905 (Benetech Poland,
Kalisz, Poland) laser tachometer (Figure 2f) pointed at the rotating shaft. The instrument
makes measurements in the range of 2.5–99,999 rpm. The measurement error is 0.1% in
the 2.5–999.9 rpm (resolution 0.1 rpm) and 1% in the range of 1000–99,999 rpm (resolution
1 rpm). The sampling time is 1 s, and the laser power is 2–5 mW [43]. The error of the
laboratory measuring equipment used was a maximum of 5%.

The model experiments consisted of flowing water through a turbine. The fluid
pressure was read from a manometer attached to the inlet pipe. The hydraulic head can be
calculated (Formula (1)) [44].

H =
p

ς·g (1)

where:

H—hydraulic head (m);
p—pressure (Pa);
ς—liquid density (ς = 1000 kg·m−3 was assumed, kg·m−3);
g—gravitational acceleration (g = 9.81 m·s−2 was assumed, m·s−2).
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Figure 2. Turbine components used in the model tests: (a) inlet pipe with pressure gauge, (b) rotating
shaft with weights, (c) control system, (d) impeller, (e) outlet pipe (K. Mastalerek), and (f) Benetech
GM8905 laser tachometer (K. Mastalerek).

Then, through the appropriate setting of the steering wheel and the weights placed at
the shaft, the appropriate rotational speed of the turbine is obtained (Formula (2)) [45].

T = F · D
2

(2)

where:

T—torque (Nm);
F—the force of the weight acting on the shaft (F = F1 − F2; F1—force read from the right
weight, N, F2—force read from the left weight, N) (N);
D—shaft diameter (D = 0.05 m was assumed, m).

The output power (capacity) can be calculated from the previously obtained data
(Formula (3)) [46]:

Pout = T · 2 · π · n
60

(3)

where:

Pout—output power (capacity), W;
n—number of rotations, -.

The hydraulic power is then calculated (Formulas (4) and (5)) [47]:

Phyd = V · H · ς · g (4)

Phyd =
V·p·105

1000 · 60
(5)
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where:

Phyd—hydraulic power (capacity) (W);
V—volumetric flow through the turbine (m3·s−1);
H—hydraulic head (m);
ς—liquid density (ς = 1000 kg·m−3 was assumed, kg·m−3);
g—gravitational acceleration (g = 9.81 m·s−2 was assumed, m·s−2);
p—gauge pressure (bar).

Determination of turbine efficiency from Formula (6) [48]:

ηturb =
Pout

Phyd
(6)

where:

ηturb—turbine efficiency, -.

In addition to model tests, the work aims to calculate the theoretical energy potential
in the WWTP in Toruń.

Calculation of turbine set efficiency (Formula (7)) [23]:

ηt = ηturb · ηtransm · ηgen · ηpout, (7)

where:

ηt—turbine set efficiency (-);
ηturb—turbine efficiency (ηturb = 0.80 was assumed, -);
ηtransm—transmission efficiency (ηtransm= 0.95 was assumed, -);
ηgen—generator efficiency (ηgen= 0.90 was assumed, -);
ηpout—power output efficiency (ηpout = 0.97 was assumed, -).

Calculation of generated power (Formula (8)) [37]:

Pgen = H · V · ηt · g, (8)

where:

Pgen—generated power (kW);
H—hydraulic head (m);
V—flow through the turbine (m3·s−1);
ηt—turbine set efficiency (-);
g—gravitational acceleration (g = 9.81 m·s−2 was assumed, m·s−2).

Calculation of the final power (Formula (9)) [44]:

Pfinal = Pgen − (Pgen · Pown), (9)

where:

Pfinal—final power (kW);
Pgen—generated power (kW);
Pown—own power consumption (Pown = 0.02 was assumed, -).

Calculation of the possible annual electricity production (Formula (10)) [49]:

Pprod = Pfinal · t, (10)

where:

Pprod—annual electricity production (kWh);
Pfinal—final power (kW);
t—operating time of the hydropower plant in the WWTP, h.
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The article also performed the non-parametric Wilcoxon signed-rank test, comparing
statistical significance between two groups of data based on the assigned sum of ranks,
expressed by the z score (p < 0.05). The null hypothesis is that the differences in single-
sample cases are distributed centered about zero. Absolute values are ranked [50]. In
this case, these are paired model and literature data for the final turbine capacity (power)
obtained and the annual electricity production depending on the hydraulic head.

2.2. Study Case and Research Facility

The “Centralna” municipal WWTP in Toruń was selected as a case study facility. It is
in northern Poland, in the Kujawsko–Pomorskie voivodeship, in the western part of Toruń.
It is a mechanical–biological WWTP with a maximum capacity of 90,000 m3/day. Taking
into account data on annual amounts of wastewater from the period 2018–2022, the average
was 15.56 million m3 and ranged from 15.15 million m3 in 2019 to 16.50 million m3 in 2021
(from 97.54% to 106.01% of the average amount of wastewater; normal years). This object
treats domestic and industrial wastewater, infiltration, and stormwater from Toruń [51]. Its
location is shown in Figure 3.
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Figure 3. Location of the “Centralna” WWTP in Toruń in Poland (map background from https://mapy.
geoportal.gov.pl/imap/Imgp_2.html?gpmap=gp0, (accessed on 24 August 2023)).

The technological process (Figure 4) consists of three stages: mechanical treatment,
biological treatment, and sludge treatment. In the first stage, the mechanical treatment
of the wastewater, supplied through the sewage network and transported by septic tank
trucks, is carried out by passing through grates and sand traps. Then, the impurities enter
biological reactors, where they undergo the processes of dephosphorization, nitrification,
and denitrification. Later, the wastewater enters secondary sedimentation tanks, where
the activated sludge is separated by sedimentation. The effluent from the secondary
sedimentation tanks is discharged into the Vistula River through a metering channel [52,53].

https://mapy.geoportal.gov.pl/imap/Imgp_2.html?gpmap=gp0
https://mapy.geoportal.gov.pl/imap/Imgp_2.html?gpmap=gp0
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Figure 4. Scheme of the Central Wastewater Treatment Plant in Toruń (own elaboration based
on [51,53].

An innovative device that distinguishes Toruń’s WWTP from the other treatment
plants in the country is the Francis water turbine, powered by the outflowing treated
wastewater (overflow water from the secondary sedimentation tanks). Its operation is
possible because of the current difference in elevation between the upper and lower basins.
The hydroelectric power plant is located at the outflow of the WWTP before the outflow
channel to the Vistula River. The turbine set used in the treatment plant is automated; it
enables the control of the processes in the hydropower plant. This applies to the automatic
adjustment of the guide vanes, keeping the upstream water level constant, control of the
upstream and downstream water level, automatic switching on and off of the turbine after
a power failure, as well as maintenance and display of the turbine parameters in real time,
online [54]. The installed capacity of the hydropower plant is 55 kW [51–54]. Examples of
the turbine’s operating parameters can be found in Table 1.

Table 1. Turbine operating parameters on 25 May 2018 [51–54].

Average Active
Turbine
Capacity

(kW)

Water Flow
Through
Turbine
(m3·s−1)

Total Water
Discharge
(m3·h−1)

Top Water
Level

(m a.s.l.)

Bottom
Water Level

(m a.s.l.)

Head
(m)

20.89 0.56 2368.18 42.75 35.30 7.45

Figure 5a–c show photos of the turbine and the hydropower building and an illustra-
tive diagram of the hydropower plant operation used in the WWTP.
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Figure 5. Small hydroelectric power plant at the sewage treatment plant in Toruń: (a) view of the Fran-
cis turbine (K. Mastelerek); (b) view of the building of the hydroelectric power plant (K. Mastalerek);
(c) preview of the operation of the plant (own elaboration based on [53]).

3. Results and Discussion
3.1. Model Tests

Table 2 shows examples of water turbine test results during tests conducted in the
Water Laboratory of the Institute of Environmental Engineering of the Wroclaw Univer-
sity of Environmental and Life Sciences in Wrocław. The laboratory tests were aimed at
checking the operation of the turbine and its subsequent verification in real conditions in
Toruń’s WWTP.

Table 2. Results of research on a model Francis turbine.

Sample
No.

Pressure
(bar)

Rotational
Speed
(rpm)

Flow
(L·min−1)

Torque
(Nm)

Weight
(N)

Output
Capacity

(W)

Hydraulic
Capacity

(W)

Efficiency
(%)

1 0.14 135 17.7 0.008 0.1 0.106 4.13 2.566

2 0.14 122 17.7 0.018 0.3 0.224 4.13 5.411

3 0.12 111 17.7 0.023 0.5 0.261 3.54 7.384

4 0.13 100 17.7 0.033 0.7 0.340 3.835 8.870

5 0.14 98 17.7 0.041 0.8 0.423 4.13 10.245

6 0.14 90 17.7 0.045 1 0.424 4.13 10.264

7 0.14 94 17.7 0.05 0.9 0.492 4.13 11.911

8 0.14 83 17.7 0.048 1.2 0.413 4.13 9.992

9 0.14 75 17.7 0.05 1.4 0.396 4.13 9.504

10 0.14 69 17.7 0.053 1.5 0.379 4.13 9.181

11 0.13 62 17.7 0.053 1.5 0.341 3.835 8.884
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Table 2. Cont.

Sample
No.

Pressure
(bar)

Rotational
Speed
(rpm)

Flow
(L·min−1)

Torque
(Nm)

Weight
(N)

Output
Capacity

(W)

Hydraulic
Capacity

(W)

Efficiency
(%)

12 0.14 67 17.7 0.055 1.5 0.386 4.13 9.339

13 0.14 61 17.7 0.055 1.6 0.351 4.13 8.503

14 0.14 58 17.7 0.058 1.7 0.349 4.13 8.452

15 0.14 52 17.7 0.059 1.8 0.320 4.13 7.742

16 0.14 43 17.7 0.063 1.9 0.281 4.13 6.811

17 0.14 34 17.7 0.059 2 0.209 4.13 5.062

Seventeen tests were performed at a flow rate of 17.7 L/min (i.e., the maximum
possible value under laboratory conditions) and a variable number of turbine revolutions.
As the number of revolutions decreased, the torque and load increased in most cases.
The maximum power and efficiency were obtained at 94 rpm (0.492 W and 11.911%,
respectively) and the lowest at 135 rpm (0.106 W and 2.566%). These two variables change
directly proportional to the number of revolutions up to 94 rpm and inversely proportional
to this value (i.e., diagram in the form of an inverted parabola). The average values were:
torque = 0.0453 Nm, output power = 0.335 W, and efficiency = 8.24%. The relationships
between the characteristics of the model turbine, i.e., revolutions and torque and power,
and revolutions and efficiency, are shown in Figure 6a–c.
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3.2. Research Facility

Based on data obtained from Toruńskie Wodociągi Sp. z o. o. In Toruń, a hydrograph of
discharges from 2018 (Figure 7a) and a flow–duration–sum curve (Figure 7b) were prepared
on the volume of wastewater discharged from the WWTP. The minimum daily volume
of wastewater discharged from the WWTP in 2018 was 33,415.92 m3 (1 November), the
average was 42,742,327 m3, and the maximum was 76,073.59 m3 (13 July). This means that
the maximum capacity of the treatment plant, i.e., 90,000 m3, was not exceeded on any day.
The total annual volume of effluents discharged exceeded 15.6 million m3 (average for the
period 2018–2022: 15.56 million m3), with the highest value in January (1.541 million m3)
and the lowest in November and June (1.156 and 1.196 million m3, respectively).
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Figure 7. (a) Hydrograph of treated wastewater flow from the “Centralna” wastewater treatment
plant in Toruń in 2018; (b) curve of treated wastewater flow duration sums in 2018 with identified
characteristic flows.

In using the flow curve, three characteristic flows of treated wastewater were consid-
ered in estimating the energy potential:

• Mean annual flow of 0.495 m3·s−1 (duration t = 142 days);
• Minimum annual flow of 0.387 m3·s−1 (duration t = 365 days);
• Intermediate annual flow of 0.450 m3·s−1 (duration t = 265 days).

Thanks to the model tests, it was also possible to estimate the efficiency of the Francis
turbine under simulated real conditions in a WWTP. Figure 8 shows the relationship
between turbine speed and efficiency. The turbine started its operation at 700 rpm (30%
flow utilization) with an efficiency of about 54% and reached its maximum efficiency at
1200 rpm (64.76%), then gradually dropped to an efficiency of almost 10% at 2300 rpm
(100% flow utilization).
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Figure 8. Relationship between turbine efficiency and rotational speed.

Therefore, in the calculations of the energy potential of the enterprise for the model
conditions, the turbine efficiency was assumed to be 64.76% for the flow of 0.495 m3 s−1

and 63.88% for 0.387 m3 s−1 and 0.45 m3 s−1 (according to the data in the turbine manual
Francis GUNT HM 150.20), and the efficiency according to the literature at the level of 80%
for all values of the characteristic flows.

Figures 9 and 10 show the variability of final turbine output (capacity) and annual
electricity production as a function of the hydraulic head for the above model assump-
tions (according to the instructions accompanying the unit) and the literature efficiency
and characteristic flows of the WWTPs. For all flow variations, the final power and an-
nual power production increase directly to the hydraulic head. The highest final turbine
power (i.e., 23.68 kW) was obtained for the variant of average annual wastewater flow
(Q = 0.495 m3 s−1), with the assumed efficiency of the system (ηt = 66.348% [31]) and the
maximum hydraulic head (H = 7.5 m). As for the annual electricity production, the highest
value (over 162.18 MWh) was also obtained in the variant with the literature efficiency
and for the highest hydraulic head, but for the lowest flow (Q = 0.387 m3 s−1), since it
occurred 365 days a year, unlike the other two variants. The lowest performance values
were observed for the variant with the model efficiency (ηt = 53.717% and 52.979%, re-
spectively) for the lowest flow, in terms of energy production for the average flow and
model efficiency (for H = 7.5 m, respectively: 14.78 kW and 65.38 MWh). The maximum
differences in the achieved performances between the different flow variants were: for
the literature efficiency [31]—28.59%; for the model efficiency—29.79%; and between the
efficiencies—60.39%. For annual electricity production, these differences were about two
times for a given efficiency (101.03% and 98.82%) and about 2.5 times between efficiencies
(148.36%). In addition, the power consumption for own use was about 2% in each case.
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to the literature efficiency (ηturb = 80%); (b) according to the model efficiency (for
Q = 0.495 m3 s−1 − ηturb = 64.76%, for Q = 0.45 and 0.387 m3 s−1 − ηturb = 63.88%).
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Figure 10. Relationship between hydraulic head and annual electricity production:
(a) according to literature efficiency (ηturb = 80%); (b) according to model efficiency (for
Q = 0.495 m3 s−1 − ηturb = 64.76%, for Q = 0.45 i 0.387 m3 s−1 − ηturb = 63.88%).

Figure 11 shows the variability of final turbine output and annual electricity production
as a function of the hydraulic head for the above model assumptions (according to the in-
structions included with the instrument) and the literature efficiency [31] and characteristic
flows of the WWTPs. For all flow variations, the final power and annual power production
increase directly to the hydraulic head. The highest final turbine power (i.e., 23.68 kW) was
obtained for the variant of average annual wastewater flow (Q = 0.495 m3 s−1), with the
assumed literature efficiency of the system (ηt = 66.348%) and the maximum hydraulic head
(H = 7.5 m). As for the annual electricity production, the highest value (over 162.18 MWh)
was also obtained in the variant with the literature efficiency and for the highest hydraulic
head, but for the lowest flow (Q = 0.387 m3 s−1), since it occurred 365 days a year, unlike
the other two variants. The lowest performance values were observed in the variant with
model efficiency (ηt = 53.72% and 52.98%, respectively) for the lowest flow, in terms of
energy production for the average flow and model efficiency (for H = 7.5 m, respectively:
14.78 kW and 65.38 MWh). The maximum differences in the achieved performances be-
tween the different flow variants were as follows: for the literature efficiency—28.59%; the
model efficiency—29.79%; and between the efficiencies—60.39%. For annual electricity pro-
duction, these differences were about two times for a given efficiency (101.03% and 98.82%)
and about 2.5 times between efficiencies (148.36%). In addition, the power consumption
for own use was about 2% in each case. By comparing the obtained literature and model
values for the analyzed parameters, statistical significance was obtained (p < 0.05), carried
out using the Wilcoxon signed-rank test. The values of the z variable were −2.44701 for
the final capacity (average difference = 9.3 MW) and for the annual electricity production,
−6.0308 (average difference = 61.98217 MWh).

The results obtained in connection with the efficiency of the Francis turbine follow
the research carried out by other researchers. They show that the efficiency of this type
of turbine is within wide limits, between 30% and 96% [55]. The rotors greatly influence
the operating parameters of the turbine, and the methods of optimizing them and the
design principles are of interest to researchers [52]. The methods to increase the efficiency
of Francis turbines are based on the theory of the hodograph, mathematical modeling using
computational fluid dynamics (CFD) software, and the use of a system of multiple turbines
or adjustable guide vanes, among others [56]. For example, the following solutions are
used to increase the efficiency of other turbines: needle and multi-nozzle systems in Pelton
turbine, adjustable runner blades in Kaplan turbine, guide vanes and flap systems in Banki
turbines, the use of a system with several pumps as turbines [57].
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a hydraulic head of H = 6.95 m.

A study by Power et al. (2014) [58] compared the parameters of Kaplan, Francis,
propeller, and pump turbines as turbines at the outlet of the Ringsend WWTP. It shows
that Francis and Kaplan turbines produce the most energy on average and per year but
exceed the cost of the other turbines overall and per unit of output (the pump as the
turbine is the most cost-effective, even though it produces the least energy). In turn,
Bousquet et al. (2017) [59] and Darries et al. (2022) [60] found that the turbine installed
at the outlet of a WWTP is the most suitable due to its low cost and technological adap-
tation to a low head; they also identified 19 sites suitable for the use of hydropower in
WWTPs in Switzerland, with a total annual capacity of 9.3 GWh. Also, according to
Ak et al. (2017) [61], the Archimedean screw was identified as the most suitable for instal-
lation at the outlet of a WWTP due to its cost efficiency and low environmental impact
(however, they require more space than Francis turbines); the payback period of the in-
vestment in Tatlar WWTP (Turkey) was estimated at 2.6 years. For comparison, according
to data cited by Chae et al. (2015) [7], the hydropower potential of 15 WWTPs in South
Korea with a daily wastewater volume of more than 20,000 m3 and a head of more than
2 m is 11 GW. From a review study by Llácer-Iglesias (2021) [62], which considered 49 hy-
dropower plants in WWTPs, it appears that the installed capacity of operating hydropower
plants in WWTPs is low, up to 4.5 MW. The dominant countries in the application of these
technologies are Switzerland and South Korea, as mentioned above. The most common tur-
bines are Pelton and Kaplan turbines. The efficiency of such systems in terms of electricity
production (capacity factor) ranges from 15.5% to 52.7% (production from 0.06 to 5.5 GWh
per year). In Poland, there are only two hydropower plants in WWTPs with a total capacity
of 81 kW (Toruń–Francis turbine with a capacity of 21 kW and Kraków–Kaplan turbine
with a capacity of 60 kW) [63].

The problem affecting this volatility of power generation is, in some cases, the varying
inflow and outflow of effluents, both hourly and in the daily and seasonal systems. As
pointed out by researchers (e.g., Power et al., 2016 [64]; Kumar et al., 2011 [65]; Bousquet
et al., 2017 [59]), this problem is important from the point of view of optimizing the opera-
tion of the turbines in the systems under consideration. This factor should be considered,
among others, when building models to increase the efficiency of the systems [66]. On a
broader scale, this problem mainly affects areas in climates with dry and rainy seasons and
on a smaller scale, e.g., areas with seasonal tourism or even with periodically migrating
communities (such as college towns) [59]. Fluctuations in flow are also affected by external
strategies that reduce water demand, e.g., leakage control and automated metering [67].

The construction of hydropower plants at the inlet or outlet of the WWTP is one of the
ways to meet the high energy demand for this type of plant. Chen and Chen (2013) [68]
reported that wastewater treatment is responsible for about 3% to 5% of electricity demand in
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countries with different levels of development. Aeration processes account for the highest
percentage of energy consumption; according to Cakir (2014) [69], it accounts for about
50% of energy costs in WWTPs, and according to Gandiglio et al. (2017) [70]—50–70%. In
South Korea, WWTPs consume 2800 GWh of energy annually, and the demand for electricity
increases by about 10% each year [71]. At the same time, in 2010, only 0.8% of WWTPs in
South Korea used their source of electricity, such as hydropower plants (Chae et al., 2015) [7].
According to Bousquet et al. (2017) [59], it amounted to 0.5 TWh per year in Switzerland (1%
of the country’s total electricity consumption). In the United States, it amounted to 15 TWh per
year, 25–40% of the operating costs of WWTPs (U.S. EPA, 2013) [72]. Venkatesh and Brattebø
(2011) [73] report that wastewater treatment requires twice as much energy (0.8 kWh per
1 m3) to provide the same amount as drinking water. Sinagra et al. (2022) [74] report energy
requirements in the range of 0.3–2.1 kWh per cubic meter of treated wastewater. Another
argument for meeting the electricity demand from own, preferably renewable sources, and
optimizing its use is that electricity in WWTPs is responsible for up to 80% of greenhouse gas
emissions [75]. In this regard, national and international strategies are being implemented,
such as a plan in South Korea to reduce greenhouse gas emissions in WWTPs [76,77] or to
improve efficiency in water and wastewater management in Spain [78]. Implementing these
programs requires the participation of various stakeholders, e.g., national governments or
agencies involved in the management of water services [76].

Considering the above problems, the need to increase energy efficiency and sustainable
wastewater treatment is obvious [64]. Therefore, the introduction of hydroelectric plants
using raw wastewater (at the inlet of the WWTP) or treated wastewater (at the outlet
of the WWTP) is becoming more and more important [79]. In addition, to improve the
energy efficiency of WWTPs, the following methods are used: anaerobic digestion [80],
cogeneration systems that produce both heat and energy [41], and energy-saving treatment
processes [81].

4. Conclusions

Considering the carried-out analysis of Francis turbine efficiency and determination
of the energy potential of this solution on the example of the WWTP in Toruń in Poland,
the following conclusions can be drawn:

The Francis turbine’s efficiency in model tests was 64.76%, lower than the 80% reported
in the literature. The overall model efficiency for the entire turbine set was approximately
53%, which aligns with other research findings ranging from 30% to 96% but lower than
the theoretical literature efficiency of 66.35%. The calculated final power and hydraulic
head changed proportionally with power production. The highest turbine power reached
24.82 kW, resulting in a total production of 150.29 MWh, based on 2018 wastewater dis-
charge data from Toruń WWTP and the included hydraulic head. The literature-based
power variant exceeded the model-based power. The turbine achieved its peak output at
the highest flows (Q = 0.56 m3 s−1), while the highest production occurred at the lowest
flows, which were the most frequent throughout the year (Q = 0.387 m3 s−1). In summary,
the issues discussed in this article are part of research aimed at improving the energy
efficiency of WWTPs. This energy-intensive industry also contributes to greenhouse gas
emissions. Compared to hydroelectric plants on rivers and reservoirs, this solution offers
advantages such as lower construction costs, a smaller environmental footprint (thanks
to existing infrastructure), and a generally steady wastewater inflow, with fewer seasonal
fluctuations compared to treatment plants on watercourses or reservoirs. Furthermore, the
findings from this study can serve as a foundation for crafting turbine design recommen-
dations in both hydropower plants and WWTPs. This aligns with international energy
policy directives that emphasize the need to boost the utilization of renewable energy
sources, enhance energy efficiency, and curtail greenhouse gas emissions that contribute to
climate change.

Future research could focus on the economic analysis of the proposed solution, includ-
ing other turbine types in the study, increase the number of comparators (e.g., WWTPs in
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different climates, in areas with intensive tourism, and others characterized by seasonal
variations in wastewater inflow), or consider a broader time perspective of wastewater
flow to capture their variability (e.g., dry, normal, and wet years). In addition, modifi-
cations could be made to the turbines that affect their efficiency and allow optimization
of their operation, such as using adaptable guide vanes, a system with multiple turbines,
or mathematical modeling using computational fluid dynamics software. The research
could also include the second type of hydropower plants in WWTPs, i.e., those located at
the intake of the plant and using raw sewage to generate energy. The described results
apply to WWTPs with similar capacity receiving wastewater from urban agglomerations
in comparable quantities throughout the year and without clear seasonality (e.g., increase
in wastewater volume in summer in coastal tourist resorts or the occurrence of dry and
rainy seasons), where the Francis turbine used is located at the outlet of the WWTP with
low power (21 kW).

Author Contributions: Conceptualization, K.M., P.T. and M.W.; methodology, K.M., P.T. and M.W.;
software, K.M. and P.T.; validation, K.M., P.T. and M.W.; formal analysis, K.M., P.T. and M.W.;
investigation, K.M. and M.W.; resources, K.M. and M.W.; data curation, K.M. and P.T.; writing—
original draft preparation, P.T.; writing—review and editing, J.J., A.K., K.M. and M.W.; visualization,
J.J., K.M. and P.T.; supervision, M.W. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: We would like to thank GUNT Gerätebau GmbH in Barsbüttel, represented by
Wojciech Szwed, for the opportunity to use the Francis HM 150.20 turbine for its model tests, which
were used in the article. We would also like to thank Toruńskie Wodociągi Sp. z o. o. for providing
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