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Abstract: Wireless energy harvesting (EH) communication has long been considered a sustainable
networking solution. However, it has been limited in efficiency, which has been a major obstacle.
Recently, strategies such as energy relaying and borrowing have been explored to overcome these
difficulties and provide long-range wireless sensor connectivity. In this article, we examine the relia-
bility of a wireless-powered communication network by maximizing the net bit rate. To accomplish
our goal, we focus on enhancing the performance of hybrid access points and information sources by
optimizing their transmit power. Additionally, we aim to maximize the use of harvested energy, by
using energy-harvesting relays for both information transmission and energy relaying. However, this
optimization problem is complex, as it involves non-convex variables and requires combinatorial
relay selection indicator optimization for decode and forward (DF) relaying. To simplify this problem,
we utilize the Markov decision process and deep reinforcement learning framework based on the
deep deterministic policy gradient algorithm. This approach enables us to tackle this non-tractable
problem, which conventional convex optimization techniques would have difficulty solving in com-
plex problem environments. The proposed algorithm significantly improved the end-to-end net bit
rate of the smart energy borrowing and relaying EH system by 13.22%, 27.57%, and 14.12% compared
to the benchmark algorithm based on borrowing energy with an adaptive reward for Quadrature
Phase Shift Keying, 8-PSK, and 16-Quadrature amplitude modulation schemes, respectively.

Keywords: joint information and energy relaying; energy harvesting; deep deterministic policy gradient

1. Introduction

The deployment of ultra-low-power electronic sensors has increased significantly
with the advanced wireless communication networks [1]. These sensors are used for
various data collection and signal processing applications of the Internet of Things (IoT)
domain [2]. However, the lifetime of the IoT networks is limited by the battery constraints
of the individual sensor devices. To address this issue, dedicated radio frequency energy
transfer (RF-ET) ensures uninterrupted long-duration network operation by providing
controllable on-demand energy replenishment of sensor devices [3], which includes long-
range beamforming capabilities for energy harvesting (EH), joint energy, and information
transfer provisioning over the same signal [4]. This introduces a research paradigm on
wireless-powered communication networks (WPCN), in which the uplink information
transfer (IT) is governed by downlink ET from the hybrid access point (HAP).

The RF-EH system can operate independently in remote and harsh locations, but it has
some limitations. These include low energy sensitivity, low rectification efficiency at lower
input power, high attenuation due to path loss, and energy dispersion loss [5]. Additionally,
the energy harvested from ambient sources cannot be accurately predicted dynamically
because the channel conditions are constantly changing [6]. Therefore, it is necessary to
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have a backup power supply, such as a power grid (PG), to facilitate energy cooperation.
This secondary power supply can efficiently handle energy transactions when EH devices
require additional power for uninterrupted WPCN operation. This paper investigates the
artificial intelligence (AI) enabled smart energy sharing and relaying in cooperative WPCN
to enhance the end-to-end system performance.

1.1. Related Works

Several studies, including those referenced in citations [7–13], have explored im-
plementing autonomous cooperative energy harvesting (EH) techniques with unknown
channel gains. These techniques involve energy-constrained sensor devices transmitting
information using harvested energy in wireless power transfer networks (WPCN). For
instance, one study proposed an optimization model in [7] to maximize two-hop radio
frequency energy transfer efficiency with optimal relay placement. In [8], the authors
maximized the overall bit rate by optimizing time and power allocation for downlink
energy transfer and uplink information transfer and relaying. Another study by Chen et al.
in [9] approximated the average throughput for wireless-powered cooperative networks
using the harvest-then-cooperate protocol. In addition to fixed relaying approaches in [8,9],
an adaptive transmission protocol in [10] dynamically determines whether the information
source (IS) should access the point (AP) directly or cooperatively with relays based on esti-
mated channel state information (CSI). Beamforming optimization was performed in [11]
to maximize received power for evaluating the performance of relay-assisted schemes
under EH efficiency constraints. In [12], a cooperative relaying system was developed to
improve the quality of experience (QoE) for cell-edge users. In [13], Wei et al. proposed
wireless power transfer (WPT) to enhance spectral efficiency (SE) by jointly adjusting time
slot duration, subcarriers, and the transmit power of the source and relay. However, the
harvested energy from WPT at sensor device batteries cannot transmit data over long
distances. Therefore, energy cooperation and sharing strategies are necessary to overcome
dynamic green energy arrival conditions for perpetual WPCN operation.

In network optimization, ref. [14] proposed a method to minimize network delay
through simplified energy management and conservation constraints for fixed data and
energy routing topologies. Meanwhile, ref. [15] explored various energy-sharing mecha-
nisms among multiple EH devices within the network. When data transmission is possible,
but there is insufficient energy in the device battery, external energy supply from nearby
secondary power sources must be considered. Ref. [16] addressed this issue by examining
the external energy supply provided by PG to EH devices in WPCN. In contrast, ref. [17]
proposed that EH devices borrow energy from PG for information transmission and return
it with additional interest as a reward. Sun et al. developed a schedule [18–20] to maximize
system throughput through energy borrowing and returning. However, these approaches
rely on predefined statistical parameters and dynamics, whereas in reality, channel gains
and harvested energy are subject to random variation. Therefore, a decision-making deep
reinforcement learning (DRL) algorithm is needed to determine current network parameters
based on previously gained knowledge of the environment.

Wireless network management has recently seen an increase in deep reinforcement
learning (DRL) use as part of machine learning (ML) due to its decision-making capabilities
through a trial-and-error approach. The sophisticated combination of neural networks
(NNs) in DRL makes it ideal for handling complex situations with high-dimensional
problems. The authors of [21] developed an NN model to extract key rates with high
reliability, considerable tightness, and great efficiency. Qie et al. [22] used DRL based on
the deep deterministic policy gradient (DDPG) algorithm to develop an optimal energy
management strategy for an EH wireless network. Resource allocation policies were also
developed using DRL in [23] to maximize achievable throughput, considering EH, causal
information of the battery state, and channel gains. DRL based on borrowing energy with
an adaptive reward (BEAR) algorithm was proposed in [24] to optimize energy borrowing
from a secondary power source and efficient data transfer utilizing harvested energy.
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In [25], cooperative communications with adaptive relay selection in a wireless sensor
network were investigated as a Markov decision process (MDP), and deep-Q-network
(DQN) was proposed to evaluate network performance. DRL based on the actor-critic
method was used in [26,27] to maximize the energy efficiency (EE) of a heterogeneous
network for optimal user scheduling and resource allocation. However, the impact of
energy scheduling and transmit power allocation of IS maximizing the transmission rate of
an energy borrowing and relaying aided WPCN is still a research gap, needs to be explored.

1.2. Motivation and Key Contributions

In current EH cooperative relaying techniques for WPCN, such as those mentioned
in references [10–13], having complete knowledge of the CSI at the receiver is necessary.
However, such simplified channel models fail to account for the dynamic communication
environment, which is crucial for optimizing resource allocation and analyzing system
performance. Alternative approaches, like energy scheduling and management methods,
have been adopted in references [15–18], which assume a practical probability distribu-
tion model for energy arrival. However, these methods do not consider optimal power
allocation, energy borrowing, and returning schedules for harvested energy relaying for
IT. Only the authors of reference [21,23,24] have considered a practical EH channel model,
where a single EH relay wirelessly transfers energy to the IS. However, this model does
not apply to multiple EH relay-assisted WPCN, where maximizing throughput and mini-
mizing transmission delay are essential. Our article addresses these issues by exploring
the RF-powered joint information and energy relaying (JIER) protocol for WPCN, which
efficiently allocates resources to maximize system reliability. Specifically, we consider an
EH-HAP that effectively manages energy transactions with the PG and transmits RF energy
to the IS through multiple EH relays. It then receives information from the source via
uplink DF-relay-assisted channels. This timely investigation focuses on maximizing the
efficacy of EH in WPCN by optimally utilising the available energy resources by enabling
intelligent energy relaying and borrowing. Our specific contribution is four-fold, which
can be summarized as follows:

• Considering a novel smart energy borrowing and relaying-enabled EH communication
scenario, we investigate the end-to-end net bit rate maximization problem in WPCN.
Here, we jointly optimize the transmit power of HAP and IS, fractions of harvested
energy transmitted by the relays, and the relay selection indicators for DF relaying
within the operational time.

• We decompose the formulated problem into multi-period decision-making steps using
MDP. Specifically, we propose a nontrivial transformation where the state represents
the current onboard battery energy level and the instantaneous channel gains. In
contrast, the corresponding action indicates the transmit power allocations. Since
HAP selects the relay based on the maximum achievable signal-to-noise ratio (SNR)
among all the relays for receiving the information, the instantaneous transmission rate
attained by HAP is treated as an immediate reward.

• We observed that the initial joint optimization problem was analytically intractable
to be solved using traditional convex optimization techniques due to the realistic
parameter settings of complex communication environments. Therefore, we suggest
a DRL framework using the DDPG algorithm to train the DNN model, enabling
the system to discover the best policy in an unfamiliar communication environment.
The proposed approach determines the current policy using the Q-value for all state-
action pairs. Additionally, we have examined the convergence and complexity of the
proposed algorithm to improve the learning process.

• Our analysis is validated by the extensive simulation results, which offer valuable
insights into the impact of key system parameters on optimal decision-making. Ad-
ditionally, we compared the performance of various modulation schemes, including
QPSK, 8-phase shift keying (PSK), and 16-quadrature amplitude modulation (QAM),
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that leverage the same algorithm. Our resource allocation technique improves the net
bit rate of the system compared to the BEAR-based benchmark algorithm.

The rest of the article is organized as follows: Section 2 presents the system model
of efficient WPCN (Figure 1). Section 3 elaborates on the mathematical formulation of
our objective. Section 4 introduces the DRL approach and the proposed DDPG algorithm
for resource allocation corresponding to the optimal policy. Section 5 gives insights into
extensive simulation results for performance evaluation. Finally, Section 6 outlines the
conclusion, where the list of references is located at the end of this article.
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Figure 1. System model of the WPCN.

We use bold letters to denote vector quantity; |.| represents the magnitude of a complex
quantity; erfc(.) stands for complementary error function; CN (λ, ω) indicates a circularly
symmetric complex Gaussian random variable with mean λ and variance ω; E[.] is the
expectation operator; and O(.) denotes the big-O notation.

2. System Model

Consider a JIER-assisted WPCN consisting of a PG and three types of transceiver
modules such as a HAP, two RF-EH relays, and an IS, as depicted in Figure 1. Here, HAP is
harvesting energy from ambient sources, such as RF power signals, and subsequently stores
the harvested energy in its limited charge storage capable internal battery. We assume
that IS can only harvest energy into its small-size battery storage from the RF energy
transfer mode as it has no direct external energy supply. When IS accumulates sufficient
energy, it can transmit information to relays and HAP. Furthermore, HAP can borrow the
required energy from the PG while it faces the potential energy shortage for RF energy
transmission towards relays and IS. To reduce PG’s additional burden, HAP returns the
borrowed energy to PG along with interest based on the borrowing price, where no energy
leakage is considered within the energy transmission deadline [28]. For ease of calculation,
we subdivide the operational period into N equally spaced discrete time slots of duration δ
each. Let, at the nth (n ∈ N = {1, 2, . . . , N}) time slot, the battery energy level of HAP is
B[n] and its harvested energy from the ambient sources is EH [n], where EH [n] follows the
Gaussian distribution of mean µH and variance σ2

H . The channel gain coefficient for the
communication link between source and destination at the nth time slot also follows the
complex Gaussian distribution of mean µh and variance σ2

h [29].
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2.1. JIER Protocol

We consider that HAP can transfer energy to IS by the two RF-EH relays, i.e.,R1 and
R2 via full-duplex two-hops downlink channel and then IS transmits data to the HAP
via uplink half-duplex decode and forward (DF) relaying channel. The entire protocol is
divided into four phases as follows:

• Phase 1: Energy is harvested atR1,R2 and the IS for (N − 3) time slots by the directly
transmitted RF signals from the HAP.

• Phase 2: Energy is further harvested at the IS in (N − 2)th time slot by energy relaying
from R1 and R2, where the relays transmit a fraction of the harvested energy from
phase 1. Let σ1[n] and σ2[n] be the fractions of the harvested energy transmitted by
R1 andR2, respectively.

• Phase 3: At the (N − 1)th time slot, the IS directly transmits information to R1, R2
and the HAP using the harvested energy stored in its onboard battery.

• Phase 4: Finally, at Nth time slot, the information is transmitted to the HAP fromR1
orR2 via DF relaying by utilizing the remaining harvested energy stored in the relays’
battery. The HAP receives information from a single relay at a time and selects that
relay depending on the maximum achievable SNR among all the relays.

2.2. Energy Scheduling

The instantaneous battery energy level of the HAP depends on its current harvesting
energy, energy borrowing, and returning of energy to PG, which can be calculated as [28]

B[n] = min{(B[n− 1] + EH [n]), Bmax}+ EB[n]− ER[n]− δPH [n]. (1)

where Bmax is the maximum battery capacity of HAP, EB[n] represents the instantaneous
borrowed energy from PG, ER[n] denotes the returned energy to PG at nth time slot, and
PH [n] is the instantaneous transmit power of HAP.

2.2.1. Energy Borrowing

If HAP’s current energy level is less than its energy consumption at a slot while
transmitting with the power of PH [n], HAP borrows the required energy from the PG,
which can be expressed as [28]

EB[n]=

{
δPH [n]− (B[n− 1] + EH [n]), if δPH [n] > (B[n− 1] + EH [n])
0, otherwise

. (2)

2.2.2. Energy Returning

Since sometimes HAP borrows the required energy from PG according to (2), it has
to be returned to PG along with the interest based on the borrowing price. Hence, HAP
returns it by utilizing the harvested energy at future time slots, defined by [24]

ER[n]=

{
ςEE[n], if EU [n− 1] > EE[n]
ςEU [n− 1], Otherwise

, (3)

where EE[n] = B[n− 1] + EH [n] + EB[n] − δPH [n] is the instantaneous excess energy, ς
denotes the energy transfer efficiency from HAP to PG, and EU [n] indicates the unreturned
energy, which is defined at nth time slot as [24]

EU [n]=


EU [n− 1] + EB[n], if δPH [n] > (B[n− 1] + EH [n])
EU [n− 1] + EI [n]− ER[n], if δPH [n] ≤ (B[n− 1] + EH [n])

and ER[n] ≤ (EU [n− 1] + EI [n])
0, Otherwise

. (4)
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where EI [n] = $EU [n− 1] is the excess returnable energy in the form of interest because
of delay in returning the borrowed energy, and $ denotes the rate of interest. To restrict
excessive energy borrowing, we set the upper bound of unreturned energy EU

max during
the entire energy transmission process, expressed by EU [n] < EU

max.

2.3. RF Energy Harvesting

As we mentioned earlier in Section 2.1 that energy is harvested inR1 andR2 and IS
during the first two phases, we employ a linear harvesting model in this case. According to
this model, instantaneous stored harvested energies atR1,R2 and IS are calculated as [29]

ER1
H [n] = ηδPH [n]|h1[n]|2, (5)

ER2
H [n] = ηδPH [n]|h2[n]|2, (6)

ES
H [n] = ηδPH [n]|h3[n]|2 + η2PH [n]

(
σ1[n]|h1[n]|2|h4[n]|2 + σ2[n]|h2[n]|2|h5[n]|2

)
. (7)

where η is RF-EH efficiency, h1[n], h2[n], h3[n], h4[n], and h5[n] are the instantaneous
channel gains between the links of HAP toR1, HAP toR2, HAP to IS,R1 to IS, andR2 to
IS respectively.

3. Problem Definition
3.1. DF Relay-Assisted Information Transfer

The performance metric of the proposed WPCN is defined as the instantaneous bit
rate, which refers to the number of bits transmitted per unit of time over the communication
channel. Various factors, including the modulation scheme, channel bandwidth, coding
scheme, and the presence of any error correction or data compression techniques, influence
the bit rate that can be expressed at nth time slot as [29]

R[n] =
ξρ

ζ
(1− Pe[n])

ξρ, (8)

where ξ is the number of bits containing a symbol, ρ represents the number of symbols in a
packet, ζ denotes the packet duration, and Pe[n] is the instantaneous end-to-end bit error
rate (BER), which can be expressed for DF relaying system as [28]

Pe[n]=



∑d w(m, d) 1
2 erfc

(√
z(m,d)(PR1 [n]|h1[n]|2+PS [n]|h4[n]|2+PS [n]|h3[n]|2)

2N0

)
,

if R1 is selected

∑d w(m, d) 1
2 erfc

(√
z(m,d)(PR2 [n]|h2[n]|2+PS [n]|h5[n]|2+PS [n]|h3[n]|2)

2N0

)
,

if R2 is selected

∑d w(m, d) 1
2 erfc

(√
z(m,d)(PS [n]|h3[n]|2)

2N0

)
, if direct transmission without any relay

, (9)

where PS[n] is the instantaneous transmit power of IS, PR1 [n] =
(

1− σ1[n]E
R1
H [n]

)
/δ

and PR2 [n] =
(

1− σ2[n]E
R2
H [n]

)
/δ are the instantaneous transmit power of R1 and R2

respectively to relay the information toward HAP, N0 is noise power received atR1,R2,
and HAP. w(m, d) and z(m, d) are two modulation-related parameters whose values are
provided in Table 1. Here, d stands for the particular constant that modulation index
m determines in the nth time slot. Furthermore, as HAP receives information from a
single relay at a time slot, we define relaysR1 andR2 selection indicators at nth time slot
respectively as

Ω1[n]=

{
1, if PR1 [n]|h1[n]|2/N0 > Υ and PR1 [n]|h1[n]|2 > PR2 [n]|h2[n]|2

0, Otherwise
, (10)
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Ω2[n]=

{
1, if PR2 [n]|h2[n]|2/N0 > Υ and PR2 [n]|h2[n]|2 > PR1 [n]|h1[n]|2

0, Otherwise
. (11)

Table 1. Different values of modulation parameters for the three considered schemes

Modulation (w(m, d), z(m, d))

QPSK (w(m, 0), z(m, 0)) = (1, 1)

8-PSK (w(m, 0), z(m, 0)) =
(

2
3 , 2 sin2(π

8
))

(w(m, 1), z(m, 1)) =
(

2
3 , 2 sin2

(
3π
8

))
16-QAM (w(m, 0), z(m, 0)) =

(
3
4 , 1

5

)
(w(m, 0), z(m, 0)) =

(
1
2 , 9

5

)
3.2. Optimization Formulation

To improve the reliability of the proposed WPCN, we maximize the end-to-end net
bit rate from IS to HAP by finding the optimal transmit power of HAP and IS, fractions of
harvested energy transmitted by relays, and relay selection indicator for DF relaying within
the operational period. The associated optimization problem is formulated as follows:

OP : max{
PH [n],PS [n],σ1[n],σ2[n],Ω1[n],Ω2[n]

∀n∈N

} N

∑
n=1

R[n],

Subject to

(C1) : PH [n] ≥ B[n]/δ, ∀n ∈ N ,

(C2) : 0 ≤ PS[n] ≤
(

BS[n] + ES
H [n]

)
, ∀n ∈ N ,

(C3) : EB[n] ≥ 0, ∀n ∈ N ,

(C4) : ER[n] ≥ 0, ∀n ∈ N ,

(C5) : EU [N] = 0, EU [n] ≤ Emax, ∀n ∈ N , n 6= N,

(C6) : 0 ≤ σ1[n] ≤ 1, 0 ≤ σ2[n] ≤ 1, ∀n ∈ N ,

(C7) : Ω1[n], Ω2[n] ∈ {0, 1}, ∀n ∈ N .

Here, C1, C2, C3, and C4 set the instantaneous boundary conditions for the HAP and
IS’s transmit power, borrowing, and the returning energy of the HAP, respectively; C5
implies that the unreturned energy of the HAP at the end of the operation has to be
zero, but it should not exceed the certain threshold during the operation; C6 specifies the
fractions of harvested energy transmitted by the relaysR1 andR2; and C7 verifies the relay
selection indicators.

The formulated problem is combinatorial because the fractions of the harvested energy
transmitted by the relays at phase 2 are related to their transmit power at phase 4, which is
also associated with HAP’s transmit power at phase 1. Furthermore, since the optimization
problem is nontrivial, due to the nonlinear structure of the objective function and non-
convex constraints, traditional convex optimization requires several approximation steps
to obtain suboptimal solutions.In addition, the channel gain and energy arrival rate are
unpredictable in a practical wireless communication environment. Hence, we propose a
DRL model using the DDPG algorithm to maximize objective value, which also guarantees
fast convergence.

4. DRL-Based Solution Methodology

The original optimization problem has multiple decision variables, making it combi-
natorial and originating several nonconvexity issues. Hence, we formulate an MDP-based
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DRL framework in which the system interacts with the unknown environment to learn the
best decision-making policy for improving the objective value.

4.1. MDP Framework

A centralized controller executes the DRL framework while simultaneously observing
PG, HAP, EH relays, and IS. As the current state of these network elements depends on the
immediate past state value, the optimization problem can be simplified by an MDP-based
sequential decision-making policy.

4.1.1. State Space

Since the transmit powers, fractions of harvested energy transmitted by relays, and
relay selection depend on current channel gains, battery level, and harvested energy, the
instantaneous state vector is defined as

s[n] =
[
|h1[n]|2, |h2[n]|2, |h3[n]|2, |h4[n]|2, |h5[n]|2, B[n], BR1 [n], BR2 [n],

BS[n], EH [n], ER1
H [n], ER2

H [n], ES
H [n]

]
, (12)

where BR1 [n] ∈
(

0, BR1
max

)
, BR2 [n] ∈

(
0, BR2

max

)
, and BS[n] ∈

(
0, BS

max
)

are the instanta-

neous battery level of the relayR1,R2, and IS respectively, BR1
max, BR2

max, and BS
max are their

respective maximum battery capacity.

4.1.2. Action Space

According to the decision-making policy, the values of the optimizing variables are
determined. Therefore, these are characterized by the transmit power of HAP and IS,
fractions of harvested energy transmitted by relays, and relay selection indicators at every
instance. Hence, the instantaneous action vector is defined as:

a[n] = [PH [n], PS[n], σ1[n], σ2[n], Ω1[n], Ω2[n]], (13)

4.1.3. Reward Evaluation

Since the reward defines the quality of an action taken at a particular state, the
immediate reward function to maximize the objective value over the long term is expressed
as an instantaneous end-to-end net bit rate

r(s[n], a[n]) = R[n], (14)

4.1.4. State Transition

It is the probability that the current state s[n] transits to the next state s[n + 1] after
taking a current action a[n]. In our model, channel gains and harvested energy are uncertain
and must be learned during decision-making. As these decision variables mostly follow
Gaussian distribution, we must estimate their distribution parameters, such as mean and
variance, over the simulation episode to maximize the cumulative long-term reward. We
define the instantaneous channel gain values and harvested energy according to their cur-
rent distribution parameters as h1[n] ∼ CN

(
µh1 [n], σ2

h1
[n]
)

, h2[n] ∼ CN
(

µh2 [n], σ2
h2
[n]
)

,

h3[n] ∼ CN
(

µh3 [n], σ2
h3
[n]
)

, h4[n] ∼ CN
(

µh4 [n], σ2
h4
[n]
)

, h5[n] ∼ CN
(

µh5 [n], σ2
h5
[n]
)

, and

EH [n] ∼ CN
(
µH [n], σ2

H [n]
)

respectively. Depending on their values, battery levels at the
next time slot are measured as

BS[n + 1] = min
(

BS[n] + ES
H [n], BS

max

)
− δPS[n], (15)

BR1 [n + 1] = min
(

BR1 [n] + ER1
H [n], BR1

max

)
− σ1[n]E

R1
H [n]− δPR1 [n], (16)

BR2 [n + 1] = min
(

BR2 [n] + ER2
H [n], BR2

max

)
− σ2[n]E

R2
H [n]− δPR2 [n]. (17)
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4.2. Decision-Making Policy

The system gathers information on the surrounding environment through interaction
to obtain a sub-optimal decision-making policy. Initially, it does not know the properties of
the communication environment. Therefore, it tentatively selects action at a given state,
immediately receives reward, and obtains Q(s[n], a[n]) value for the current state-action
pair. Then the current state s[n] is updated to the next state s[n + 1]. Here, the expected
mapping value between the current state and the following action can be mathematically
represented by [29]

Q(s[n], a[n]) = E
[

∞

∑
n=n

γn−nr(s[n], a[n])|s[n], a[n], Π

]
, (18)

where γ ∈ (0, 1) denotes the discount factor, and Π represents a deterministic policy for
the decision-making process.

Due to the difficulties of finding the gradient of the current policy Π(P[n]|s[n], θ),
we model it as a Gaussian distribution with mean µ

(
s[n], θµ

)
and standard deviation

σ(s[n], θσ), where the policy distribution can be expressed as [27]

Π(P[n]|s[n], θ) =
1√

2π(σ(s[n], θσ))
2

exp

[
−
(
δPH [n]− µ

(
s[n], θµ

))2

2(σ(s[n], θσ))
2

]
, (19)

Since the maximum and minimum values of policy parameters lie within a range, we apply
the hyperbolic tangent function to restrict its output between −1 and 1, represented by [24]

µ
(
s[n], θµ

)
= max

0, EA[n]

1 + tanh
(

θT
µ φ(s[n])

)
2

. (20)

where EA[n] = B[n− 1] + EH [n]− EU [n− 1] is the effective energy level, and φ(s[n]) =
[φ1(s[n]), φ2(s[n])] is the feature vector of the current state s[n]. It contains two binary
functions φ1(s[n]) and φ2(s[n]) such that, φ1(s[n]), φ2(s[n]) = 1 if the battery energy level
exceeds its minimum value, and the battery energy level has achieved its maximum value
respectively. Otherwise, they are set to zero for other cases. Since the standard deviation
should be positive, it is modeled by a linear exponent as σ(s[n], θσ) = exp

(
θT

σ φ(s[n])
)
. This

proposed Gaussian policy allocates transmit power at each time slot. In all but the N-th
time slot within the last k time slots, the transmission power abides by a certain condition.
This condition is put in place to guarantee that any energy that was borrowed is properly
returned to the power grid and it can be expressed as follows:

PH [n]=

{
max {0, EH [N − k]− EU [N − k]}, if EU [N − k] > k

κ
∑N−k

i=0 EH [i]
N−k

Sample from (19), Otherwise
, (21)

This condition holds for a sufficient amount of energy can be returned to the PG efficiently,
where k is proportional to

(
EU

max/mean(EH [n])
)

and PH [N] = max {0, EH [N]− EU [N]}.
Here κ ∈ (0, 1] plays a critical role in determining the margin due to variations in
harvested energy.

4.3. Proposed DDPG Algorithm

DDPG is an RL framework that can handle the continuous state and action spaces
based on policy and Q-value evaluation. It utilizes policy evaluation NN a[n] = µ(s[n]|θµ)
with parameter θµ which takes the state vector s[n] as input and outputs corresponding
action vector a[n]. Policy evaluation NN µ(s[n]|θµ) consists of an input layer of thirteen
neurons, three successive hidden layers of N1, N2, and N3 neurons, and an output layer
of six neurons. As the normalized action vector can only be a positive value for a given
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positive value state vector, we apply the sigmoid activation function to better tune the
policy NN model. After taking action a[n] at the current state s[n], the immediate reward
r(s[n], a[n]) is generated and the current state is updated to the next state s[n + 1]. Then,
the sample data tuple (s[n], a[n], r(s[n], a[n]), s[n + 1]) is stored in the experience memory.
During the reinforcement learning process, a data tuple consisting of the current state
vector, action vector, reward resulting from the action, and the next state vector is stored
in the experience memory. The Q-value evaluation neural network is trained using a
batch of randomly selected NB samples from the experience memory. The neural network,
denoted as Q

(
s[n], a[n]|θQ) with parameter θQ, takes the state and action vectors as input

and provides the state-action value Q(s[n], a[n]) as output. This neural network has an
input layer comprising nineteen neurons, three hidden layers consisting of N4, N5, and
N6 neurons, respectively, and an output layer with a single neuron. As the desired output
Q value is always a positive number, we apply the sigmoid activation function to tune
the Q-value evaluation NN. The policy and Q-value target NNs, respectively represented
by µ′(s[n]|θµ′) and Q′

(
s[n], a[n]|θQ′) with parameters θµ′ and θQ′ replicating the same

structure as the policy and Q-value evaluation NNs respectively are applied to stabilize
the training process. The parameter of the Q-value evaluation NN, θQ, is updated by
minimizing the temporal difference (TD) error loss, which is expressed as [21]:

L
(

θQ
)
=

1
NB

∑
n

(
Ȳ[n]−Q

(
s[n], a[n]|θQ

))2
, (22)

where Ȳ[n], the output of the Q-value target NN is calculated using the output of the policy
target network as [21]:

Ȳ[n] = r(s[n], a[n]) + γQ′
(

s[n + 1], µ′
(
s[n + 1]|θµ′)|θQ′

)
, (23)

where γ is the discount factor. The parameters of policy evaluation NN can be updated
through the deterministic policy gradient method, which is given as [21]:

∇θµ J(θµ) =
1

NB
∑
n

(
∇µQ

(
s, a|θQ

)
|s = s[n], a = µ(s[n]|θµ)∇θµ µ(s|θµ)|s = s[n]

)
, (24)

Finally, the parameters of the target NNs are updated slowly with respect to learning rate
τ � 1 as [21]:

θµ′ ← τθµ + (1− τ)θµ′, (25)

θQ′ ← τθQ + (1− τ)θQ′. (26)

4.4. Implementation Details

Algorithm 1 implements the end-to-end net bit rate maximization in the proposed EH
relay-assisted WPCN. In the beginning, the four NNs, namely, policy evaluation NN, policy
target NN, Q-value evaluation NN, and Q-value target NN, are initialized with random
weight vectors. Then, inside the main loop, policy evaluation NN takes the current state as
input for each time slot and approximates the action value. In order to keep exploration,
we add Gaussian noise of variance ε to the current action. After choosing the action, the
current state updates to a new state and generates an immediate reward by (14). Then,
the transition data set, consisting of the current state, action, reward, and the next state, is
stored in experience memory to train the DRL model. When the filled memory length is
greater than the batch size, randomly sample a mini-batch of transition data from memory,
calculate the loss values, and update the parameters of policy and Q-value evaluation NNs
by (24) and (22), respectively. Then, the algorithm updates the parameters of the target NNs
by (25) and (26) and also updates the current state as the next state. Finally, the running
episode is terminated when the system elapsed maximum operational time steps, and the
obtained policy corresponding to the last episode makes optimal decision variables.
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Algorithm 1 DRL based on DDPG for end-to-end net bit rate maximization

Require: N, T, NB, N0, η, δ, ξ, ρ, ζ
Ensure: PH [n], PS[n], σ1[n], σ2[n], Ω1[n], Ω2[n], ∀n ∈ N

1: Initialize policy evaluation and target NNs, Q-value evaluation, and target NNs as µ(s[n]|θµ),
µ′(s[n]|θµ′), Q

(
s[n], a[n]|θQ), Q′

(
s[n], a[n]|θQ′), and corresponding parameters are θµ′ = θµ and

θQ′ = θQ, respectively.
2: Initialize an empty experience buffer as ME = {} where initial memory length is set as |ME| = 0
3: for t = 1, 2, ..., T do
4: Reset the state vector at the initial condition as s[1]
5: for n = 1, 2, ..., N do
6: Get the current normalized action vector as a[n] = µ(s[n]|θµ) + CN (0, ε)
7: Update the next state vector s[n + 1] by (1), (15), (16), (17)
8: Generate immediate reward r(s[n], a[n]) by (14)
9: Store state, action, and reward transition data in the experience memory

buffer as a tuple of (s[n], a[n], s[n + 1], r(s[n], a[n]))
10: |ME| = |ME|+ 1
11: if |ME| ≥ NB then
12: Randomly sample a batch of data from memory
13: Update parameters of policy and Q-value evaluation NNs by

(24) and (22) respectively

14: Update the parameters of policy and Q-value target NNs by
(25) and (26), respectively

15: end if
16: Update the current state vector as s[n] = s[n + 1]
17: end for
18: Update action noise as ε = ε(1− (t/T))
19: end for
20: Finally the optimal policy can be obtained as (PH [n], PS[n], σ1[n], σ2[n], Ω1[n], Ω2[n]), ∀n ∈ N

The centralized controller implements the proposed algorithm to train the above-
mentioned NN configurations. The proposed algorithm’s computational complexity de-
pends entirely on the defined NNs’ structure and the number of operations in the network
model. Let W1 and W2 denote the number of fully connected layers in the policy and
Q-value NNs, respectively. In each time slot, the total transition made by policy evalu-
ation NN is calculated as ∑W1−1

u=0 ΘP
u ΘP

u+1, where ΘP
u is the neurons of the u-th layers of

the policy NN. Similarly, the total transition faced by Q-value NN can be obtained as
∑W2−1

w=0 ΘQ
w ΘQ

w+1, where ΘQ
w is the neurons of the w-th layer of the Q-value NN. Therefore,

the overall computational complexity for successive N timeslots in each of the T episodes
will be O

(
NT
(

∑W1−1
u=0 ΘP

u ΘP
u+1 + ∑W2−1

w=0 ΘQ
w ΘQ

w+1

))
. According to this expression, the

computational complexity of the proposed algorithm increases with the operational period.

5. Simulation Results

In this section, we validate the effectiveness and convergence of the proposed algo-
rithm using various simulation results. We used the Pytorch 1.10.1 module in Python
3.7.8 to build the DDPG environment and conduct the simulations on a high comput-
ing system. The Adam optimizer was applied to update the parameters of policy and
Q value evaluation NNs. We compared the performance of the proposed methodology
with the adaptive BEAR algorithm [24], where the underlying transmission power allo-
cation was modeled with a parameterized Gaussian distribution, ensuring a maximum
sum bit rate over a given time slot while learning the EH rate and channel conditions.
Furthermore, the primary simulation parameters are taken from [24,29] which are given as
Bmax = BR1

max = BR2
max = BS

max = 3 Joul, Emax = 5 Joul, N = 100, ς = 0.8, $ = 0.1, η = 0.6,
ρ = 1000, ζ = 0.01 s, δ = 1 s, Υ = 15 dB, µh1 = µh2 = µh3 = µh4 = µh5 = µH = 0.5,
σ2

h1
= σ2

h2
= σ2

h3
= σ2

h4
= σ2

h5
= σ2

H = 0.75, NB = 128, |ME| = 50,000, γ = 0.9, τ = 0.001,
ε = 0.1, T = 3000, N1 = 128, N2 = 64, N3 = 32, N4 = 64, N5 = 128, and N6 = 32.
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5.1. Convergence Analysis

Figure 2 demonstrates the converging behavior of the training performance at −25 dB
noise power for various learning rates under the QPSK modulation scheme. According to
this figure, the end-to-end net bit rate increases with each episode and eventually converges.
If we choose a low learning rate, the training process runs slowly, because the low learning
rate updates the NNs’ weights on a small scale. However, if we set a high learning rate,
the loss function of the NNs encounters undesirable divergence. Consequently, the NNs
experience high oscillation during training, but the objective value converges quickly. This
figure shows that fluctuations and convergence rates over the training episode increase
when the learning rate varies from 1× 10−5 to 5× 10−3. Hence, considering the model’s
stability, we set the learning rate to 5× 10−4 for the subsequent simulations.

0 500 1000 1500 2000 2500 3000
0

1

2

3

4

5

 

 

En
d-

to
-e

nd
 n

et
 b

it 
ra

te
 (b

ps
)

Episode

 Learn rate = 1 10-5

 Learn rate = 5 10-4

 Learn rate = 1 10-4

 Learn rate = 5 10-3

104

Figure 2. Impact of different learning rate values on the convergence.

Figure 3 presents the variation of the end-to-end net bit rate over the training episodes
to analyze the performance of the proposed and benchmark algorithms corresponding to
different modulation schemes, while the noise power was set to −25 dB. This figure shows
that the converged objective value increased with the lower modulation schemes because
this required less power and fewer signal points to transmit the same amount of data,
which allowed a more efficient use of the available frequency spectrum. Therefore, QPSK
achieved a higher end-to-end net bit rate than 8-PSK and 16-QAM. Furthermore, as the
benchmark BEAR algorithm entailed more computational complexity, due to the off-policy
samples from the replay buffer, the achievable performance metric corresponding to the
BEAR algorithm was lower than the proposed DDPG algorithm. Hence, according to this
figure, the DDPG algorithm outperformed the BEAR algorithm by 20.67%, 16.21%, and
26.38% in the cases of the QPSK, 8-PSK, and 16-QAM modulation schemes, respectively.

5.2. Performance Evaluation

We plot the transmit power variation of the HAP in Figure 4, corresponding to the
proposed and benchmark algorithms for different modulation schemes. It can be observed
that the average transmit power of the HAP increased with the higher modulation schemes
because they required higher peak-to-average power ratios and higher transmit power
levels to generate complex signal constellations. On the other hand, the conventional BEAR
algorithm updated the parameters of the policy evaluation NN using a distributional shift
correction method to reduce the overestimation of the Q-value. This limited the ability of the
algorithm to explore the search space and find optimal policies in complex environments.
From Figure 4, it is clear that the proposed methodology reduced the average transmit
power of the HAP by 19.12%, 17.69%, and 11.58% as compared to the BEAR algorithm in
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the cases of the QPSK, 8-PSK, and 16-QAM modulation schemes, respectively, over the
operational period.
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Figure 3. Performance comparison of the proposed DDPG and the benchmark BEAR algorithms for
various modulation schemes.
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Figure 4. Transmit power variation of the HAP over the operational period.

Figure 5 illustrates the end-to-end net bit rate for the different modulation schemes
under various noise power levels at the receiver. This figure shows that the 16-QAM
modulation scheme performed better than 8-PSK and QPSK at a lower noise power, whereas
QPSK outperformed 8-PSK and 16-QAM at a higher noise power. This is because the
higher modulation schemes encode more bits per symbol, which allows higher data rates
to be transmitted over a given channel bandwidth. However, since they typically use
more complex signal constellations with smaller distances between signal points, they
are highly susceptible to the distortion caused by noise or channel impairments. On the
other hand, the lower modulation techniques are more straightforward to implement
than the higher modulation techniques. This makes them more suitable for low-power at
low-complexity systems, making them more bandwidth-efficient at a higher noise power.
From Figures 3 and 4, we can justify that the benchmark BEAR algorithm faced several
challenges in finding the optimal policy. Hence, the proposed DDPG algorithm improves
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the performance metric by 13.22%, 27.57%, and 14.12% as compared to the BEAR algorithm
in the cases of the QPSK, 8-PSK, and 16-QAM modulation schemes, respectively.
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Figure 5. Net bit rate using the different modulation schemes for a wide range of noise powers.

The variation of the allotted IS’s transmit power with respect to the noise power under
different modulation techniques is shown in Figure 6. It can be observed that the transmit
power of the IS increased with the noise power because the IS utilized more transmit power
to achieve a minimum SNR and BER value for a higher noise power, which also maintained
an adequate quality of service (QoS). Since we mentioned earlier that higher modula-
tion techniques are more susceptible to distortion caused by channel noise impairments,
16-QAM requires more transmit power at higher noise power levels compared to the 8-PSK
and QPSK modulation techniques. Moreover, as the benchmark algorithm is inefficient,
the proposed technique reduced the transmit power of IS by 15.17%, 9.94%, and 8.18%
compared to the BEAR algorithm in the cases of the QPSK, 8-PSK, and 16-QAM modulation
schemes, respectively.
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Figure 6. Transmit power variation of IS with different modulation schemes for various noise powers.
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6. Conclusions

Facing the great challenges of reliable WPCN, this article introduced a JIER protocol
that allocates resources efficiently, for effective energy management in EH wireless net-
works. Specifically, the formulated joint optimization of HAP and IS transmit power, the
fraction of harvested energy transmitted by relays, and relay selection indicators maximized
the end-to-end net bit rate of the system under energy borrowing and return scheduling
constraints. The formulated problem was highly non-convex, nontrivial, and difficult to
solve directly. Hence, we leveraged the DRL framework, which decomposed the original
problem into multiple sub-problems based on MDP, and then proposed the DDPG algo-
rithm to find the optimal policy. The simulation results validated the proposed scheme and
enhanced the end-to-end net bit rate of the system by 13.22%, 27.57%, and 14.12% com-
pared with the BEAR algorithm for the QPSK, 8-PSK, and 16-QAM modulation schemes,
respectively. In the future, we will extend this work to an energy borrowing and returning
strategy in multi-user and multi-antenna relay-assisted EH systems using multi-agent
DRL, where the objective will be the minimization of the age of information, to ensure a
tolerable latency.
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