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Abstract: Organic–inorganic metal halide perovskite (OIMHP) has emerged as a promising material
for solar cell application due to their outstanding optoelectronics properties. The perovskite-based
solar cell (PSC) demonstrates a significant enhancement in efficiency of more than 20%, with a
certified efficiency rating of 23.13%. Considering both the Shockley limit and bandgap, there exists
a substantial potential for further efficiency improvement. However, stability remains a significant
obstacle in the commercialization of these devices. Compared to organic carrier transport layers
(CTLs), inorganic material such as ZnO, TiO2, SnO2, and NiOX offer the advantage of being de-
posited using atomic layer deposition (ALD), which in turn improves the efficiency and stability of
the device. In this study, methylammonium lead iodide (MAPbI3)-based cells with inorganic CTL
layers of SnO2 and NiOX are simulated using SCAPS-1D software. The cell structure configuration
comprises ITO/SnO2/CH3NH3PbI3/NiOX/Back contact where SnO2 and NiOX act as ETL and HTL,
respectively, while ITO is a transparent front-end electrode. Detailed investigation is carried out
into the influence of various factors, including MAPbI3 layer size, the thickness of CTLs, operating
temperature parasitic resistance, light intensity, bulk defects, and interfacial defects on the perfor-
mance parameters. We found that the defects in layers and interface junctions greatly influence the
performance parameter of the cell, which is eliminated through an ALD deposition approach. The
optimum size of the MAPbI3 layer and CTL was found to be 400 nm and 50 nm, respectively. At the
optimized configuration, the PSC demonstrates an efficiency of 22.13%, short circuit current (JSC) of
20.93 mA/m2, open circuit voltage (VOC) of 1.32 V, and fill factor (FF) of 70.86%.

Keywords: perovskite solar cell; inorganic CTLs; SCAPS-1D; stability

1. Introduction

The PSC has recently received a lot of attention due to a significant increase in power
conversion efficiency (PCE) and advancements in design and manufacturing techniques [1].
According to the NREL cell efficiency chart, the efficiency of PSC has reached 26%. In the
last six years, PSC efficiency has increased by 2.27% per year from the first developed PSC
of 9.7%, which has greatly surpassed other kinds of solar cells, which have increased by less
than 1.0% per year [2]. PCE advancements were made possible by scientific knowledge as
well as engineering advancements. The former refers to the crystal formation, composition
alteration, and optoelectronics capabilities, while the latter refers to interfacial changing and
the formation of highly efficient carrier transportation layers (CTLs). CTLS are subdivided
into electron and hole transport layers (ETLs and HTLs) [2].
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The fundamental design of PSC consists of perovskite material sandwiched between
the ETL and HTL in NIP or PIN configuration. Under solar illumination, the light interacts
with a PSC structure from the upper side through the glass substrate coated with transparent
electrodes such as tin-doped indium oxide, HTL, or ETL, which is finally absorbed by the
perovskite layer and photo-generated electron-hole pairs are created. In this process, there
are several possibilities for the incident photon, for example, the photon might be reflected
or scattered and will not contribute to the photo-current of the PSC [3]. One strategy is to
apply an antireflection coating to reduce photon losses on the glass substrate. However, it
will eventually increase the PSC production cost [4].

The ETL transport electron, utilizing n-type material and its conduction band min-
imum (CBM), should be smaller than the perovskite material. The HTL requires p-type
materials with a higher valance band maximum (VBM) than the perovskite material.

The main obstacles in commercializing PSCs are their stability (life span). They are
more sensitive to external stimuli such as light, heat, oxygen, and water. PSCs exposed to
such conditions can cause rapid degradation of the cell structure that in turn causes cell
failure, leaving harmful effect on the biological environment by releasing toxic elements
such as Pb ions [5].

The performance is further reduced because of the inappropriate selection of ETLs and
HTLs. Most commonly used PSCs in NIP configurations use TiO2 as the ETL, while Spiro-
OMeTAD is employed as the HTL and in PIN, PEDOT: PSS, and PTAA are used as HTL.
TiO2 shows poor stability against ultraviolet (UV) radiation and needs additional layers
to screen the UV rays. Spiro-OMeTAD shows inadequate thermal and air stability, while
PEDOT: PSS did not sustain its stability for a long time due to its acidic and hygroscopic
properties [6–8].

Compared to organic, inorganic CTL-based PSCs have been recently developed which
display excellent properties. Some inorganic material used for ETLs include SnO2, TiO2,
ZnO, BaSnO3, and Zn2SnO4, and those used for HTL include NiOX, CuI, MoO3, CrOx, and
CuOX [2].

Another significant factor that enhanced the efficiency and stability of PSC is the
deposition technique. Compare to other deposition techniques, ALD is an excellent tool to
deposit defect-free thin-films with higher accuracy and conformity. The PSC fabrication,
which includes the deposition of ETL and HTL layers, passivation or interference layers, and
encapsulation of the device can be easily achieved with ALD tools, and can be considered
an upgrade in cell performance [2,9,10]. It is important to decrease the series resistances
and increase the shunt resistance, which is associated with the thickness and quality of the
CTLs and perovskite layers [11]. The ordinary thin-films containing cracks and pinholes
that provide pathways to shunt leakage current that can badly affect the cell’s performance.
In contrast, thickening CTL layers can increase the series resistance, which drops the output
voltage [12,13]. In this scenario, ALDs can provide an excellent CTL layer, having uniform
and dense film formation along with accurate control in the sub-nanometer range.

Similarly, in PSC, the interference between perovskite and CTL layers are the main
source of electron-hole recombination (losses) which directly affect the efficiency of PV cells.
The surface passivation technique is used to deposit ultra-thin layer at low temperatures
at the surface to avoid thermally generated crakes and pinholes in the layers [14]. ALDs
have been widely adopted as a solution in the P.V. industry to provide high-quality, low-
temperature, and uniform passivation layers. With the help of the passivation layer, it not
only improves cell efficiency, but also increases the stability of PSCs by protecting them
from environmental hazard conditions.

Numerical simulation is the best theoretical approach to predict the solar cell per-
formance before developing a prototype. SCAPS-1D is widely utilized in research on
solar cells, including PSC, to examine the performance parameters. Hossain et al. [15]
simulated lead-free Sc3Bi2I9-based PSCs using SCAPS for 49 different configurations, and
found that Cu2O is a cost-effective and efficient HTL layer for lead-free PSC. Saha et al. [16]
simulated (SCAPS-1D) MaPbI3-based PSCs with grapheme-doped TiO2 ETLs and PTAA
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as HTLs recorded an efficiency of 22.7%. Mushtaq et al. [17] developed PSC having a
configuration FTO/SnO2/MASnBr3/NiO/Au demonstrating the potential of MASnBr3, an
eco-economical, high-performance, and removable energy solution. Hussain et al. [18] in-
vestigated lead-free CH3NH3SnI3 with SnO2 and Spiro-OMeTAD recorded an efficiency of
33.26%. Sunny et al. [19] developed a SCAPS model of HTL-free PSCs using CH3NH3SnI3
and TiO2 ETL and the optimized structure achieved a 6.33% efficiency, making it a cost-
effective and efficient PSC. Ibrahim et al. [20] investigated the effect defect in the absorber
and ETL/perovskite interference of PSCs using SCAPS tool. The result shows that varying
defect density from 1010 cm−3 to 1018 cm−3 causes significant drops in the performance
parameter of the cell. Samiul Islam et al. [21] study lead-free CH3NH3SnBr3-based PSCs.
The model explores the effects of defects, parasitic resistance, and work functions of the
contact. Similarly, Basyoni et al. [22] investigated interference defects between CTLs with
lead- and lead-free PSCs to optimize the performance using a SCAPS simulator. It reveals
that defects play a crucial role in increasing the efficiency of lead-free PSCs from 1.76% to
5.35%, highlighting the importance of interface engineering in PSC design. In this study,
we will explore the performance of PSCs using inorganic CTL materials that can be easily
deposited with ALD, such as ZnO, TiO2, SnO2, and NiOX, utilizing the SCAPS tool. These
materials have the benefit of being deposited using ALD processes, which improves the
device’s efficiency and stability.

The NiOX is a favorable HTL material used for several photovoltaic (P.V) application
due to its intrinsic p-type semiconductor nature, superior hole extraction property, low
processing temperature, good optical properties, low-cost, and good chemical and thermal
stability [23–25].

Similarly, SnO2-based PSC efficiency is recorded up to 25%, making SnO2 to be a good
ETL choice in PSCs, and a potential substitute for TiO2 [26,27]. The SnO2 has extraordinary
properties which are required for efficient and stable PSCs, including high-bulk electron
mobility and conductivity [28,29], high temperature flexible deposition, large bandgap
(3.6–4.5 eV), high optical transparency, and excellent stability under heat, moisture, and
light with negligible photo-activity [30,31]. Compared to TiO2, SnO2 ETL requires less
temperature (<200 ◦C) when using chemical bath deposition or spin coating, which is an
advantage when it comes to mass production. However, there are certain flaws in the
hetero interference that degrade the performance of PSCs due to the mismanagement of
the perovskite film and metal oxide. Therefore, the passivation layer of Al2O3 on the SnO2
layer is used to upgrade the performance of SnO2-based PSCs [32]. In addition to this,
NiOX and SnO2 material show negligible hysteresis behaviors that will help to disclose the
actual performance of the PSC.

2. SCAPS Simulation

The numerical simulation is the best and easiest approach to comprehend the funda-
mental operation of the solar cell, revealing the factors that influence their functionality.
This investigation was carried out with the help of the SCAPS-1D (solar cell capacitance
simulator) software application. SCAPS-1D was developed by Marc Burgelman at the
University of Gent, solving thin-film structures in one dimension using electrical and
optical parameters [33]. This simulation tool utilizes well-known semiconductor equations
such as Poisson’s equation, continuity equation, and transport equation to solve the solar
cell model and provide parameter measurements of the designed PV cell. The Poisson’s
equation is used to obtain internal potential distribution within the cell. The continuity
equation describes the rate of change in the concentration of carriers (electrons and holes).
The transport equation provides information of how the electrons and hole travels in the
cell structure. Once the cell structure is defined, the SCAPS solve the following equation
from (1)–(5) providing the performance capability of the device.
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where ε is permittivity, q is the elementary charge, ϕ(x) stands for electrostatic potential,
n and p are electron and hole density, E is the electric field, Dn and Dp are the diffusion
coefficient, and µn and µp are carriers’ mobility. The expression of diffusivity in Equation (4)
refers to the ability of carriers to scatters or spread out within the materials where the
diffusion length Ln,p indicates the distance traveled by the carriers between the generation
and recombination period. When no external load is applied, the terminal voltage is
considered open circuit voltage (VOC) given by Equation (5). Similarly, when the terminal
of the solar cell is short circuited with each other, (VOC become zero) it provides a reading
of the short circuit current or the light-generated current.

3. Proposed Device Model

The proposed Perovskite solar cell (PSC) layer configuration is shown in Figure 1a.
The various electrical parameters of the material used in PSC simulation are shown in
Table 1, while Table 2 display parameters taken for interference defects. The framework
of the cell consists of ITO/SnO2/CH3NH3PbI3/NiOX/Back contact. The transparent
electrode ITO serves two functions: anode collecting electron for an external load and
passing light spectrum to the internal cell structure. SnO2 act as the ETL, which passes
electrons easily while blocking the holes. The methylammonium lead iodide (CH3NH3PbI3)
is a light-absorbing layer where electron-hole pairs are created under illumination. NiOX
acts as the hole transport layer medium while blocking the electron. The overall device
exhibits NIP configuration in which SnO2 is an n-type material, CH3NH3PbI3 as an intrinsic
semiconductor, and NiOX is a p-type material. The selection of CTL materials in PSC design
is crucial for the device’s performance, as efficient CTL layers provide higher conductivity
and reduce recombination losses of carriers. The material used for the ETL typically
has a LUMO (lowest un-occupied molecular orbital) energy lower than or equal to the
LUMO energy of the active layer. The natural tendency of electrons to move from high
to low energy levels facilitates electron transport while hindering the movement of holes.
Similarly, HTL material should have a HOMO (highest occupied molecular orbital) energy
equal to or higher than that of the active material. Holes always tend to move from low
to higher energy levels. This mechanism ensures efficient hole transport while blocking
electrons. The band alignment diagram of our proposed device is shown in Figure S1. All
the simulations were performed at a standard test temperature of 300 K and a standard
test illumination condition of 100 w/m2. The series and shunt resistance are considered
1 Ω.cm2 and 1.0× 103 Ω.cm2, respectively. The optimum thickness of the PSC was founded
300 nm/50 nm/400 nm/50 nm at which the cell recorded an efficiency of around 22.1%. In
addition, the proper thickness of the CTL is required to avoid the short circuit effect in the
cell structure due to sputtering damage.
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Table 1. Material parameter used for simulation.

Parameters
Materials

ITO [34] NiOX CH3NH3PbI3 SnO2

Thickness (nm) 300 50–200 100–1600 50–200
Dielectric constant 9.00 10.7 [35] 10.0 [35] 8.00 [35]

Electron affinity (, χ (eV)) 4.00 2.1 [36] 4.1 [37] 3.93 [38]
Bandgap, Eg (eV) 3.5 3.7 [39] 1.6 [40,41] 3.6 [38]

Effective conduction band density, Nc (cm−3) 2.2 × 1018 2.8 × 1019 [42] 2 × 1018 3.1 × 1018 [43]
Effective valence band density, Nv (cm−3) 1.8 × 1019 1.8 × 1019 [42] 1 × 1018 2.5 × 1019 [43]

Mobility of electron, µn (cm2/(V s)) 20 12.0 [44] 100 15 [45]
Mobility of hole, µp (cm2/(V s)) 10 25.0 [44] 100 0.1 [45]
Donor concentration ND (cm−3) 1.0 × 1021 0.0 1 × 109 1019

Acceptor concentration NA (cm−3) 0 1 × 1015 1 × 109 0.0
Defect density (1/cm3) 1 × 1015 1 × 1014 1 × 1014 1 × 1014

Absorption coefficients (α) [46] [47] [47] [47]

Table 2. Parameter used for interface defects [48].

Parameters ETL/MAPbI3 HTL/MAPbI3

Defect type Neutral Neutral
Capture cross section of electrons (cm−2) 1 × 1019 1 × 1019

Capture cross section of holes (cm−2) 1 × 10−19 1 × 1019

Energetic distribution Single Single
Reference for defect energy level Et Above the highest EV Above the highest EV
Reference energy (eV) 0.6 0.6
Total density (1/cm2) 1 × 1010–1 × 1020 1 × 1010–1 × 1020

4. Result and Discussion
4.1. Effects of Layer Thickness

The thickness of the active or photon-absorbing layer (MAPbI3) has significant impacts
on the PSC’s performance. A very thin absorbing layer harvesting a small portion of the
photons create a smaller number of electron-hole pairs which directly reduce the efficiency
of the solar cell. In contrast, a very thick absorber layer lowers the cell’s efficiency due to
recombination losses [49,50]. Thus, it is essential to find the optimum thickness of MAPbI3.
To determine the optimum thickness of the perovskite material layer, the thickness of the
MAPbI3 is varied from 100 nm to 1600 nm, while in parallel, the thickness of the CTL
layer is from 50 nm to 200 nm in four steps. The cell is simulated under standard test
conditions (STCs) of 1000 w/m2 (A.M 1.5 G) and a standard test temperature (STT) of
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300 K. The cell performance parameter such as VOC, η, FF, and JSC in response to layer
thickness is shown in Figure 2. We observed VOC (Figure 2a) is directly affected by the
increase in thickness due to the increase in parasitic resistance. The FF increases from
100 to 400 nm and then starts to decrease, which is also caused by the parasitic resistance.
The increase in thickness ensures a larger area for photon absorption and hence a high
number of electron-hole pairs resulting in high efficiency, above 400 nm the efficiency is
slowly increased because of the low extraction rate of the carriers. The fundamental cause
of the cell efficiency improvement with the thickness is due to the increase in optical density.
However, when the diffusion length of the carrier is less than the active layer thickness,
the carriers will recombine before crossing the CTL layer [23]. The other parameters, JSC
and cell efficiency, increase logarithmically; at 400 nm MAPbI3 and 50 nm CTL thickness,
the PSC efficiency reached 22.13%. It may be deduced that an increase in thickness beyond
400 nm can reduce the FF of the PSC. In addition to this, insubstantial improvements in
efficiency come at the expense of material quantity, which is economically unacceptable.
The optimal layer thicknesses for MAPbI3 and CTL are 400 nm and 50 nm, respectively.
The J–V curve and the performance parameter of the cell at the optimum size is shown
in Figure 1b.
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Figure 2. Optimization of MAPbI3 and CTLs layer thickness on solar cell parameters:(a) Open-circuit
voltage (b) Short-circuit current density (c) Fill factor (d) Efficiency.

4.2. Effects of Light Intensity and Quantum Efficiency

The primary input source of energy that activates the solar cell is sunlight, and the
intensity of the sunlight is not fixed and varies from 0 to 1 kw/m2 due to the continuous
changing of the sun’s position. This illumination fluctuation greatly affects the solar cell’s
performance [51]. To counter this problem, a solar tracking mechanism is introduced that
allows solar module to track the sun’s daily passage from east to west or MPPT electrical
device that manipulate the electrical parameter (voltage or current) to ensure high power is
obtained from the solar cell [52]. The solar cell integrated with such an intriguing gadget
offers continuous peak power throughout the daytime. AM1.5 G or 1 kw/m2 (equal to one
sun) is a STC at which a commercial solar cell performance is measure before finalizing
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the product. Similarly, the value of 10 kw/m2 indicates that the cell is exposed to 10 suns.
Although the number of 10 suns is technically impossible, it is indirectly employed for
concentrated solar cells. The designed PSC is also tested under such circumstances. The
light intensity is varied from 100 w/m2 to 1000 w/m2 at STC of 300 K. The J–V curve of the
PSC’s various illumination intensities are shown in Figure 3a. We noticed that VOC and JSC
are directly proportional to the intensity of light, which directly affects the output power
and efficiency of the solar cell.
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Similarly, quantum efficiency (QE) of the PV cell can be described by the ratio of
the numbers of carrier captured by the cell to the incident number of photons of a given
energy. It specifies how the device reacts to the various illumination wavelengths [53].
When photons of a given energy or wavelength are absorbed and the resultant minority’s
carrier are accumulated, the QE is said to be at unity with that wavelength. QEs with
different active layer thicknesses are shown in Figure 3b. QE as a function of lambda is
investigated within the range of 300 nm to 900 nm. The QE rise from 300 nm to 800 nm,
and the highest peak is observed between 450 nm to 550 nm, following the reduction in the
QE and reaching zero. The square shape of the QE curve (ideal condition) is also affected
by the active layer thickness of the solar cell, which is observed.

4.3. Effects of Temperature

The PSC performance is substantially affected by the operating temperature. Generally,
STT 300 K is employed for simulation purposes. However, in natural environments, this
number is not constant and changes over the year. High temperatures cause deformations
in the cell structure, introducing interfacial defects between the composite layers of the
cell [54]. These defects limit the interconnectivity of the PSC layer, resulting in a higher
rate of recombination and a rise of parasitic resistance (RS) which decrease the PSC effi-
ciency. Higher temperatures also affect electron-hole concentration, carrier mobility, and
semiconductor bandgap [55]. The atomic vibration of the semiconductor is sensitive to
the temperature. The increase in temperature speeds up atomic vibrations in the semi-
conductor, which causes an increase in inter-atomic separation. The linear temperature
coefficient of a material is used to quantify this effect. As the interatomic space increases,
the average electric potential perceived by the electron decreases, eliminating the bandgap
size. The interatomic distance can also be changed by applying mechanical stress, resulting
in a decrease or increase in the bandgap of the material. Vershni’s relation states that the
bandgap of a material is temperature dependent and is given by

Eg(T) = Eg(0) −
αT2

β+ T
(6)

where T is the temperature, and Eg(0) (bandgap at 0 K), β, and α are the material constants.
In this simulation, we varied the temperature from 300 K to 330 K while keeping light inten-
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sity, parasitic resistance, and thickness of the layers constant. The influence of temperature
on the solar cell’s performance, as illustrated in Figure 4, is of significance. At an operating
temperature of 300 K, the VOC and FF measures at 1.323 V and 79.86%, respectively. How-
ever, as the temperature increases, there is a corresponding decrease in both VOC and FF, as
depicted in Figure 4a,c, eventually resulting in values of 1.285 V and 78.65%, respectively.
The JSC remains relatively constant around 20.93 mA/m2 (see Figure 4b). However, there is
a slight increase from 0.0007 mA/m2 to 0.0070 mA/m2 due to the contribution of thermally
generated carriers in addition to the light-generated carriers. The VOC and FF are directly
influenced by the adverse effects of temperature, which consequently impacts the overall
efficiency of the solar cell. Figure 4d illustrates a decline in efficiency from 22.12% to 21.17%,
underscoring the temperature’s detrimental impact.
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4.4. Effects of Bulk Defects and Interface Defects Density

SCAPS-1D uses the thermionic emission model (TEM) to explore heterojunction layers.
Interface defects are analyzed in the same way as bulk defects, and a recombination
in these states is assessed by an extension of the SRH theory known as the Pauwels–
Vanhoutte theory [56]. These traps facilitate recombination losses, enhancing dark current
and hence lowering efficiency. The carrier capture cross-section, energy level, and trap
density are basic physical properties that determine how a certain trap impacts the non-
radiative recombination rate. The carrier capture cross-section is mostly determined by the
material’s dielectric constant, while trap density can be technically controlled by eliminating
crystallographic defects such as surface and grain boundary imperfections throughout the
fabrication process [57].

Elementary and neutral vacancy pair defects do not generate deep energy levels within
the bandgap; only shallow traps are likely produced, which are not expected to act as potent
recombination centers [57]. Furthermore, some contaminants in the PbI2 reactant, as well
as Au residues absorbed in the active layer due to contact deposition, greatly affect the
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performance of the cell [58]. To prevent such defects that may result in deep traps, precise
manufacturing techniques are required.

PSCs consist of different thin-film materials which are arranged in a sandwich-like
structure. Poor deposition of thin-films leaves defects in the materials which greatly
affect the performance of the cell [59]. Especially perovskite material exhibits distinct
characteristics regarding longer diffusion lengths for electrons and holes (Ln and Lp) in a
single crystal. However, this diffusion length significantly fluctuates in thin-film materials,
depending upon the quality of the film [35]. In order to examine the impact of defects
densities, we introduce defects ranging from 1 × 1014 to 1 × 1022 cm−3 in all layers of the
PSC, including ETLs, HTLs, and perovskite layers.

Figure S2 shows variation in performance parameters such as JSC, VOC, FF, and
efficiency follow the expected trend, with a visible reduction as the quality of the layer
deteriorates (or defects density increase in thin-films). The VOC and JSC decrease from
1.313 V to 0.057 V and 20.77 to 0.06 mA/cm2, respectively. Similarly, FF and efficiency
decrease from 79.55% to 24.96% and 22.03 to 0.72%, correspondingly, because of leakage
current and parasitic resistance, the light-generated power is dissipated in the cell structure.
The defects density of 1 × 1014 has a negligible impact, while above 1 × 1018, an abrupt
decrease is noticed in the cell performance parameters. Defect concentrations in the range
of 1× 1014 to 1× 1017 are considered acceptable for practical application. In our simulation,
we chose a defect density of 1 × 1014, at which the efficiency and VOC of the cell is recorded
22.13% and 1.33 V, respectively. The impact of bulk defects on VOC efficiency are combinedly
displayed in Figure 5a.
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The junction quality plays a crucial role in the device’s performance. The presence
of defects at the interface increases the recombination rate, resulting in inefficient per-
formance [59,60]. Modeling recombination at the interface is a complex task, and the
ideal approach is to introduce a thin defective layer between the junctions to study
the effect of the defect at the interface. Here are two thin defective interface layers
(DILs) at both sides of the perovskite material layer. The configuration of the cell be-
comes HTL/DIL/MAPbI3/DIL/ETL. The defect density is varied from 1010 cm−2 to
1020 cm−2. Figure 5b shows the parameter VOC and efficiency decrease with the increase
in defect density at the interface. The DILs inserted between the HTL/MAPbI3 junction,
ETL/MAPbI3 junction, or placed at both sides of the active layer give the same simulation
results. However, the actual performance of the device will be disclosed upon the device
fabrication and testing.

4.5. Effects of Parasitic Resistance and Work Function of Back Contact

Resistive effects within solar cells lead to a significant decrease in their efficiency. Some
percentage of the light-generated power is dissipated in the cell structure due to these
internal resistances. Series and shunt resistances (RS and RSH) are the two primary types
of parasitic resistances (RP) [12,13]. The primary factors responsible for series resistance
(RS) comprise the semiconductor material’s bulk resistance, interconnection of composite
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material layers between each other, metal/semiconductor ohmic contact, and the resistance
of the electrode’s materials. The shunt resistance is due to the manufacturing defects in the
solar cell structure which dissipate a significant amount of light power. Low RSH provides
an alternate path to the carriers’ resulting loss of power and lowers the overall efficiency of
the device [13]. The researcher tries to keep RS and RSH values at minimum and maximum
values, respectively, for optimum design.

We investigated various RP values and their impacts on solar cell performance. We
noticed that increasing RS from 1 to 10 Ω.cm2 has no effect on VOC and minimal influence
on JSC. Other solar cell metrics such as efficiency and FF are constantly dropping with the
increase in series resistance (see Figure S3). Similarly, the RSH is varied from 0.1 × 103 to
1.0× 103 Ω.cm2 (see Figure S4), which shows that VOC, FF, JSC, and efficiency are improving.
The corresponding graph pattern of various parameters shows a significant rise with the
increase in shunt resistance. A sharp rise up to 0.4 × 103 is visible, followed by a gradual
gain with each further increment in RSH. In our simulation, the values for RS and RSH are
considerd 1 Ω.cm2 and 1.0 × 103 Ω.cm2, respectively, at which point the efficiency reached
22.13% (Figure 6a,b).
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The work function and material of the back electrode have a considerable impact on
built-in voltage (Vbi) of a PV cell, resulting in an increase in RS of the cell and a decrease in
efficiency [61]. A number of materials with different work functions are investigated for
the backend electrode to see how they affect the solar cell characteristics, while keeping the
front transparent electrode constant. Various materials with different work functions were
investigated, including Cu, Fe, Zn, C, Au, W, Pd, Pt, and Re [61–63], to determine how the
work function influences solar cell performance. The impact of various materials and their
associated work functions on JSC and VOC is depicted in Figure 6c. This shows that the
work function has little effect on JSC but a substantial impact on VOC. Similarly, as the work
function increases from 4.7 eV to 5.65 eV, efficiency and FF (Figure 6d) improve significantly.
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This enhancement is due to a reduction in the Schottky barrier height between the anode
and the HTL, which allows holes to travel more easily from the HTL to the backside of
the electrode. Although gold has a reasonable work function for simulation, silver and
aluminum are more cost-effective options for the experimentation and commercialization
of the solar cell.

5. Conclusions

In this research, MAPbI3-based PSCs were arranged in NIP configurations of ITO/SnO2/
CH3NH3PbI3/NiOX/Back contact and simulated under standard test conditions of 300 K
and A.M 1.5 G. The primary goal is to investigate PSCs with inorganic CTL layers that are
easily deposited though the ALD method in order to enhance the efficiency and stability
of the cell. We optimized the device using a comprehensive layer-by-layer methodology,
including a MAPbI3 and CTL layer. The optimum thickness of the active and CTL layer
was found to be 400 nm and 50 nm, respectively, while taking the bulk defect density of
1 × 1014 cm−3 in all layers as a constant. In this arrangement, the PSC obtained showed
an efficiency of 22.13%, VOC of 1.32, JSC of 20.93 mA/m2, and FF of 79.89%. We also
introduced interface defects (1010 cm−2 to1020 cm−2) between the CTL and perovskite
layer; the increase in interface defects can cause poor efficiency of the device which can be
eliminated with ALD deposition. Similarly, the influence of parasitic resistance indicates
the significance of small RS and high values of RSH. The design cell’s RS and RSH values are
taken to be 1.0 Ω.cm2 and 1.0 × 103 Ω.cm2, respectively. The work function of ITO is set
constant of 4.13 eV, while the different materials have different work functions being tested
for back contact at 5.65 eV, and the PSC shows the highest efficiency of 22.13%. In addition,
cell parameters are also examined under various practical operating conditions, such as the
impact of temperature and light intensity. The design cell’s possible parameter aspects are
numerically tested and analyzed; however, it is necessary to disclose the stability of the cell
structure’s with ALD fabrication.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/en16217438/s1, Figure S1: PSC band alignment diagram;
Figure S2: Effect of bulk defects in the cell structure; Figure S3: Effect of series resistance;
Figure S4: Effect of shunt resistance.
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