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Abstract: Emission reduction in the main greenhouse gas, CO2, can be achieved efficiently via
CO2 geological storage and utilization (CCUS) methods such as the CO2 enhanced oil/water/gas
recovery technique, which is considered to be an important strategic technology for the low-carbon
development of China’s coal-based energy system. During the CCUS, the thermodynamic properties
of the CO2–water–rock system, such as the interfacial tension (IFT) and wettability of the caprock,
determine the injectability, sealing capacity, and safety of this scheme. Thus, researchers have been
conducting laboratory experiments and modeling work on the interfacial tension between CO2 and
the water/brine, wettability of caprocks, the solubility of gas–liquid binary systems, and the pH
of CO2-saturated brine under reservoir temperature and pressure conditions. In this study, the
literature related to the thermodynamic properties of the CO2–water–rock system is reviewed, and
the main findings of previous studies are listed and discussed thoroughly. It is concluded that limited
research is available on the pH of gas-saturated aqueous solutions under CO2 saline aquifer storage
conditions, and less emphasis has been given to the wettability of the CO2–water/brine–rock system.
Thus, further laboratory and modeling research on the wettability alternations of caprock in terms
of molecular dynamics is required to simulate this phenomenon at the molecular level. Moreover,
simplified IFT and solubility prediction models with thermodynamic significance and high integrity
need to be developed. Furthermore, interaction mechanisms coupling with multi-factors associated
with the gas–liquid–solid interface properties and the dissolution and acidification process need to be
explored in future work.

Keywords: CO2 geological storage and utilization; thermodynamic properties; CO2 trapping
mechanisms; pore-scale multi-phase flow

1. Introduction

Recently, countries worldwide have announced their goal of attaining a carbon peak
and neutralization to tackle climate change caused by anthropogenic CO2 emissions into
the atmosphere using vast amounts of fossil fuel energy. In science, coal, oil, and gas
still constitute a large percentage of the energy supply and conception chain, and the
technical path of carbon emission reduction while ensuring that a safe energy supply is
attracting increased attention in the field of energy usage. The growth in the proportion
of renewable energy sources, such as wind and solar power, in the energy supply and
conceptions chain, as well as the development of carbon capture, storage, and utilization
(CCUS), are recognized as the key factors in achieving net zero carbon emissions [1,2].
Currently, deep saline aquifers are considered the most promising and effective method of
CO2 emission reduction via CO2 geological storage because of their large capacity, which
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is estimated to be approximately 1000–10,000 GT, which is more than the total amount of
anthropocentric CO2 emissions produced this century. Another promising option is CO2
storage in offshore reservoirs because of their vast uptake capacity and low risk of leakage
into offshore aquifers [3].

Since 2000, China has been developing CCUS technology, which is considered to be
one of the most important strategic technologies for the low-carbon development of China’s
coal-based energy system. According to the 2021 China CCUS Annual Report, about 5.1 GT
and 9.0 GT CO2 can be sequestered in China via CO2-Enhanced Oil Recovery (CO2-EOR) [4]
and CO2-Enhanced Gas Recovery (CO2-EGR) technologies, respectively [5]. Additionally,
by utilizing depleted gas reservoirs, approximately 15.3 GT CO2 can be stored, while
injection into deep saline aquifers offers an even greater sequestration potential, estimated
at around 2420 GT [5]. However, the implementation of domestic CO2 geological utiliza-
tion and storage technology currently faces significant challenges, including high energy
consumption for carbon capture, source–sink mismatches, unclear long-term sequestration
mechanisms, and underdeveloped leakage monitoring and emergency response systems.
Moreover, domestic CCUS technology must integrate cutting-edge scientific and technolog-
ical advancements from both local and international sources to establish industrial clusters
that encompass CO2 emission sources, capture, and geological storage, thereby creating a
comprehensive and effective carbon emission reduction strategy.

At present, storage-related research has yielded promising results; however, demon-
stration projects and widespread applications are lacking. Thus, there is an urgent need
to address key scientific questions concerning capture and storage, scale up the devel-
opment of CO2 geological utilization and storage technology, and ultimately provide a
solid technical foundation for the low-carbon, clean, and efficient use of coal and other
fossil energy sources, contributing to national energy security. One major reason for the
launch of new CCUS projects is public concern about the environmental impacts and risks
related to CCUS projects, which may directly influence the decision-making process during
CCUS site selection [6]. Technical support is required for the development of CCUS, as
expected, in terms of technologies supporting CO2 saline aquifer storage, since leakage
from the sealing site determines the flexibility of this scheme. Fundamental research on
carbon migration in reservoirs, which is influenced by the thermodynamic properties of
fluids, is essential to deepen the understanding of the mechanisms influencing CO2 saline
aquifer storage.

There are four main trapping mechanisms in the geological carbon storage process,
including residual trapping, also known as capillary trapping, structural trapping, and
solubility and mineral trapping, as shown in the Figure 1 [7–9]. Structural or hydrodynamic
trapping plays an important role at the beginning of the injection of CO2 into saline
aquifers, where the injected CO2 can be trapped and sealed via a low-permeability caprock
or shale above the saline aquifers [10]. However, the trapped CO2 is likely to escape into
the atmosphere along the fractures of the caprock, leading to failure during structural
trapping. Thus, structural integrity is crucial for the successful structural trapping of
CO2. In contrast, capillary trapping relies less on structural integrity, and the trapping
of migrating CO2 in pores can be achieved via snap-off effects [11]. Capillary trapping
mechanisms have been widely studied because of their reliability, strong adaptability, and
long-term efficiency during the CO2 saline aquifers storage process [12]. It was found
that the efficiency of capillary trapping is determined by the threshold capillary pressure,
which, in turn, is a function of the interface properties of the CO2-water-rock system,
which determines the fluid distribution on the surface of the reservoir rocks [13]. Thus, the
reservoir wettability and interfacial tension (IFT) between the CO2 and reservoir brines
are important thermodynamic properties of fluids that determine the injectability, sealing
capacity, and safety of the CO2 saline aquifer storage scheme.
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Figure 1. The main trapping mechanisms used in CO2 geological storage: structural trapping,
residual trapping, solubility trapping, and mineral trapping (The blue line represents the direction of
CO2 injection).

Meanwhile, injected CO2 dissolves in reservoir fluids and leads to a density gradient
between different areas in the water layer [14], which eventually leads to the convective
mixing of CO2 and reservoir fluids. Then, the dissolution rate of CO2 into the reservoir
fluids is further increased due to the density gradient, resulting in CO2 solubility trapping
in the water layer of the reservoir [15]. During the process of CO2 storage in saline aquifers,
the process of CO2 dissolving into reservoir brine lasts for most of the time. Thus, the
solubility trapping mechanism plays a major role in this scheme. Moreover, the mutual
solubility between CO2 and reservoir fluids influences the long-term safe storage of CO2
as well as the solid–liquid–gas interactions at the injected reservoir site [16]. Therefore, it
is essential to investigate the mutual solubility of CO2 and reservoir fluids during phase
equilibrium under CO2 saline aquifer storage conditions [17].

Owing to the slow chemical reactions with the reservoir rocks, the dissolved CO2
is mineralized, which is known as mineralization trapping and is the most important
trapping mechanism involved in CO2 saline aquifer storage [18]. However, the dissolution
of CO2 into the reservoir fluids lowers the pH of the reservoir. The erosion of reservoir
rocks and caprocks caused by the low pH of the reservoir results in the leakage of sealed
CO2 from the caprocks [19]. Generally, the pH of CO2-saturated brine plays a key role in
estimating the CO2 storage capacity of the reservoir during mineralization trapping [20,21].
Therefore, fundamental research on the pH of CO2-saturated brine during the CO2 saline
aquifer storage scheme may lead to stimulation failure or cause high risks in the operation
process [22,23]. In addition to the main trapping mechanisms mentioned here, other CO2
trapping mechanisms [24], such as hydrodynamic and carbon adsorption trapping and
CO2 trapping via changes in the partial capillary pressure [25] or permeability [26], have
been studied.

The sealing site for the CCS covers extremely high temperatures and pressures, where
CO2 is in a supercritical state (TCr = 304.2 K and PCr = 7.4 MPa) and the salinity of the
potential sealing site could be greater than 100 g/L [27–29]. The CO2 phase diagram
shown in Figure 2 illustrates that the injected CO2 changes its phase from liquid/vapor
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to supercritical in the reservoir [30]. According to previous research, the CO2 phase state
determines its properties, leading to a change in the thermodynamic properties of reservoir
fluids saturated with injected CO2 [30]. Therefore, the laboratory apparatus must be
designed to withstand the extremely high pressure, temperature, and corrosion associated
with the high salt concentration.
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After CO2 is injected into a porous medium, a series of physical and chemical changes
occur in the rock strata and brine [31]. These changes upset the balance between the
existing rock strata and brine, resulting in a change in the trapping efficiency, as shown in
Figure 3 [31].
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Thus, fundamental research on the thermodynamic properties of gas–liquid–solid
systems is important for estimating the safe and long-term storage of CO2 saline aquifers.
Thus, in this study, the experimental and predicted thermodynamic properties, such as
the interfacial tension, wettability, pH, and solubility of the CO2-brine-rock system, were
reviewed carefully. Experimental and modeling methods were compared, methods for
obtaining thermodynamic properties of a gas–liquid–solid system with high integrity were
proposed, and trapping mechanisms were clarified. The results of this review provide
theoretical support for the feasibility of a long-lasting and safe CO2–saline aquifer storage
scheme to provide a solid technical foundation for the low-carbon, clean, and efficient use
of coal and other fossil energy sources, contributing to national energy security.

2. Thermodynamic Properties
2.1. Interfacial Tension between CO2 and Water/Brine

The threshold capillary pressure that determines the efficiency of residual trapping is
a function of the wettability and the interfacial tension (IFT) between the CO2 and reservoir
brines, as described by the standard Young–Laplace equation, as shown in Equation
(1) [13,32]. This threshold capillary pressure characterizes the penetration ability of the
non-wetting phase (CO2) into the macropores and throats of the reservoir rock that were
originally water saturated. Research findings suggest that lower IFT leads to enhanced CO2
capillary trapping, as it reduces the capillary pressure required for CO2 capture within pore
spaces, thereby improving storage efficiency. Due to the complexity of the actual reservoir,
the wettability of the sealing site can be represented by measuring the contact angles (CAs)
of the CO2-brine-rock system. Thus, the laboratory and modelling work of CO2–brine IFTs
and rock CAs have been reviewed, and the key findings are highlighted in this section.

Pth
c =

2γw/b,CO2 cos θ

R
(1)

where Pc
th is the threshold capillary pressure of brine/water-saturated caprock γw/b,CO2

(mN·m−1) is the IFT between water/brine and CO2, θ is the CA between the brine/water
and rocks in a CO2 atmosphere, and R is the maximum radius of cylindrical caprocks.

Different methods exist for measuring the IFT between gases and liquids. Among
these, the pendent drop method, which is based on the axisymmetric drop shape analysis
(ADSA) technique, is widely used because of its high accuracy and efficiency. Pictures of the
pendent drop of the desired solution were captured using a CCD camera at a high resolution
under the evaluated temperature and pressure conditions. However, the accuracy of the
calculated IFTs based on this method strongly depends on the density difference between
the gas and liquid, as illustrated in Equation (2).

γ =
g∆ρD2

e
H

(2)

where g is the gravity constant; γ is the IFT; ∆ρ is the density difference; H is the shape
facture, which is related to the drop shape parameters; and De is the horizontal diameter
of the drop. Therefore, the accuracy of the obtained density difference determines the
integrity of the IFT values measured using the pendent drop method.

Numerous experimental studies have been conducted on the IFT between CO2 and
reservoir fluids using the pendent drop method based on the ADSA technique [32–35].
Initially, most laboratory studies were conducted on CO2 + water binary systems under
reservoir conditions. Then, considering the effects of actual reservoir brine’s ionic strengths
and types on the IFT between the CO2-brine system, the IFTs of the CO2 + brine binary
system consistent with the reservoir conditions were measured, where temperatures and
pressures ranged from 278 to 423 K and 0.1–70 MPa, respectively [32–34,36–38]. However,
owing to the differences in the experimental procedures and methods, disparities and
contradictions exist in the experimental results, which has led to doubts regarding the



Energies 2023, 16, 7374 6 of 30

accuracy and reliability of the IFT data in the literature [39]. Accurate determination of the
density difference between CO2 and water/brine is critical to the IFT measurement results
based on ADSA, as shown in Equation (1) [13]. Due to the mutual dissolution of CO2 and
water/brine, the density of the two-phase equilibrium must be considered when measuring
the two-phase IFT [40]. Thus, the difference between density difference determination
methods also leads to a disparity in the IFTs reported in the literature. It is found that
the IFT of the CO2 + brine system increases with molalities, and those with divalent ion
is twice larger than the monovalent ions at the same temperature, pressure, and molality
conditions [41]. The measurement time also influenced the accuracy of the measured IFT
data [39]. Larger errors were observed in the obtained data when waiting too long for the
measurement, where the drop shape presented less integrity. The poor results (excessively
small IFT) in Chun’s [36] work resulted from waiting for days for the system to reach phase
equilibrium, as observed in previous literature [39].

To supplement the IFT database between CO2 and water/brines, the research scope
was extended to higher temperatures and pressures via modelling methods. The molecular
dynamics (MD) method was developed to better understand the relationship between the
surface strength and IFT for the CO2 + H2O binary system; however, a relatively high
deviation between the predicted and experimental values was found [42–44]. In recent
years, an artificial neural network (ANN) method was presented to estimate the IFTs for
a CO2 + water/brine binary system [45–49]. The ANN method exhibited a high level
of accuracy with respect to different systems, while it was strongly dependent on the
experimental data; thus, the estimation is restricted to the experimental conditions and
cannot be extended to predictions beyond the experimental temperature and pressure
ranges with high integrity. In previous work conducted by Chow [50], a theoretical model
uses of square gradient theory (SGT) applied to the ‘statistical associating fluid-theory
variable-range Mie’ (SAFT-VR-Mie) Equation of State (EoS) was developed for the IFTs
of the CO2 + H2O/CO2 binary system and the CO2 + N2/Ar + H2O ternary system. The
model exhibited a high level of integrity for the CO2 + H2O/brine binary system. The
SAFT theory proposed by Chapman et al. [51,52] is one of the most successful models
for modern algebraic descriptions of chain fluids and has been applied to estimate the
thermodynamic and phase equilibrium properties of complex fluid mixtures in recent
years [53–57]. However, the SAFT EoS is too complicated and requires too many factors
and parameters. Most recently, Jerauld et al. [58] proposed a revised correlation method
for the accurate estimation of the CO2-brine IFT based on over 1600 data points from
the literature and concluded that the Kashefi [59] method has better qualitative behavior
and improves predictions with an AARE of approximately 5%. Neural network- and
machine learning-based models have high computing speeds, strong adaptability, and a
fault-tolerant ability; however, the normalization method lacks thermodynamic meaning.
Moreover, the thermodynamic relationships between the main CO2 trapping mechanisms
in terms of solubility and IFT for the CO2 + H2O/brine binary system need to be elaborated
in detail [27]. A detailed literature review is provided in the following Tables 1 and 2.

Table 1. Literature review for the CO2-pure solution IFTs.

References Solutions Method T/K p/MPa

Jho et al. (1978) [33] H2O CT 284–318 0–6
Chun et al. (1995) [36] H2O/methanol CT 278–344 0.1–19

Hebach et al. (2002) [34] H2O PD 278–333 0.1–20
Akutsu et al. (2007) [37] H2O PD 298–318 7.5–17
Kavame et al. (2007) [38] H2O PD 278–335 0.1–20
Chiquet et al. (2007) [60] H2O PD 308–383 0–50

Georgiadis et al. (2010) [39] H2O/Alkane PD/SAFT-VR/DG 298–374 1–60
Bikkina et al. (2011) [61] H2O PD 298–333 1.4–21

Li et al. (2012) [40] H2O PD 335–448 0–50
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Table 1. Cont.

References Solutions Method T/K p/MPa

Saraji et al. (2013) [62] H2O PD 308–333 3–10.5
Khosharay et al. (2014) [63] Complex system PD 284–313 0–6

Pereira et al. (2016) [64] H2O PD 298–469 0–69
Liu et al. (2016) [65] CH4/CO2-H2O PD 299–346 0–30

Rocha et al. (2001) [43] H2O MD 318–338 20–28
Kuznetsov et al. (2002) [44] H2O MD 285–298 9–30

Sutjiadi et al. (2008) [66] H2O/alcohol PD 313 0–27
Nielsen et al. (2012) [42] H2O MD 298–383 0–40
Chow et al. (2016) [67] Complex system PD/EE 298–448 0–40
Chow et al. (2016) [50] Complex system SAFT-VR+SGT 298–473 0–60
Zhang et al. (2016) [46] H2O ANN 278–448 0.1–61

PD, pendent drop; ANN = artificial neural network; SGT = square gradient theory; MD = molecular dynamics;
CT = capillary tube; EE = empirical equation.

Table 2. Literature review for the CO2-brine IFTs.

References Solutions Molalities Method T/K p/MPa

Yang et al. (2005) [68] Complex brine 4.27 g·L−1 PD 300–331 0–30
Chalbaud et al. (2006) [69] NaCl (aq) 0–150 g·L−1 PD 300–373 4–26

Pierre et al. (2007) [60] NaCl (aq) 0–20 g·L−1 PD 308–383 5–45
Bachu et al. (2009) [70] NaCl (aq) 0–334 g·L−1 PD 293–398 2–27

Chalbaud et al. (2009) [13] NaCl (aq) 0.085–2.75 mol·kg−1 PD 300.15–373.2 4–25
Li et al. (2012) [40] Complex brine 0.98–4.95 mol·kg−1 PD 298–448 2–50

Liu et al. (2015) [71] NaCl (aq) 0.1–1.0 mol·L−1 PD 300–313 3–9
Liu et al. (2017) [72] NaCl (aq) 0–1.80 mol·kg−1 PD 300–353 3–12
Arif et al. (2016) [73] NaCl (aq) 25 wt % PD 308–343 0–20

Pereira et al. (2017) [74] NaCl (aq) 0.98–1.98 mol·kg−1 PD/DGT 300–423 0–70
Yekeen et al. (2021) [75] NaCl (aq) 0–7 wt % PD 353–453 8–22

Aggelopoulos et al. (2010) [41] Complex brine 5–300 g·L−1 PD 300–373 5–25
Aggelopoulos et al. (2011) [76] CaCl2 (aq) 0.045–1.50 mol·kg−1 PD 300–373 5–25

Li et al. (2012) [40] Complex brine 2–5 mol·kg−1 PD 343.15–423.15 2–50
Liu et al. (2017) [72] Complex brine 0.045–1.8 mol·kg−1 PD 284–353 2–12
Arif et al. (2017) [77] Complex brine 0–30 wt % PD 323 0.1–20

Wang et al. (2018) [78] Complex brine 21.46 g·L−1 PD 370.65 0.1–33.9
Mutailipu et al. (2019) [32] Complex brine 0.98–4.95 mol·kg−1 PD 298–423 2–15

Li et al. (2014) [45] H2O/brine 0–1 mol·kg−1 GAC 278–403 0–50
Zhang et al. (2016) [46] Complex brine 0–5 mol·kg−1 ANN 278–448 0.1–61
Partovi et al. (2017) [47] Complex brine 0–5 mol·kg−1 ANN 278–448 0.1–61
Amooie et al. (2019) [79] Complex brine 0–4.087 mol·kg−1 ML 290–420 5–25

PD, pendent drop; ANN = artificial neural network; DGT = density gradient theory; GAC = graphical alternating
conditional; ML = machine learning.

It was concluded that the interfacial characteristics of rock–fluid systems have a
significant influence on the efficiency of CO2 capillary trapping during saline aquifer
sequestration [73]. Thus, in previous studies, the IFT between CO2 and brine of different
concentrations under reservoir pressure and temperature conditions has been investigated
systematically. The results indicate that the IFT of the CO2-brine binary system depends
on the temperature, pressure, and molality [13,40,74]. According to previous research, the
CO2-brine IFT has a very limited pressure dependence tendency after the pseudo-plateau
is reached. As for the salt concentrations, a linear relationship exists between the average
increase in the CO2-brine IFT and the brine molality [32,40]. According to previous research,
this can be expressed using the following equations [80]:
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γ = Aγ[m+] + Bγ (3)

m+ =
n

∑
i=1

zimi (4)

Aγ = a1 + a2 pr + a3Tr (5)

Bγ = b1 + b2 pr + b3Tr + b4 p2
r + b5 prTr + b6T2

r (6)

The details of this method were discussed in a previous study [32]. The parameters for
a1–3 and b1–6 were obtained by fitting the predicted results to the experimental data, and
the coefficients used to model the CO2-brine IFT are listed in Table 3.

Table 3. Coefficients used to model the CO2-brine IFTs.

Parameter a1 a2 a3 b1 b2 b3 b4 b5 b6

Coefficient 3.672 1.376 −3.232 −165.524 −3.663 382.276 1.760 13.217 −160.054

Then, a modified empirical correlation based on experimental data was presented in
Figure 4, where ∆γ is the deviation between the experimental and estimated values for the
CO2-brine IFT. The modified empirical correlation uses only a few regression coefficients
with a relatively low error for most of the experimental data with around 600 data points.
The prediction results reached good agreement with the experiment, as shown in Figure 4.
Thus, IFTs between CO2-brine can be estimated via the modified empirical correlation based
on the linear relations of ∆γ and salinity, covering a wide range of temperatures (373–423 K),
pressures (3–30 MPa), and ionic strengths (0–4.9 mol·kg−1) for brines containing Na+, K+,
Ca2+, and Mg2+.

However, to predict the IFTs when the isotherms reached a plateau, the empirical
correlations based on the linear relation method yielded larger deviations (∆γ larger than
±4 mN·m−1) than expected, as shown in Figure 4. Moreover, a large discontinuity in
the slope for the IFTs against temperature at a constant pressure when passing from the
liquid/vapor to the super-critical/liquid region was observed. Therefore, a model that is
smooth and continuous in slope and successfully fits the IFT data corresponding to the
CO2 geological storage conditions, especially those covering the CO2 phase-change region
with thermodynamic significance, needs to be developed in future work. The following
conclusions are relevant based on the results discussed above:

• Different methods exist to measure the IFT between gases and liquids. Among these,
the pendent drop method, which is based on the axisymmetric drop shape analysis
(ADSA) technique, is widely used because of its high accuracy and efficiency.

• An accurate measurement of the IFT in CO2 reservoir brines at the evaluated high-
temperature and pressure ranges corresponding to actual reservoir conditions relies
on the integrity of the experimental apparatus and approach.

• Because of the temperature and pressure limitations of the desired experimental appa-
ratus, a prediction model for the IFT between CO2 and reservoir brines in accordance
with the actual reservoir conditions covering a wide range of temperatures, pressures,
ionic types, and strengths is essential.

• The results indicate that the IFT of the CO2-brine binary system depends on the
temperature, pressure, and molality. However, the pressure has a limited influence on
the CO2-brine IFT after the pseudo-plateau has been reached.
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A simplified IFT prediction model with thermodynamic significance and high integrity
for predicting IFTs when a pseudo-plateau is reached needs to be developed. And the
model needs to cover a wide range of temperatures and pressures corresponding to the
CO2 geological storage conditions in future work.

2.2. Wettability of the CO2-Water/Brine-Rock System

Multiphase flows in porous media are of great importance in many industrial processes
in terms of geological CO2 sequestration and utilization, including enhanced oil/gas/water
recovery [81,82]. The effects of fluid properties and flow conditions have been widely
studied in previous research, whereas less emphasis has been given to the wettability of the
CO2–water/brine–rock system, which is a key parameter influencing the storage capacity
and security of the CO2 geological storage scheme [83].

The seepage characteristics of reservoir fluids are a function of wettability because the
fluid distribution in the pore space of reservoir rocks is governed by rock wettability [81].
Therefore, it is important to accurately measure the rock wettability under CO2 geological
storage conditions. The wettability of the CO2-water/brine–rock system was estimated by
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measuring the contact angles of individual rock sample surfaces under reservoir conditions
using conventional methods, including the ADSA [62,73]. However, conventional contact
angle and tomographic imaging methods have serious limitations [83]. The measurement
methods are diverse, and the methods that have been commonly used in recent years are
summarized in Table 4, and Figure 5 shows how the static normal contact angle changes
with pressure.

Table 4. Literature review on the investigation of the wettability of CO2-brine-rock systems.

Method Analysis Mode Resources Schematic

Sessile drop Experimental,
manual/automatic analysis

Bikkina et al. (2011) [84]
Iglauer et al. (2014) [85]

Liu et al. (2015) [71]
Mutailipu et al. (2019) [32]
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The wettability alteration of caprocks as a function of the temperature and pressure in
the presence of supercritical CO2 has been systematically investigated in previous studies.
The wettability of the CO2-brine-mica/quartz system barely changes and remains wet, re-
gardless of the conditions observed [86]. The substrates remained hydrophilic in most of the
experimental temperature, pressure, and salinity ranges, whereas a sudden increase in the
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CAs (5–13◦) was observed when CO2 was converted from the subcritical to the supercritical
region for different rock samples in our previous work [32]. Alterations in the wettabil-
ity of the caprock in the presence of supercritical CO2 have also been reported in other
studies [62,71,86,87]. Based on previous research, wettability alternations of the caprock
should be taken into consideration for accurate estimation of the CO2 storage capacity of a
potential sequestration site. The wettability of rock/CO2/brine and rock/oil/CO2-enriched
brine systems has been analyzed critically, and a future outlook was proposed in previous
literature [100]. Until very recently, only limited investigations have been conducted re-
garding the CAs between reservoir rocks and water or brine, although wettability has a
profound influence on fluid–fluid interactions in the presence of a solid surface under CO2
storage conditions [82].

Traditional contact angle measurements overlook the 3D pore geometry, surface
roughness, and chemical heterogeneity, making them more prone to error. Hence, a
micro-computed tomography (CT) scanner method was used to measure the local CAs
of a CO2-brine–glass beads system at the pore scale [95,101]. However, there are obvious
limitations and disadvantages associated with using the CT method. It is expensive, time-
consuming, and the medical CT resolution is too low, resulting in only averaged saturations
being measured, and this curvature measurement may be biased owing to its voxelized
nature [82]. To overcome some of the abovementioned limitations and to deepen the
fundamental understanding of the flow processes of supercritical CO2 via brine-saturated
porous media, Nuclear Magnetic Resonance (NMR) with molecular resolution has recently
been used to measure CO2-rock wettability in recent work [83]. Despite recent advances in
our ability to accurately measure the wettability under reservoir conditions and engineer
wettability in the subsurface, the complex physics of wetting continues to challenge our
microscopic and macroscopic descriptions [82], owing to measurement disparities, varia-
tion in the sample type, roughness, contamination, and cleaning procedures [73,77,84,87].
Stefan et al. [85] proposed that the broad spread of CA data in the literature was caused
by surface contamination. Thus, establishing a practical cleaning procedure for the sur-
faces of sample substrates is of vital importance for the accurate measurement of rock
wettability [32,62,84,85,88].

Overall, the data on CO2-brine IFTs and rock CAs from laboratory studies are in-
adequate and contain discrepancies. Most of the experimental studies discussed above
used the pendent drop method based on the ADSA method. Thus, experimental errors,
inconsistent measurement procedures, and errors in the subsequent analytical techniques
could explain these disparities. Therefore, to obtain adequate data with high integrity for
CO2-brine IFTs and rock CAs corresponding to reservoir conditions, further laboratory
and modelling research in terms of molecular dynamics and simplified equations of state
is required, and the thermodynamic relations between interphase properties need to be
elaborated in particular.

Based on the results discussed above, the following conclusions are relevant:

• Conventional methods in terms of the contact angle and tomographic imaging mea-
surements have serious limitations.

• The disparity in the CA results in the reported data can be attributed to the differences
in the experimental procedures, substrates, roughness, and cleaning procedures used
for the substrate surfaces.

• The effects of the ionic strength and ionic type on the CAs of different substrates need
to be further investigated to verify the effects of salinity on CAs.

• Alternation in the wettability of the caprock in the presence of supercritical CO2 has
been observed, and a molecular dynamics method should be implemented to simulate
this phenomenon at the molecular level.

2.3. The Mutual Solubility between CO2 and Water/Brine

Solubility capture is one of the main long-term carbon capture mechanisms, accounting
for approximately 20% of the total capture amount at the initial stage of injection. It can
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capture up to 90% of the CO2 injection amount [11,102]. Thus, the mutual solubility between
CO2 and reservoir fluids is one of the key thermodynamic properties that determines the
flexibility of the CO2 saline aquifer sequestration scheme. Over the years, solubility data for
CO2 + H2O systems have been reviewed and analyzed [103]. Laboratory solubility data for
a CO2 + H2O system covering a wide range of temperatures and pressures are available in
the previously published literature [104–106]. Recently, empirical equations and estimation
models for water-saturated CO2 were developed based on experimental data available in
the literature [107,108]. Then, modeling for the estimation of mutual solubility in the CO2 +
H2O binary system was conducted [109–113].In addition, estimation methods of the p-T-x
properties of the CO2 + H2O binary system were proposed by others [114,115].

Considering the effects of salinity on solubility, solubility estimation models based on
the hybrid GE equation of state (EoS) [116], Anderko–Pitzer EOS [117], Pitzer EoS [118,119],
PC-SAFT EoS [120], mixed solvent electrolyte (MSE) model, and Soave–Redlich–Kwong
(SRK) EoS [121] were developed by previous researchers. Mutual solubility research on
the CO2 + brine/complex brine binary system containing ions such as Na+, K+, Mg2+, and
Ca2+ as well as Cl1−, SO2−

4 for a temperature (T) of 273 K < T < 469 K, a molality (m) of
0 mol·kg−1 < m < 5.0 mol·kg−1, and pressure (p) of up to 104 MPa has been carried out
over the years and is presented in Table 5 and Figure 6. Hou et al. [17] performed mutual
solubility measurements on the CO2 + H2O binary system, and considering the effects of
the dissolved salts, vapor–liquid equilibria were measured for the CO2 + H2O + NaCl/KCl
system using the same analytical apparatus [17]. Duan’s model [122] was found to be
broadly satisfactory for measuring the solubility of CO2 in NaCl (aq) but performed poorly
for assessing the solubility of CO2 in KCl (aq). Ratnakar et al. [123] developed a method that
uses an ionic strength-based mixing rule and extended the well-known Setschenow relation
to capture the impact of a mixture of salts containing mono- or multivalent ions to predict
the gas solubility in brine solutions with single or mixed salts. Then, Zhao et al. [124]
used the Setschenow coefficient of ions to calculate the solubility of CO2 in mixed salt
solutions. Most recently, Sun et al. [106] proposed a simple model for the prediction of
mutual solubility in CO2 + H2O and CO2 + brine systems.
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mNaHCO3 = 0.8 mol·kg−1; ×, 348.15 K; ×, 398.15 K [130].

In the meantime, a well-developed model was proposed by Spycher and Pruess [131]
to calculate the composition of the compressed CO2 and liquid H2O phases at equilibrium
based on a noniterative procedure to evaluate the feasibility of CO2 geologic sequestration
for temperatures between 285 K and 383 K and pressures of up to 60 MPa (i.e., 285 K ≤ T
≤ 383 K; p ≤ 60 MPa) by equating chemical potentials and using the Redlich–Kwong EoS.
Because the equilibrium constant K (i.e., directly related to the standard Gibbs free energy
of the reaction as ∆G0 = −RT ln K) is a more fundamental thermodynamic property than
Henry’s law constant H, and because the formulation can be more easily extended to a non-
ideal aqueous phase (i.e., resulting from the addition of salts) than formulations involving
Henry’s law constant, K instead of H was used in their solubility model. In 2005, their [132]
solubility model was extended to include the effect of chloride salts in the aqueous phase
by combining the activity coefficient formulations of Duan and Sun [119] and Rumpf
et al. [133] with their solubility correlations with an accuracy within the experimental
uncertainty for solutions of up to 6 mol·kg−1 NaCl and 4 mol·kg−1 CaCl2. Then, Spycher
and Pruess extended the temperature range of their solubility model up to 573 K (285 K ≤
T ≤ 573 K; p≤ 60 MPa) in 2010 [134]. The Redlich and Wong equation [135] was used in the
Spycher and Pruess [134] solubility model. Nevertheless, the basic Redlich–Kwong [136]
equation can only be applied to a few rather simple fluids. This is because the parameters of
the equation are based entirely on the two critical constants, namely the critical temperature
(Tc) and the critical pressure (pc), and do not involve the acentric factor. The equation of
Peng and Robinson [137] is structurally similar to the Redlich and Kwong [135] equation,
but it contains an acentric factor for its application to a pure fluid. The content related to
the equation of state can be found in the literature [138,139].

Therefore, to better estimate the phase equilibrium properties of mixtures composed
of interacting molecules, the interaction parameter Kij based on the EoS and mixing rules
can be correlated with the modified Peng–Robinson [137] EoS and the mixing rules of
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Panagiotopoulos and Reid [140]. Furthermore, in the Spycher and Pruess [134] model,
different coefficients and parameters were developed for temperatures of above 373 K
and below 373 K, such as the Margules expression and the equilibrium constant K. The
activity coefficients used for the effects of different chloride salts in the brine system were
the same, although it has been proven that the ion type has a significant influence on the
mutual solubility of the CO2 + brine binary system. Thus, to develop a more reliable and
simplified solubility model covering the P–T range of interest for applications to geologic
CO2 sequestration, the original solubility model of Spycher and Pruess needs to be further
modified by replacing the Redlich–Kwong [135] EoS with the Peng–Robinson [137], and
the calculation methods of the mole fraction, equilibrium constant, and fugacity coefficient
also needed to be optimized. According to the literature review presented in Table 5, it can
be concluded that the main methods for modeling the solubility of liquid or gas phases
include an EoS that is usually based on ϕ-ϕ [108,112] or γ-ϕ [17,129,134] equations.

Table 5. Literature data for CO2-H2O/brine mutual solubility system.

References Aqueous Phase m/
(mol·kg−1)

Temperature
T/K Pressure p/MPa

Bamberger et al. (2000) [112] H2O 0 323.2–353.1 4–14.2
Servio et al. (2001) [141] H2O 0 278.05–283.15 2–3.7

Anderson et al. (2002) [125] H2O 0 274.15–288.15 0.07–2.2
Kiepe et al. (2002) [129] H2O 0 313.2–393.17 0.09–10
Valtz et al. (2004) [126] H2O 0 278.2–318.2 0–8

Chapoy et al. (2004) [108] H2O 0 274.14–351.31 0.19–7.31
Iwai et al. (2004) [136] H2O 0 313.2 15

Zhang et al. (2005) [142] H2O 0 304–313 1–4.6
Dalmolin et al. (2006) [127] H2O 0 288–323 0.1–0.5

Qin et al. (2008) [143] H2O 0 323.6–324.1 0.03–0.05
Pereira et al. (2009) [102] H2O 0 298.2–323.2 0.05–0.6
Martin et al. (2009) [144] H2O 0 353–393 10–30

Han et al. (2009) [145] H2O 0 313.2–343.2 4.3–17.3
Dell’Era et al. (2010) [146] H2O 0 298.48–298.63 0.2–0.8

Ferrentino et al. (2010) [147] H2O 0 308.15–323.15 5.5–15
Ruffine et al. (2010) [148] H2O 0 333 4.8–11.5

Liu et al. (2011) [149] H2O 0 308.15–323.15 2–16
Tabasinejad et al. (2011) [150] H2O 0 422.98–478.35 3.9–103.4

Schüler et al. (2012) [151] H2O 0 308–333 0.101
Liu et al. (2012) [152] H2O 0 308.15–318.15 8–16
Hou et al. (2013) [17] H2O 0 298.15–448.15 1–18

Serpa et al. (2013) [153] H2O 0 298–323 0.1–0.4
Wang et al. (2013) [154] H2O 0 313.15–373.15 9–17.6
Tong et al. (2013) [155] H2O 0 374.1–323.2 7.2–27.3
Jiang et al. (2014) [156] H2O 0 333.15–373.15 8–18

Bastami et al. (2014) [157] H2O 0 328.15–375.15 6.8–20.7
Al Ghafri et al. (2014) [158] H2O 0 323.15 2–18.7

Krotov et al. (2014) [159] H2O 0 353.3 0.6–9.7
Meyer et al. (2015) [160] H2O 0 283.15–333.19 0–5

Muromachi et al. (2015) [161] H2O 0 286.15–298.15 0.2–4.0
Tang et al. (2015) [128] H2O 0 308.15–468.15 7.9–41

Foltran et al. (2015) [162] H2O 0 313.15 8–12.5
Rumpf et al. (1994) [133] NaCl 4–6 313–433 0.5–9.6

Kiepe et al. (2002) [98,129] NaCl 0.5–4.3 313–352 0.1–10
Bando et al. (2003) [163] H2O/NaCl 0–0.55 303–333 10–20

Kiepe et al. (2002) [98,129] KCl 0.5–4.0 313–353 0.1–10.5
Hou et al. (2013) [17] NaCl/KCl 2.5–4.0 323–423 2.6–18.2

Tong et al. (2013) [155] Complex brine 1–5 310–425 1.2–34.9
Hoballah et al. (2017) [130] NaHCO3 0.8 348–398 5–50
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Based on the results discussed above, the following conclusions are relevant:

• Empirical equations and estimation models for CO2 + H2O systems have been widely
implemented to calculate the solubility of water-saturated CO2; however, they have
limitations in estimating the solubility of H2O in compressed CO2.

• There are still too many parameters in the Duan et al. model, and most importantly, it
is not intended to compute the solubility of H2O in a compressed CO2 gas phase and
does not distinguish between ions of the same charge.

• Although the Krichevsky–Kasarnovsky (KK) approach provides a reasonably good
representation of the data, it either fails to fit the data or yields an unphysically
negative slope at higher temperatures.

• The well-developed Spycher and Pruess model is widely used to develop a more
reliable and simplified model for determining the mutual solubility between CO2 and
brines containing different ionic species and of different strengths.

• In the Spycher and Pruess model, different coefficients and parameters have been
developed for temperatures above 373 K and below 373 K, such as the Margules
expression and equilibrium constant K, which have no thermodynamic meaning.
Furthermore, the activity coefficients used to determine the effects of different chloride
salts in the brine system were the same. The interaction parameter Kij, based on the
EoS and mixing rules, can still be correlated with the modified Peng–Robinson and
the mixing rules of Panagiotopoulos and Reid.

The main methods used for modelling the solubility of liquid or gas phases include
an EoS that is usually based on ϕ-ϕ or γ-ϕ equations. Previous solubility models were
either limited to a certain range of temperatures or pressures, or were too complex. Most
importantly, until very recently, limited research has been available for the simultaneous
calculation of the mutual solubility of the CO2-rich phase and the H2O-rich phase with
high integrity for the application of the CO2 saline aquifer storage scheme. Furthermore,
the interaction mechanism coupling with multiple factors of the gas–liquid–solid interface
properties and the dissolution and acidification process needs to be explored in future work.

2.4. pH of CO2-Saturated Brine

Modeling and experimental research have been carried out over the years to estimate
the pH of the CO2-saturated brine system. In general, electrometric or optical methods
are used to measure the pH of CO2-saturated brine or water, where the former is based on
the electrode system [164], and the latter is based on UV–vis spectrophotometry [165–167].
Careful calibration of the measurement system is essential for both measurement ap-
proaches.

Previous studies on the pH of CO2-saturated aqueous solutions have mainly focused
on water [168–172], seawater [173], and NaCl brines [174–182]. However, reservoir brines
contain Na+, Cl−, K+, Ca2+, Mg2+, SO4

2−, HCO3
−, and CO3

2−, which are expected to
significantly influence the fluid properties [76,130,183]. Measurements of brines containing
salts other than, or in addition to, NaCl were performed by Stefansson et al. [184], who
studied complex systems containing Na2CO3, NaHCO3, NaOH, HCl, and NaCl, and by
Li et al. [182], who studied both NaCl and NaHCO3 brines. An updated literature review
on the pH measurement of CO2-saturated aqueous solutions is presented in our previous
work [23]. According to a review of the previous literature [23,168,171–175,177,180,182,185],
it can be concluded that the electrometric method is often used to measure the pH of
CO2-saturated aqueous solutions covering a wide range of temperatures and pressures
(pressures up to 35 MPa), due to its reliability and stability under reservoir conditions.
While Toews et al. [169] and Parton et al. [170] measured the pH of the CO2-H2O system
for the temperatures and pressures ranging from 298 to 343 K and from 7 to 20 MPa,
respectively, via optical methods. Then, Shao et al. [179] used an optical method to measure
the pH of a CO2-NaCl system for temperatures and pressures ranging from 298 to 366 K and
from 0 to 20 MPa, respectively, while the pressure was 0.1 MPa for the same measurement
system in Millero et al.’s work [178]. Also, in Stefansson et al.’s [184] work, the optical
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method was used to measure the pH of a CO2-saturated complex brine system at a low
pressure range (pressures ranging from 1 to 2 MPa).

Typically, geochemical simulators such as PHREEQC [186] and EQ3NR [187] have
been used to model the pH of gas-saturated aqueous solutions. These models implement
the Pitzer model to calculate the activity coefficients of solutes in the aqueous phase, the cor-
relations of Henry’s constant and an equation of state for gaseous components, and the cor-
relations of standard equilibrium constants for aqueous-phase chemical reactions [188–190].
In a previous study on NaCl and NaHCO3, as well as KCl brines, the Pitzer model ac-
counted well for the measured pH over a wide range of temperatures, pressures, and ionic
strengths [23,182]. This type of model offers a convenient route for predicting the pH of
complex brines with dissolved CO2; however, additional validation is required for brines
other than NaCl (aq). Prior to estimating the pH, the solubility of gas-saturated aqueous
solutions is calculated first in the PHREEQC; thus, the two important thermodynamic
properties (pH and solubility) of gas-saturated aqueous solutions can be evaluated via
geochemical simulators such as PHREEQC. However, there are limited studies available in
the literature to investigate the thermodynamic relations between the pH and solubility of
gas-saturated aqueous solutions.

Given the lack of experimental data, it is important to measure the pH of CO2-saturated
brines other than NaCl (aq) over wide ranges of temperatures, pressures, and molalities.
The range of investigated conditions should include those relevant to CO2 storage in
deep-saline aquifers. In previous work, the pH of CO2-saturated aqueous KCl solutions
was measured over wide ranges of temperature and pressure and at salt molalities of
2 mol·kg−1 and 4 mol·kg−1 [23]. It was observed that the influence of KCl on the pH under
conditions of a constant temperature and CO2 partial pressure was different from that of
NaCl, with the pH in the former being slightly higher. However, this difference in behavior
is probably only significant in brines with high f K+ molalities [23]. The Pitzer model
combined with the MacInnes convention [191], as implemented in PHREEQC version
3.5.0, provides a generally good prediction of the pH of the CO2-saturated aqueous KCl
solutions [23]. Hence, previous work served to validate a geochemical simulator based
on the Pitzer model for the prediction of pH in systems involving CO2 dissolved in water,
NaCl (aq), NaHCO3 (aq), and KCl (aq) [23,172,182]. The influence of divalent cations on
the pH of CO2-saturated aqueous solutions might be different from that of monovalent
cations; thus, the model requires further validation for systems involving CO2 dissolved
in brine containing other types of ionic ions, such as Ca2+ and Mg2+. To the best of our
knowledge, there are no publications on the pH of a saturated CO2-CaCl2 solution and
a saturated CO2-MgCl2 solution under high-temperature and high-pressure conditions.
Therefore, the aim of future research on the pH of saturated CO2-brine is to validate the
integrity of geochemical simulators based on the Pitzer model.

Based on the results discussed above, the following conclusions are relevant:

• Very limited research is available for the pH of gas-saturated aqueous solutions under
CO2 saline aquifer storage conditions, although it is considered to be one of the most
important parameters of reservoir fluids.

• In general, electrometric or optical methods are used to measure the pH of CO2-
saturated brine or water. On the basis of the literature review, it can be concluded that
the electrometric method is often used to measure the pH of CO2-saturated aqueous
solutions covering a wide range of temperatures and pressures (pressures of up to
35 MPa) due to its reliability and stability under reservoir conditions.

• Geochemical simulators based on the Pitzer model offer a convenient route for pre-
dicting the pH of complex brines with dissolved CO2. However, additional validation
is required for brines other than NaCl (aq).

• The pH and solubility of gas-saturated aqueous solutions can be evaluated via geo-
chemical simulators such as PHREEQC. However, there are limited studies available
in the literature to investigate the thermodynamic relations between the pH and
solubility of gas-saturated aqueous. The mechanisms of dissolution and acidizing
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during the CO2 saline aquifer storage process need to be studied systematically, and
thermodynamics relations between the pH and solubility of gas-saturated aqueous
solutions need to be clarified.

• Given the lack of experimental data, it is important to measure the pH of CO2-saturated
brines other than NaCl (aq) over wide ranges of temperatures, pressures, and molality.
The range of investigated conditions should include those relevant to CO2 storage in
deep-saline aquifers. The results of these experiments were compared with calculations
based on the Pitzer model to validate the geochemical simulators based on the Pitzer
model.

3. Influence of Interface Properties on the Pore-Scale Multi-Phase Flow
3.1. Core Flooding Experiment and Modelling

The CO2-water displacement process at the pore scale can be investigated via lab-
oratory core flooding experiments under reservoir conditions using X-ray CT scanning
technology [148,192–194]. The effects of different samples and flow rates on the CO2/brine
displacement efficiency have been studied [195,196]. Laboratory core flooding experimental
systems and apparatus for CO2 geological sequestration developed over the past decade
have been reviewed carefully in previously published literature [197]. Meanwhile, the
laboratory experiments have been replicated by implementing numerical models that can
accurately interpolate the CO2/brine relative permeability by matching the experimental
data. Subsequently, a 2D semi-analytical model was developed to predict the brine dis-
placement efficiency over a wide range of capillary numbers [198]. Magnetic resonance
imaging (MRI) has been widely used to study the migration of injected CO2 in porous
media [199]. A multiphase flow experimental system based on MRI was used to study
the multiphase flow and displacement process of CO2 during the storage of saline water
layers. The local porosity of a single layer can be obtained using the MRI method so that
the internal pore structure of porous media can be comprehensively analyzed, and the
visual detection of multiphase seepage in porous media can be realized. In addition, MRI
phase migration velocimetry can accurately and quantitatively analyze the flow velocity
and mass transfer of multiphase seepage in porous media [200].

The flow of carbon dioxide is affected by the anisotropy of the porosity and permeabil-
ity of the porous media; therefore, it is necessary to reasonably analyze the pore structure
of the sealed formation during the process of carbon dioxide storage. Recently, a pore-scale
fluid flow method based on pore network models from sample X-ray computed tomogra-
phy (micro-CT) was developed to analyze the CO2/brine displacement process [71,201].
Pore network models have been widely used to analyze the core structure and multiphase
flow simulation of oil/water to enhance oil recovery [202–205]. Currently, pore network
multi-phase flow simulation models are being implemented in research on the CO2/brine
seepage characteristics of reservoir rock samples to provide a fundamental understanding
of the CO2/brine displacement process in porous media under CO2 reservoir storage condi-
tions. Other models applied in the research of multiphase flow problems include the Lattice
Boltzmann model (LBM) of multiphase flow system [206], the Shan–Chen (S-C) model [207],
the four-parameter random growth method (QSGS) [208], the generalized Lattice Boltz-
mann model (GLBM) [209], and the Homogenized Lattice Boltzmann model (HLBM) [210].
However, limited pore-scale numerical simulations are available in the literature.

On the other hand, the thermodynamic properties, such as the interfacial tension,
wettability, and density of the gas–liquid–solid system, are important parameters of pore
network multi-phase flow simulation models. Different equations have been developed
to consider the heterogeneity of wettability in pore network multi-phase flow simulation
models [204,211]. The effects of fluid properties and flow conditions have been widely
studied in previous research, whereas less emphasis has been given to the wettability of the
CO2–water/brine–rock system, which is a key parameter that influences the storage capac-
ity and security of the CO2 geological storage scheme. The influence of the thermodynamic
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properties on muti-phase flow in porous media is discussed in this section in terms of the
wettability and interface properties via pore network multi-phase flow simulation models.

3.2. Effects of Wettability

In general, the wettability of a given rock/fluid system controls the pore-scale ar-
rangement of fluids within the rock pore space, which, in turn, affects the micro- and
reservoir-scale multiphase flow properties [212]. Previous studies in this area have focused
on water-driven oil repellency. Morrow et al. [213] found, by using different methods,
that when the rock wettability changes from hydrophilic to neutral or even lipophilic, the
water percolation resistance increases significantly, the oil percolation resistance decreases,
and the oil repellency efficiency tends to increase, with the highest repellency efficiency
occurring for weakly water-wet rock samples. Furthermore, it is proposed that for low-
permeability reservoirs, the shift in wettability from hydrophilic to neutral is an important
mechanism for improving the recovery rate.

The relative permeability of bead-filled porous media with altered wetting conditions
was also investigated in recent years by Landry et al. [214] based on the Lattice Boltzmann
method. They found that changes in the surface wettability did not significantly affect
the relative permeability of the wetted phase but resulted in a significant decrease in the
relative permeability of the non-wetted phase [214]. Hwang et al. [215] investigated the
effect of the fracture wettability on the capillary pressure and relative permeability profiles.
They found that a larger proportion of non-water-wetted solid surfaces led to a higher
relative water permeability for a given water saturation level [215]. Guo et al. [216] focused
on the effect of wettability inhomogeneity on percolation and found that, under both
homogeneous and inhomogeneous wetting conditions, the inhalation process increased the
relative permeability of water and decreased the relative permeability of scCO2 compared
to the repulsion process.

Thus, the wetting properties of the reservoir must be considered when studying its
seepage characteristics to ensure the flexibility of the CO2 deep saline aquifer storage
scheme [13]. Investigations of the seepage characteristics of the CO2-brine two-phase flow
under CO2 deep saline aquifer storage conditions have been carried out for years via both
laboratory experiments and numerical simulations in terms of relative permeability and
capillary pressure.

Recently, researchers measured the contact angles between brine, dense CO2, and
minerals representative of shales, such as mica and quartz [86,217]. They reported that the
water-wettability of these minerals barely changed. Perrin and Benson [195] studied the
CO2-brine displacement process in rock samples at various flow rates. They observed that
the CO2-brine displacement efficiency depended on the heterogeneity of the cores and the
flow rates. However, only limited laboratory experiments have been conducted regarding
the wettability of reservoir rocks under CO2 storage conditions owing to the complexity of
the experimental process. With the fast development of pore-scale numerical simulations,
the effect of the wettability on fluid flow in porous media can be investigated via pore net-
work models combined with X-ray computed tomography (micro-CT) [202–205,218,219].
Chen and Liu measured the percolation properties of a CO2-brine two-phase flow in porous
media via pore network modeling [71,201]. It is believed that a two-phase flow simula-
tion based on pore network modeling is a reliable, efficient, and economical method for
investigating the reservoir CO2 storage capacity.

In a previous study, the pore network flow simulation model was used to study
the influences of the thermodynamic properties and pore structure on the CO2-brine
seepage characteristics at 323 K and 12.4 MPa with a 6 g/L NaCl solution, providing a
fundamental understanding of the CO2-brine displacement process under CO2 reservoir
storage conditions [220]. The results indicate that changing the rock-wetting behavior and
interactions between the fluid and gas–rock has a significant effect on the gas-flooding
process compared to water flooding as the temperature and pressure increase. To better
understand the influence of wettability on the fluid flow in porous media, the CO2-brine
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two-phase flow behavior in homogenous Berea sandstone was investigated using the pore
network flow simulation method [221]. A single wetting system was used for the flow
simulation, and the sample was considered to be homogeneously wetted Berea sandstone.
The results indicate that the fluid flow of gas and water is much better in a strongly water-
wet system than in a completely CO2-wet system, and the entire system was in a stable
displacement state.

However, most natural reservoir cores are heterogeneous wetting porous media, and
their pore spaces are partly water-wet and partly hydrophilic. Thus, it is of great significance
to study the effects of wettability heterogeneity on the gas–water flow under reservoir
conditions. In our previous work, the influence of wettability on the CO2-brine two-phase
flow behavior in a Berea sandstone sample was studied using a pore network numerical
flow simulation method [222]. The results indicate that the heterogeneity of wettability has
a significant influence on the CO2-brine two-phase flow behaviour during water flooding.
When the non-wetting proportion of the system increases, the system becomes more CO2
wet, and the liquidity of the aqueous phase is enhanced; in the end, more CO2 is displaced
by the aqueous phase. Therefore, saline with strong water-wetting properties might be
the best site for CO2 storage because of the better CO2 flow characteristics of strong water-
wetting porous media [222].

It seems that the numerical simulation based on pore network extraction is an efficient
and economical method for studying the gas–water seepage characteristics under CO2
reservoir storage conditions, especially for investigating the influence of wettability on the
fluid flow in porous media. However, the integrity of this method needs to be validated by
combining it with the results of laboratory core flooding experiments.

3.3. Effects of Interphase Properties

In addition to the wettability, the influence of the thermodynamic properties, such
as the interfacial tension, fluid flow rate, and viscosity, on multiphase flow in porous
media is also a popular research topic. Gu et al. [223] experimentally determined that
residual brine saturation is a function of the viscous force at a certain flow rate. As the
flow rate increased, the residual brine saturation decreased, and the endpoint CO2 relative
permeability increased. Lyi et al. [224] used the ANSYS-CFD technique to establish a
numerical model for hot water injection in oil-bearing sandstone cores. It was found that
the permeability (relative) of the oil flow curve was strongly influenced by the flow rate,
whereas water had little or no effect on the relative permeability. A fully implicit isothermal
compositional pore network model for gas and condensate flows was proposed by Reis
et al. [225], which predicts the positive effect of flow on the relative permeability curve,
and a higher relative permeability is expected at lower levels of IFT. Using an experimental
method, Henderson et al. [226] found that the relative permeability of both phases increased
with an increasing flow rate under both steady- and unsteady-state conditions. Increasing
the value of the interphase IFT decreased the relative permeability of the gas phase more
than that of the condensate phase.

The experimental data were analyzed by Balogun et al. [227] using the nonstationary
water drive method and numerical calculations by history fitting, and it was found that the
relative permeability curve increased for high-viscosity oil and decreased for low-viscosity
oil as the flow rate increased. Esmaeili et al. [228] used the Johnson, Bossler, and Neumann
(JBN) method and a history matching method to calculate the relative permeability of
isothermal oil drive test results. The results showed that the relative oil-water permeability
was almost insensitive to the viscosity ratio. Bennion et al. [229] found that the better the
viscosity ratio between water and CO2 (the more favorable), the better the replacement
effect. Later, it was found that the IFT may play a more important role in the variation in the
relative permeability and endpoint saturation characteristics than the viscosity ratio [230].

Babadagli [231] suggested that a decrease in the IFT during the imbcycle process leads
to a decrease in the capillary pressure, which in turn facilitates percolation. Jamialahmadi
et al. [232] later confirmed this conclusion using the free-energy Lattice Boltzmann method.
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The effect of gas–tension was found after extensive experimental studies by Bennion
et al. [230]: the relative permeability of a given system increases with a decreasing IFT.
Later, Gu et al. [223] reconfirmed this conclusion; the curves of both phases shifted toward
an increase in brine saturation as the IFT increased. Using an ideal pore-scale numerical
model, Iyi et al. [233] analyzed the VOF and found that, under all wettability conditions,
the repulsion efficiency could be improved by sufficiently reducing the IFT between fluid
phases. By reducing the IFT and changing the wettability to a water-wet state, recovery
could be improved.

Based on the results discussed above, the following conclusions are relevant:
The effects of thermodynamic properties on pore-scale multi-phase flow can be investi-

gated via pore flooding experiments based on X-ray computed tomography (micro-CT) and
pore-scale numerical simulations. The latter is widely used because of its high efficiency
and economy. However, the pore-scale simulation model can be modified in combination
with laboratory research to explore the influence of interface properties on multiphase flow
in porous media.

Limited pore-scale numerical simulations are available in the literature. On the other
hand, thermodynamic properties, such as the IFT and wettability of the gas–liquid–solid
system, are important parameters of pore network multi-phase flow simulation models.
The effects of fluid properties and flow conditions have been widely studied in previous
research, whereas less emphasis has been given to the wettability of the CO2–water/brine–
rock system, which is a key parameter influencing the storage capacity and security of the
CO2 geological storage scheme.

The multi-dimensional and multi-scale gas–liquid flow visualization experiment, as
well as pore-scale seepage numerical modeling coupling with multi-parameters, need to
be carried out. The variation and the interaction mechanism of pore seepage features
caused by the physical and chemical interactions of the multi-phase interface properties
need to be clarified in future work to provide a theoretical base and technical guidance on
the achievement of the CO2 geological storage and utilization project with high integrity
and efficiency.

4. Conclusions

A detailed review devoted to the consideration and analysis of literature sources for
the last 15 years on thermodynamic properties in the gas–liquid–solid system in the process
of geological storage of carbon dioxide is presented in this study. After reviewing the
previous literature, the following conclusion can be drawn:

(1) A simplified IFT prediction model with thermodynamic significance and high integrity
for predicting IFTs when a pseudo-plateau is reached needs to be developed in future
work to cover a wide range of temperatures and pressures corresponding to CO2
geological storage conditions.

(2) Further laboratory and modelling research on the wettability alternations of caprock
in terms of the molecular dynamics and simplified equations of state is required, and
the thermodynamic relations between interphase properties need to be elaborated in
particular.

(3) The main methods for modelling the mutual solubility of liquid or gas phases include
EoS, which is usually based on ϕ-ϕ or γ-ϕ equations. Until very recently, limited
research has been available on the simultaneous calculation of the mutual solubility of
the CO2-rich phase and the H2O-rich phase with high integrity for the application of
the CO2 saline aquifer storage scheme. Furthermore, interaction mechanism coupling
with multi-factors associated with the gas–liquid–solid interface properties and the
dissolution and acidification process need to be explored in future work.

(4) Very limited research is available on the pH of gas-saturated aqueous solutions under
CO2 saline aquifer storage conditions. Given the lack of experimental data, it is
important to measure the pH of CO2-saturated brines other than NaCl (aq) over wide
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ranges of temperature, pressure, and molality relevant to CO2 storage in deep-saline
aquifers in future work.

(5) Multi-dimensional and multi-scale gas–liquid flow visualization experiments, as well
as pore-scale seepage numerical modeling coupling with multi-parameters, need
to be carried out. The variation and the interaction mechanism of pore seepage
features caused by the physical and chemical interactions of the multi-phase interface
properties need to be clarified in future work to provide a theoretical base for and
technical guidance on the achievement of the CCUS project with high integrity and
efficiency.

The main findings of this study can provide a reference for future research on the
interface properties of gas–liquid–solid systems and can illustrate the mechanisms of pore-
scale multi-phase flow during the CO2 geological storage and utilization process to provide
a solid technical foundation for the low-carbon, clean, and efficient use of coal and other
fossil energy sources, thereby contributing to national energy security.
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