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Abstract: In low permeability reservoirs, CO2 flooding usually leads to gas channeling, whereby a
significant amount of CO2 bypasses the oil-bearing formation and fails to effectively displace oil.
Introducing water-alternating-gas (WAG) flooding, utilizing water phase stability-driven processes,
serves to suppress gas channeling and enhance oil recovery rates. Implementing WAG flooding,
which utilizes water phase stability-driven processes, helps suppress gas channeling and improve
oil recovery rates. The timing of implementing WAG flooding is crucial. Initiating WAG flooding
prematurely can limit the efficiency of CO2 displacement, while initiating it with delays may result in
severe gas channeling, resulting in decreased production and increased environmental risks. Finding
the balance point is the challenge. The balance point can effectively control gas channeling without
reducing the efficiency of CO2 flooding. In this paper, the timing of WAG flooding in low permeability
reservoirs is studied in detail. Firstly, this study conducted experimental research to investigate
the CO2 displacement process in both homogeneous and heterogeneous cores. Furthermore, it
validated the correlation between the timing of WAG injection and the heterogeneity of the cores.
The experimental results indicated the existence of an optimal timing for WAG injection, which
is correlated with the degree of heterogeneity. Numerical simulation studies were performed to
simulate the characteristics of the light oil–CO2 system using the Peng–Robinson (PR) equation.
Furthermore, a history matching analysis was performed to validate the experimental results and
investigate the correlation between WAG injection and the degree of heterogeneity. The study
concluded that as the degree of heterogeneity increases, initiating WAG injection earlier leads to a
more significant suppression of gas channeling, increased water–gas interaction, improved gas–oil
contact, and enhanced the synergistic effect of increasing the resistance and pressure of WAG flooding
and controlling gas channeling. This finding has significant practical implications, as the optimization
of WAG injection timing can enhance oilfield production efficiency.

Keywords: water-alternating-gas injection; heterogeneous reservoir; enhanced oil recovery

1. Introduction

Low-permeability oil reservoirs, delineated by substantial reserves, ubiquitous distri-
bution, and extended production periods, have emerged as a pivotal focus of research in
the international oil and gas exploration industry. Globally, low-permeability oil reservoirs
exhibit an average recovery rate of approximately 20%, leaving a substantial quantity of
crude oil unrecovered [1]. Traditional production methodologies fall short in satisfying the
efficiency requisites essential for the development of low-permeability reservoirs. Conse-
quently, the quest for innovative methodologies to augment oil recovery has evolved into a
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significant research trajectory. Presently, initiatives both locally and globally predominantly
utilize CO2 injection as the principal methodology for the exploration and development of
low-permeability reservoirs [2,3].

The principal mechanisms of CO2 enhanced oil recovery include reduction in crude
oil viscosity, crude oil expansion, diminution of interfacial tension, extraction of light
hydrocarbons, and both immiscible and miscible displacement [4–11]. However, CO2, due
to its differing physical properties with reservoir fluids, especially in viscosity, tends to
bypass oil in high permeability zones, resulting in diminished sweep efficiency [12]. To
address CO2 gas breakthrough, a novel displacement technique, the WAG method, has
been introduced [13,14]. WAG flooding utilizes water pressure to drive CO2 further into
the reservoir, improving CO2 injection efficiency and crude oil recovery [15]. The use of
water to control fluidity and stabilize the displacement front enhances injection sweep
efficiency. Since the inaugural application of WAG technology in 1957 at the pilot test area
of the North Pembina oilfield in Canada, it has been progressively adopted on a global
scale, including in oilfields in Texas and Arkansas. By 1998, Christensen had documented
close to 60 instances of WAG applications in diverse oilfields, encompassing both onshore
and offshore domains, with a variety of injected gases [16–18].

Initially, studies on WAG injection were centered on laboratory simulations to under-
stand the fundamental mechanisms and effectiveness of WAG-driven flow and to optimize
injection parameters. Studies reveal that factors including slug size, WAG ratio, number of
cycles, and intervention timing are critical, with operational parameters such as injection
methods and timing playing a vital role [19–23]. Scholars have utilized numerical simula-
tions to determine optimal WAG injection timing and compare the results under varied
timings. These investigations demonstrate that appropriate WAG injection timing is crucial
for enhancing recovery rates and optimizing injection efficiency, with the determination
of optimal timing being dependent on reservoir physical properties and chosen injection
strategy [24]. Some researchers propose delaying WAG injection post-conventional water
flooding to significantly improve recovery rates, while others advocate for early-phase
WAG injection to optimize CO2 dispersion, diffusion, and recovery [25]. However, water
injection can occupy significant pore space, reducing space available for CO2 storage. A
technical challenge in WAG displacement arises from the potential obstruction of contact
between the injected CO2 and crude oil due to the presence of injected water, a shielding
effect that undermines the efficiency of microscopic displacement [26,27]. Following the
implementation of WAG injection during distinct phases of CO2 flooding, the fluctuating
saturation levels of oil, water, and gas can influence the efficiency of oil displacement at
both micro and macro scales via various mechanisms. This, in turn, affects the overall
degree of enhanced oil recovery, underscoring the significance of optimal timing for WAG
injection. Deviations from this optimal timing can alter the final recovery outcomes [28].
Gary R. Jerauld, through numerical simulations, posited that optimal WAG injection tim-
ing is achieved when the leading edge of injected water slightly surpasses the midpoint
between injection and production wells [29].

Due to reduced oil saturation and the predominance of gas, the decreased saturation
further restricts CO2–oil interaction, leading to more CO2 bypassing the oil layer, culminat-
ing in ineffective gas injection [30,31]. Determining the precise timing for water injection
is crucial throughout the WAG flooding process. Adequate scheduling of water injection
can mitigate gas invasion and prolong the duration of miscible flooding under high gas–oil
ratios [32,33]. The optimal timing for implementing WAG flooding after CO2 flooding in
pure oil reservoirs is still uncertain [34–36]. As depicted in Figure 1, the timing of WAG
flooding intervention is linked to the degree of heterogeneity, indicating a possible optimal
intervention timing [37–39]. Figure 1a–c, respectively, represent the displacement front in
homogeneous and heterogeneous pores before and after the introduction of WAG injection,
illustrating stabilization under the water phase’s influence. The timing of WAG injection is
primarily influenced by two factors: early intervention limits the oil displacement efficiency
of CO2, and delayed introduction can result in significant gas channeling during the CO2
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flooding phase. Thus, balancing the oil recovery efficiency of CO2 and controlling gas
channeling is a significant challenge in applying WAG flooding strategies.
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Figure 1. Schematic representation of the distribution of carbon dioxide (CO2) and injected water in
porous media with different levels of heterogeneity: (a) Gas displacement in a homogeneous medium
results in a uniform displacement front; (b) gas displacement leads to a front that advances further in
the larger pore throats in a heterogeneous medium: (c) injecting WAG results in a relatively uniform
displacement front prior to displacement in a heterogeneous medium.

This study investigates the process of CO2 displacement in both homogeneous and
heterogeneous rock cores using experimental methods. A correlation is validated between
the timing of WAG injection and the degree of heterogeneity within the rock cores. Addi-
tionally, a compatibility analysis was undertaken, utilizing numerical simulation methods
to correlate varying degrees of heterogeneity with the timing of WAG injection. Initially,
parameters including saturation pressure, viscosity, and density of the light oil–CO2 system
were measured under diverse pressure conditions. Subsequently, displacement experi-
ments were executed in both homogeneous and heterogeneous rock cores, incorporating
three distinct WAG injection timings. Finally, history matching of core displacement ex-
periments was performed to investigate the impact of varying degrees of heterogeneity
on the optimal timing for WAG flooding. By integrating core flooding experiments and
numerical simulation studies, the relationship between the degree of heterogeneity and
WAG injection time was quantitatively delineated.

2. Materials and Methods
2.1. Fluids and Core Block Preparation

CO2 displacement experiments are conducted separately on homogeneous and hetero-
geneous core samples to verify the correlation between the timing of WAG injection and the
degree of heterogeneity. The experiment utilizes typical light oil samples from an oilfield
in Eastern China. Table 1 displays parameters such as the dissolved gas–oil ratio, density,
and viscosity of the crude oil under experimental conditions (T = 90 ◦C, P = 20 MPa).
Figure 2 presents the composition of the oil sample under the same experimental conditions
(T = 90 ◦C, P = 20 MPa), with a detailed component composition available in Appendix A
Table A1. The core samples are saturated using formation water, which has a mineralization
degree of 11,562 mg/L and a pH value of 7.1. In the CO2 displacement experiment, CO2
with a purity of 99.99% is used as the injection solvent.

The diameter of the core used in the experiment is 3.6 cm, with a length of 90 cm.
Homogeneous core A is artificially pressed, with its parameters shown in Table 2, and
a permeability of 4.73 mD. Heterogeneous core B is composed of a semicircular high-
permeability and low-permeability layer (as shown in Figure 3), with permeabilities of 2.43
and 8.60 mD, respectively.
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Table 1. Measured properties for the studied light oil sample.

Parameter Live Oil 1

Crude oil density (kg/m3) 764.2
Crude oil viscosity (mPa·s) 1.04

Solution gas–oil ratio (GOR)(sm3/m3) 44
Saturation pressure (MPa) 8.95

Oil formation volume factor (m3/m3) 1.1647
1 The properties of live oil were tested under reservoir conditions (20 MPa, 90 ◦C).
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Figure 2. Compositional analysis results of the oil sample under the reservoir conditions (20 MPa,
90 ◦C).

Table 2. Properties of the cores applied in this study.

Core No. Length (cm) Diameter (cm) Permeability (mD) Permeability Contrast Average Porosity (%)

A 90 3.6 4.73 1 11.25
B 90 3.6 2.43, 8.60 3 9.10
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Figure 3. Sample images of the layered cores: (a) homogeneity core; (b) heterogeneity core. 1© Two
artificial core plates, each with distinct permeabilities, underwent individual pressure tests. 2© From
one end of the core block, a cylindrical core plug of 3.6 centimeters in diameter was extracted. This
plug comprises two segments, each with a permeability corresponding to a different layer of the core
block. 3© To construct a 90-cm-high core column, three sets of core samples were combined.

The properties of the cores are listed in Table 2. A represents a homogeneous core,
while B represents a heterogeneous core.

2.2. Experimental Setup

In this experimental study, we conducted two types of tests. Initially, to enhance
the accuracy of the historical fitting process for CO2 oil displacement experiments, we
measured the properties of the reservoir oil–CO2 system using a PVT analyzer (PVT-0150–
100–200–316–155, DBR, Edmonton, AB, Canada). Subsequently, we utilized a long core for
CO2 displacement experiments to measure the displacement efficiency and characteristics
of CO2 under various displacement methods.
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2.2.1. Experimental Setup for Reservoir Oil–CO2 System Properties

We employed a mercury-free DBR PVT system (Figure 4) to analyze the phase behavior
of light oil–CO2 systems. The phase behavior analyzer operates at a maximum pressure
of 103 MPa and can withstand temperatures up to 180 ◦C. Devices such as the oil–gas
separator and gas flow meter were accurate enough to meet the experimental requirements.
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Figure 4. Schematic of the experimental setup for the property tests of light oil–CO2 systems: (a) view-
ing window designed for high-pressure and high-temperature conditions, with an inner diameter of
3.177 cm and an effective volume of 125.620 cm3; (b) DBR pump; (c) oil and gas separator (resolu-
tion: 0.1 cm3) and gas flow meter (resolution: ±0.2%); (d) density meter (resolution: 0.0001 g/cm3);
(e) rolling ball viscometer (resolution: 0.1%).

2.2.2. High-Pressure Core Displacement Device

Figure 5 displays the schematic diagram of the high-pressure core displacement device
utilized in the CO2 core displacement test. The device consists of an automatic displacement
pump, an oven, a back pressure regulator, a gas flowmeter, etc., and supports a constant
formation temperature of 90 ◦C.
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Figure 5. Schematic diagram of the high-pressure CO2 coreflood apparatus: (a) Pump that automati-
cally displaces fluids; (b) Oven capable of maintaining a constant temperature of 90 ◦C for reservoir
simulation; (c) Oven capable of maintaining ambient temperature; (d) Regulator used to control back
pressure; (e) Digital gauge for measuring differential pressure; (f) Meter for measuring gas flow rate.

2.3. Experimental Procedures
2.3.1. Light Oil–CO2 System Properties Test

The properties of the crude oil–CO2 system in the formation were determined. The
experimental procedure was as follows:

(1) The PVT cylinder was evacuated and maintained at a target temperature (90 ± 0.5 ◦C)
for 24 h to reach thermal equilibrium.
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(2) Varying volume ratios of CO2 and live oil were injected into the PVT cylinder to es-
tablish the crude oil–CO2 system in the formation. The magnetic stirrer was operated
for 24 h to reach a state of equilibrium in the system.

(3) The PVT method was employed to measure the saturation pressure and oil volume
coefficient of the light crude oil–CO2 system. The light crude oil–CO2 system was
injected into a separator, densitometer, and viscometer for determining the dissolved
gas–oil ratio, density, and viscosity of the samples.

The measured properties of the reservoir oil–CO2 system using a PVT analyzer were
used to fit numerical simulations in Section 4.1.

2.3.2. CO2 Flooding Test

The core CO2 displacement experiment evaluated the impact of varying WAG inter-
vention timings on the effectiveness of CO2 displacement. The experimental procedure
was conducted as follows:

(1) Pore volume and porosity were measured by imbibition method, and the core perme-
ability was assessed by injecting saline water at varying flow rates.

(2) Live oil was injected into the core plugs at an extremely low constant flow rate to
displace the saturated water. When both the injection and production pressures were
stable, and no water was displaced out, the bound water saturation in the core had
been established. In total, approximately 4.0 PV of live oil was required. The core was
then left to undergo static aging for 48 h.

(3) The core was continuously injected with the displacement fluid at a constant flow
rate of 10 mL/h, according to the fluid injection scheme presented in Table 3, while
maintaining the outlet pressure at 20 MPa.

Table 3. Design of the experiment.

Number WAG Intervention WAG Ratio WAG Size Pressure Temperature

Test #1 Direct WAG drive
1:1

Injection of 0.1 HCPV
water + 0.1 HCPV gas 20 MPa 90 ◦CTest #2 Intervention of WAG drive after the outlet gas–oil

ratio reaches 100 m3/m3

Test #3 Intervention of WAG drive when the outlet gas–oil
ratio reaches 3000 m3/m3

3. Experimental Results and Discussion
3.1. Results of the Homogeneous Core Displacement Experiment

Consider three different timing scenarios for the WAG intervention and conduct three
sets of homogeneous core CO2 displacement experiments. The production performance of
the cores during these experiments is summarized in Table 4. The total injected hydrocarbon
pore volume (HCPV) during the core displacement experiments includes the gas and
water injections.

Table 4. Production performances in homogeneous cores for the core-flooding experiments using
different media.

Core Type Experiment GBT (w/g) 2

(HCPV) 1 RFGBT
4 (%) WBT (w/g) 3

(HCPV) RFWBT
5 (%) Qw

7

(HCPV)
QCO2

8

(HCPV) RF 6 (%)

A
Test #1 0.39/0.4 74.82 0.45/0.3 71.72 0.71 0.67 83.38
Test #2 0/0.65 65.66 0.18/0.78 77.81 0.44 1.08 86.70
Test #3 0/0.68 66.36 0.09/1.2 77.57 0.19 1.41 81.20

Note: Test #1: Direct WAG drive; Test #2: Intervention of WAG drive after the outlet gas–oil ratio reaches
100 m3/m3; Test #3: Intervention of WAG drive when the outlet gas–oil ratio reaches 3000 m3/m3. 1 HCPV:
hydrocarbon pore volume, cm3; 2 GBT (w/g): gas breakthrough occurs at the water/gas injection volume, HCPV;
3 WBT (w/g): water breakthrough occurs at the water/gas injection volume, HCPV; 4 RFGBT: gas breakthrough
occurs at the oil recovery factor, %; 5 RFWBT: water breakthrough occurs at the oil recovery factor, %; 6 RF: oil
recovery factor, %; 7 Qw: volume of water injection, HCPV; 8 QCO2: volume of CO2 injection, HCPV.
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Upon comparing the results of the three core displacement experiments, it is evident
that direct WAG injection outperforms WAG injection after gas breakthrough or complete
gas channeling in terms of gas breakthrough at the outlet. The direct WAG injection
achieves a high recovery factor of 74.82% (Table 4). In the subsequent WAG stage, direct
WAG injection leads to a quicker water breakthrough, with an injection ratio (HCPV)
of 0.75 (0.45 water + 0.3 CO2) at the point of water breakthrough, and an associated
recovery factor of 71.72%. From water breakthrough until the end of the displacement, the
recovery factor improves from 71.72% to 83.38%, exhibiting an enhancement of 11.66%. In
the case of WAG injection after gas breakthrough and WAG injection after complete gas
channeling, the injection ratios (HCPV) at water breakthrough are 0.96 and 1.31, respectively.
Upon comparing these two scenarios, it is evident that direct WAG injection performs
slightly better in the pre-water breakthrough stage as compared to WAG injection after
gas breakthrough or complete gas channeling. However, introducing WAG injection too
early results in premature water breakthrough, subsequently reducing the magnitude of
the recovery factor increase.

Figure 6a shows that there is no significant difference between direct WAG injection
and WAG injection after gas breakthrough. However, the curve of WAG injection after
complete gas channeling exhibits a lower recovery factor in the later stage. From Figure 6b,c,
it can be seen that the gas–oil ratio and water cut increase rapidly after gas breakthrough
and water breakthrough at the outlet of WAG drive. Additionally, with the gas–oil ratio
and water content showing a wave-like high-level oscillation. Gas–oil ratio typically
exceeds 1000 m3/m3, and water saturation surpasses 80%. Conversely, WAG injection
after complete gas channeling demonstrates fewer fluctuations in gas–oil ratio and water
saturation, whereas direct WAG injection demonstrates a gradual increase in gas–oil ratio.
Figure 6d illustrates that direct WAG injection sustains a prolonged high displacement
pressure differential time. Conversely, The displacement pressure difference of WAG
flooding after gas breakthrough or WAG flooding after complete gas channeling decreases
step by step with gas breakthrough and water breakthrough at the outlet end.

Energies 2023, 15, x FOR PEER REVIEW 8 of 28 
 

 

saturation, whereas direct WAG injection demonstrates a gradual increase in gas–oil ratio. 
Figure 6d illustrates that direct WAG injection sustains a prolonged high displacement 
pressure differential time. Conversely, The displacement pressure difference of WAG 
flooding after gas breakthrough or WAG flooding after complete gas channeling decreases 
step by step with gas breakthrough and water breakthrough at the outlet end. 

In summary, the curves demonstrate the effectiveness of WAG injection for homoge-
neous cores, with optimization depending on the timing of water injection. The main key 
node is when to intervene in the water phase. 

 
Figure 6. Experimental results of the CO2 flooding process conducted on homogeneous cores: (a) oil 
recovery factor changes with HCPV for each experiment; (b) oil production rate changes with HCPV 
for each experiment; (c) gas production rate changes with HCPV for each experiment; (d) pressure 
difference (pressure at the inlet minus pressure at the outlet) changes with HCPV for each experi-
ment; (e) gas–oil ratio (cm3 of gas prod/cm3 of oil prod) changes with HCPV for each experiment; (f) 
water cut changes with HCPV for each experiment. 

3.2. Results of the Heterogeneous Core Displacement Experiment 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
0

20

40

60

80

100

R
F 

(%
)

HCPV

 Test #1
 Test #2
 Test #3

(a)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
0.0

0.6

1.2

1.8

2.4

3.0

O
il 

Pr
od

uc
tio

n 
R

at
e 

(c
m

3 /m
in

)

HCPV

 Test #1
 Test #2
 Test #3

(b)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
0

600

1200

1800

2400

3000

G
as

 P
ro

du
ct

io
n 

R
at

e 
(c

m
3 /m

in
)

HCPV

 Test #1
 Test #2
 Test #3

(c)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

0

6

12

Pr
es

su
re

 D
iff

er
en

ce
 (M

Pa
)

HCPV

 Test #1
 Test #2
 Test #3

(d)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
0

1000

2000

3000

4000

5000

G
as

-o
il 

ra
tio

 (c
m

3 /c
m

3 )

HCPV

 Test #1
 Test #2
 Test #3

(e)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
0

20

40

60

80

100

W
at

er
 C

ut
 (%

)

HCPV

 Test #1
 Test #2
 Test #3

(f)

Figure 6. Experimental results of the CO2 flooding process conducted on homogeneous cores: (a) oil
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recovery factor changes with HCPV for each experiment; (b) oil production rate changes with HCPV
for each experiment; (c) gas production rate changes with HCPV for each experiment; (d) pressure
difference (pressure at the inlet minus pressure at the outlet) changes with HCPV for each experiment;
(e) gas–oil ratio (cm3 of gas prod/cm3 of oil prod) changes with HCPV for each experiment; (f) water
cut changes with HCPV for each experiment.

In summary, the curves demonstrate the effectiveness of WAG injection for homoge-
neous cores, with optimization depending on the timing of water injection. The main key
node is when to intervene in the water phase.

3.2. Results of the Heterogeneous Core Displacement Experiment

Three sets of heterogeneous core CO2 displacement experiments were conducted,
considering three different timings for WAG intervention. Table 5 presents a summary of
the production performance of the cores in these experiments. The injected HCPV during
the core displacement experiments represents the total injection of gas and water into
the cores.

Table 5. Production performances in heterogeneous cores for the core-flooding experiments using
different media.

Core Type Experiment GBT (w/g)
(HCPV) RFGBT (%) WBT (w/g)

(HCPV) RFWBT (%) Qw
(HCPV)

QCO2
(HCPV)

RF
(%)

B
Test #4 0.42/0.31 64.97 0.30/0.23 51.88 0.74 0.77 81.88
Test #5 0/0.55 52.39 0.14/0.65 65.07 0.56 0.94 78.63
Test #6 0/0.49 45.07 0.22/0.99 70.55 0.54 1.22 77.05

Note: Test #4: Direct WAG drive; Test #5: Intervention of WAG drive after the outlet gas–oil ratio reaches
100 m3/m3; Test #6: Intervention of WAG drive when the outlet gas–oil ratio reaches 3000 m3/m3.

The results of three core displacement experiments are compared. When the gas is
found at the outlet, the direct WAG flooding is better than the WAG flooding after the
gas is found or the gas is completely channeled. The oil recovery degree can reach up
to 64.97% (Table 5). The injected HCPV is 0.53 (0.30 water + 0.23 CO2) for direct WAG
displacement, 0.79 (0.14 water + 0.65 CO2) for WAG displacement after gas breakthrough,
and 1.21 (0.22 water + 0.99 CO2) for WAG displacement after complete gas channeling
when water appears. It is worth noting that early introduction of WAG displacement leads
to early water breakthrough; however, it effectively delays the gas channeling time and
significantly improves the gas displacement efficiency.

The degree of oil recovery in direct WAG displacement increases gradually, whereas
in WAG displacement after gas breakthrough and WAG displacement after complete gas
channeling, it shows a step-like increase (Figure 7a). Figure 7b,c demonstrate that WAG
displacement after gas breakthrough and WAG displacement after complete gas channeling
result in a rapid increase in gas–oil ratio and water cut at the outlet. This increase is
accompanied by a wave-like high-level oscillation of the gas–oil ratio and water cut, with
the gas–oil ratio surpassing 2000 m3/m3 and water cut exceeding 80%. In contrast, direct
WAG displacement exhibits a slow increase in the gas–oil ratio. Figure 7d illustrates
that direct WAG flooding maintains a long time at high displacement pressure difference.
However, the displacement pressure difference of WAG flooding after gas breakthrough or
WAG flooding after complete gas channeling decreases step by step with gas breakthrough
and water breakthrough at the outlet end.
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Figure 7. Experimental results of the CO2 flooding process: (a) oil recovery factor changes with
HCPV for each experiment; (b) oil production rate changes with HCPV for each experiment; (c) gas
production rate changes with HCPV for each experiment; (d) pressure difference (pressure at the
inlet minus pressure at the outlet) changes with HCPV for each experiment; (e) gas–oil ratio (cm3 of
gas prod/cm3 of oil) changes with HCPV for each experiment; (f) water cut changes with HCPV for
each experiment.

It is evident from the entire curve that the earlier the heterogeneous core intervenes in
the water phase, the better the effect of inhibiting gas channeling displacement.

4. Pattern of Variation in WAG Intervention Timing
4.1. Numerical Simulation Modelling

Prior to history matching, characteristics of the light oil–CO2 system were aligned
utilizing the PVTi module (Version 2014) developed by Computer Modelling Group Ltd.
(Schlumberger, Houston, TX, USA). Following this, the most harmonized model was
applied in the E300 module (Schlumberger, Version 2014) to facilitate history matching of
the CO2 flooding experiments.

Numerical simulation studies were conducted to enhance understanding of the CO2
flooding mechanism in low-permeability oil reservoirs and to align with experimental
results. Experimental fitting was performed to assess the phase behavior of the reservoir
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oil–CO2 system before history matching. Then, history matching was carried out for the
CO2 flooding experiment.

The parameters of the rock cores are presented in Table 2. The model possesses the
same properties as the tested rock cores, including dimensions, permeability, and porosity.
The model’s initial conditions are consistent with the reservoir’s initial conditions, with a
temperature of 90 ◦C and a pressure of 20 MPa.

For precise simulation of the cylindrical physical model (core) illustrated in Figure 8, a
grid system was established with 30 grids along the i-direction and 36 grids in the cross-
sectional plane. Table 6 provides detailed information on grid dimensions and associated
core parameters.
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Table 6. Basic reservoir parameters of the geological and petrophysical models.

Parameters Values

Grid in x, y and z directions 30 × 6 × 6 = 1080
Grid size in x direction, cm 3
Grid size in y direction, cm 0.6

Average grid size in z direction, cm 0.6
Reservoir temperature, ◦C 90

Initial reservoir pressure, MPa 20

4.1.1. Oil Properties Study

To enhance understanding of the CO2 flooding mechanism in low-permeability oil
reservoirs and develop an accurate numerical model, the phase behavior of the oil–CO2
system in the reservoir was modeled by fitting the experimental oil properties. To ensure
computational accuracy and efficiency, this study divided the oil components into nine
pseudo-components. Figure 9 presents the final segmentation results and molar compo-
sition of the pseudo-components, while the detailed composition of the components is
available in Appendix A Table A2. Table 7 provides a list of measured and simulated
oil properties, including viscosity, density, gas–oil ratio, saturation pressure, and volume
coefficients. Figure 10 displays the measured and simulated properties of the oil–CO2
system, while the detailed measurement errors can be found in Appendix A Table A3.
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Figure 9. Partition result and mole content of the pseudo-components.
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Table 7. Measured and simulated oil properties.

Parameters MD SD Error (%)

Saturation pressure (MPa) 10.80 10.60 1.85
Crude oil density (kg/m3) 751.50 778.70 3.62
Crude oil viscosity (mPa·s) 2.02 2.12 4.89

Solution gas–oil ratio (GOR) (m3/m3) 48.10 49.60 3.12
Oil formation volume factor (m3/m3) 1.24 1.26 1.61

Note: MD = measured data; SD = simulation data.
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Figure 10. Characteristics of the oil–CO2 system at different CO2 concentrations under different
pressures: (a) saturation pressure; (b) oil density; (c) oil viscosity; (d) oil swelling factor.

The measured and simulated minimum miscibility pressure (MMP) values, as demon-
strated in Appendix A Figure A1, are 19.1 MPa and 18.3 MPa, respectively, with an error
of 4.37%. Thus, the division of pseudo-components is justified, and the matching results
between oil properties and oil–CO2 system properties can be utilized for studying the CO2
flooding process in low-permeability oil reservoirs.

4.1.2. Numerical Simulation Study

The primary factors influencing fluid flow in the model comprise the equation of
state, relative permeability curves, and grid discretization. In the preceding section, the
Peng–Robinson equation was employed to simulate the fluid’s phase behavior and property
variations throughout the CO2 flooding process. Figure 11 depicts the relative permeability
curves following history matching. The grid properties, including porosity and permeabil-
ity, are determined according to the distribution of properties presented in Table 2.
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Figure 11. Relative permeability curves: (a) water and oil system; (b) oil and gas system.

The simulation results exhibit a favorable agreement between the production data
during the CO2 flooding process and the historical dataset, as depicted in Figures 12 and 13.
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Figure 12. Similarity Curve for Gas–Oil Production in Expulsion Replacement Experiments: (a) Fit
curve for Test #1; (b) Fit curve for Test #2; (c) Fit curve for Test #3; (d) Fit curve for Test #4; (e) Fit
curve for Test #5; (f) Fit curve for Test #6.
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Figure 13. Similarity Curve for recovery factor in Expulsion Replacement Experiments: (a) Fit curve
for Test #1; (b) Fit curve for Test #2; (c) Fit curve for Test #3; (d) Fit curve for Test #4; (e) Fit curve for
Test #5; (f) Fit curve for Test #6.

4.2. Characteristics of Displacement Front Changes

Figure 14a,b depict the variation in saturation profiles between interfacial WAG and
direct WAG displacements following gas breakthrough in homogeneous rock cores. The
gas front in the homogeneous rock cores exhibits a relatively uniform distribution without
obvious breakthrough. Figure 14c,d illustrate the variations in saturation profiles between
interfacial WAG and direct WAG displacements after gas breakthrough in heterogeneous
rock cores. The influence of rock heterogeneity is evident as it causes uneven gas distri-
bution, while WAG displacement retards the CO2 migration rate, facilitating its complete
dissolution into the oil and resulting in a more uniform gas front.
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Before the gas displacement front reaches the outlet end, the gas front extends ap-
proximately 8.8 cm for WAG displacement and approximately 6.4 cm for direct WAG
displacement (Figure 15). In the WAG method, injecting relatively high viscosity water
prior to low viscosity CO2 injection suppresses CO2 channeling in high-permeability re-
gions, leading to a more uniform displacement front and expanding the area influenced by
gas displacement. Heterogeneous permeability creates channeling paths between injection
and production wells, resulting in notable displacement front variations among different
channels. Figure 15 illustrates that the inclination angles of the displacement front in
high-permeability regions are approximately 72.30◦ for continuous gas displacement and
55.33◦ for direct WAG displacement, whereas in low-permeability regions, the angles are
approximately 36.78◦ and 79.13◦, respectively. During WAG displacement, water selec-
tively enters high-permeability regions to stabilize the gas front, thus slowing down CO2
migration and promoting enhanced gas injection into low-permeability regions, ultimately
enlarging the area affected by gas displacement.
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4.3. WAG Intervention Timing and Heterogeneous Relationships

The timing of WAG injection in relation to permeability heterogeneity was analyzed
based on the historical fitting of the rock core size model. The study examined the optimal
timing of WAG injection under varying levels of permeability heterogeneity. The design
scheme is presented in Table 8.
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Table 8. Model design framework for WAG timing interventions and heterogeneous relationships.

Factors that Affect Levels of Parameters

Permeability contrast 1, 3, 6, 10, 15, 30
Timing of WAG intervention/injection of HCPV 0, 0.1, 0.2, 0.4, 0.6, 0.8

Based on the results presented in Figure 16, as the degree of permeability heterogeneity
increases, it is advisable to intervene earlier in the timing of WAG injection. For a detailed
comparison curve, please refer to Figures A2–A4.
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Figure 16. Comparative analysis of recovery rates corresponding to different permeability differen-
tials and intervention timings (a) Permeability contrast 1; (b) Permeability contrast 3; (c) Permeability
contrast 6; (d) Permeability contrast 10; (e) Permeability contrast 15; (f) Permeability contrast 30.

In reservoirs with lower heterogeneity, the differences in fluid distribution between
high-permeability layers and low-permeability layers are insignificant. Although CO2
is more likely to penetrate high-permeability layers, the disparity with low-permeability
layers remains negligible. Therefore, introducing WAG injection before the occurrence of
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gas channeling is feasible; however, caution should be exercised to avoid intervening too
early. Typically, when the permeability contrast is below 15, conducting WAG injection
after observing gas breakthrough proves to be more effective.

In reservoirs characterized by higher heterogeneity, significant differences exist in
reservoir properties between high-permeability layers and low-permeability layers. Gas has
a tendency to preferentially flow through layers with higher permeability, leading to flow
instability. Consequently, determining the optimal timing for WAG injection necessitates
a profound comprehension of the fluid distribution and migration patterns within each
layer. As Figure 17 demonstrates, a direct WAG drive is particularly effective when the
permeability differential exceeds 15, especially in mitigating gas channeling. This strategy
is notably more efficacious than introducing WAG drive after detecting gas channeling.
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5. Upscaling Prediction Study

Utilizing a calibrated phase behavior model, the present study aimed to optimize the
timing of CO2 flooding in the target reservoir through the implementation of the WAG
technique. Initially, the production process was simulated, followed by a rigorous fitting
of the historical production dynamics. Subsequently, the timing of WAG injection was
methodically optimized.

The permeability distribution of two well groups is presented in Figure 18. Figure 18a
illustrates a well group exhibiting relatively good homogeneity, with a permeability contrast
of 15. Figure 18b depicts a well group characterized by relatively poor heterogeneity, with
a permeability contrast of 30. The historical matching curves for these actual well groups
are displayed in Figure 19. The injection timing of WAG was optimized for each individual
well group, as indicated in Table 9.
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Figure 18. The actual distribution of block wells and the degree of heterogeneity in permeability:
(a) Permeability contrast 15; (b) Permeability contrast 30.
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Figure 19. Historical Matching Curves for Actual Well Groups: (a) Cumulative Liquid Production
Curve for Well Group A; (b) Cumulative Oil Production Curve for Well Group A; (c) Cumulative
Liquid Production Curve for Well Group B; (d) Cumulative Oil Production Curve for Well Group B.

Table 9. Design table for WAG intervention timing in well group model.

No. Timing of WAG Intervention

1 direct WAG drive
2 WAG drive intervention after 1 year of gas injection
3 WAG drive intervention after 2 year of gas injection
4 WAG drive intervention after 4 year of gas injection
5 WAG drive intervention after 6 year of gas injection

The cumulative oil production at different injection timings of WAG in two well
groups is depicted in Figure 20. Figure 20a represents a well group characterized by a
permeability contrast of 15. The cumulative oil production initially increases and then
decreases with a delay in injection timing. The optimal effect of WAG injection is achieved
after continuous gas injection for 1 year, with an accumulated injected hydrocarbon pore
volume (HCPV) of approximately 0.12 times the HCPV. The cumulative oil production
at this point is 8.32 × 104 t, which exceeds that of direct WAG injection by 0.13 × 104 t
and exceeds that of WAG injection after 6 years by 0.96 × 104 t. Figure 20b represents a
well group characterized by a permeability contrast of 30. The cumulative oil production
gradually decreases as the injection timing is delayed. The earlier the WAG injection is
introduced, the more pronounced the injection effect becomes. Direct WAG injection yields
the optimal result, with a cumulative oil production of 4.52 × 104 t, surpassing that of WAG
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injection after gas breakthrough by 0.12 × 104 t and surpassing that of WAG injection after
6 years by 0.77 × 104 t.
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6. Conclusions

This study conducts experiments to displace CO2 on both homogeneous and heteroge-
neous rock cores, aiming to verify the correlation between the timing of WAG intervention
and the level of heterogeneity. It optimizes the timing of WAG intervention under different
heterogeneous conditions through experiments and numerical simulations, and also carries
out field applications.

(1) The results of the experiment indicate a notable enhancement in oil recovery rate with
WAG intervention in contrast to continuous CO2 flooding. Nonetheless, the precise
moment of WAG application is intricately linked to the degree of heterogeneity
within the rock cores. In the case of homogeneous rock cores, the deployment of
WAG post gas breakthrough results in a 5% elevated improvement in the recovery
rate as opposed to its deployment following a complete gas sweep. Conversely, the
immediate application of WAG in heterogeneous rock cores leads to a 4.83% increment
in recovery rate compared to its deployment after a complete gas sweep.

(2) Due to the influence of rock heterogeneity, the gas front distribution during gas
flooding exhibits nonlinear behavior. Upon injection of WAG, water initially infiltrates
high-permeability zones, stabilizing the position of the gas front. Consequently, by
slowing down CO2 migration, it primarily guides the injected gas towards low-
permeability zones, consequently increasing the extent of gas flooding. However,
due to the influence of CO2 distribution, there is an optimal time window for the full
action of the aqueous phase, and this window has a significant relationship with the
degree of heterogeneity.

(3) With increasing heterogeneity, early intervention with WAG flooding is preferable.
When the permeability difference is less than 15, there is no significant variation in
CO2 interaction within the high-permeability and low-permeability layers. Timely
intervention with WAG flooding is necessary before gas breakthrough occurs, but it
should not occur too early. WAG flooding after gas breakthrough is more efficient.
Reservoirs with a permeability contrast greater than 15 exhibit significant differences
in the properties of the high-permeability and low-permeability layers. Gas tends
to flow preferentially through the high-permeability layers, potentially causing flow
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instability. Direct WAG flooding is more efficient, especially in the control of gas
channeling, which is better than the introduction of WAG drive after gas channeling
is observed.

(4) By clarifying the matching relationship between the timing of WAG flooding and
heterogeneity, more injected gas can be directed into low-permeability zones, in-
creasing the sweep volume for oil recovery. This effectively reduces ineffective gas
displacement and improves oil recovery efficiency. It also reduces the environmental
risks associated with gas breakthrough, providing a more accurate basis for reser-
voir managers to formulate more scientific development strategies and operational
parameters.
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Appendix A

Table A1. Table Compositional analysis results of the oil sample under the reservoir conditions
(20 MPa, 90 ◦C).

Carbon No. mol/% Wt (%) Carbon No. mol/% Wt (%)

N2 0.383 0.070 C17 2.736 4.215
CO2 1.508 0.432 C18 1.529 2.494
C1 23.213 2.421 C19 1.162 1.986
C2 2.984 0.583 C20 1.252 2.238
C3 4.964 1.423 C21 1.158 2.191
IC4 1.620 0.612 C22 1.213 2.404
NC4 1.758 0.664 C23 1.158 2.394
IC5 3.150 1.477 C24 2.109 4.538
NC5 3.108 1.457 C25 2.173 4.873
C6 2.241 1.223 C26 1.055 2.462
C7 3.097 1.932 C27 1.075 2.612
C8 3.171 2.205 C28 1.011 2.548
C9 3.831 3.013 C29 1.040 2.718

C10 2.864 2.495 C30 1.536 4.153
C11 3.032 2.897 C31 1.536 4.292
C12 2.637 2.760 C32 1.506 4.347
C13 2.765 3.146 C33 1.062 3.163
C14 2.534 3.129 C34 1.145 3.511
C15 2.396 3.208 C35+ 1.143 4.613
C16 2.149 3.101 Total 100.000 100.000
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Table A2. Partition result and mole content of the pseudo-components.

Pseudo-Component mol/% Wt (%)

CO2 1.51 0.43
C1+ 23.60 2.47
C2+ 7.95 2.04
C4+ 9.63 4.19
C6+ 12.34 8.39

C10+ 13.83 14.42
C15+ 11.22 17.14
C22+ 7.81 16.21
C27+ 12.11 34.72

Table A3. Characteristics of the oil–CO2 system at different CO2 concentrations under different pressures.

CCO2
Saturation Pressure (MPa) Oil Density (kg/m3) Oil Viscosity (mPa·s) Oil Swelling Factor

(m3/m3)

MD SD Error MD SD Error MD SD Error MD SD Error

0 10.8 10.8 0 766.3 778.7 1.62 2.02 2.12 4.95 1 1 0
29.5 15.79 15.01 4.94 747.1 755.3 1.1 1.52 1.54 1.32 1.03 1.02 0.97
46.5 20.51 21.02 2.49 746.3 736.1 1.37 1.19 1.14 4.2 1.08 1.06 1.85
57 26.15 25.2 3.63 729.4 727.4 0.27 1 0.92 8 1.15 1.11 3.48

63.7 29.67 28.72 3.2 719.4 722.7 0.46 0.92 0.83 9.78 1.24 1.25 0.81
67.6 33.66 32.32 3.98 709.7 720.4 1.51 0.85 0.78 8.24 1.62 1.52 6.17

Note: CCO2 = concentration of CO2 in light oil–CO2 systems; MD = measured data; SD = simulation data.
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Figure A3. Comparison of Gas–Oil Ratios at Different WAG Intervention Times Under Different
Permeability contrast: (a) Permeability contrast 1; (b) Permeability contrast 3; (c) Permeability
contrast 6; (d) Permeability contrast 10; (e) Permeability contrast 15; (f) Permeability contrast 30.
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Figure A4. Comparison of water cut at different WAG intervention times under different perme-
ability contrast: (a) Permeability contrast 1; (b) Permeability contrast 3; (c) Permeability contrast 6;
(d) Permeability contrast 10; (e) Permeability contrast 15; (f) Permeability contrast 30.
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