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Abstract: The China Geological Survey (CGS) has carried out a large number of surveys and core
drilling over the deepwater area of Qiongdongnan Basin (QDNB) in the South China Sea and
discovered the natural gas hydrate system controlled by the gas chimney with a high geothermal
gradient. The complex hydrate system consists of a sandy hydrate reservoir distributed around a
lateral transition gas-hydrate mixed zone and a free gas zone in the middle. The hydrate and gas
are distributed in the same layer, which is thin but potentially valuable for commercial exploitation.
In this paper, a geological model of the target hydrate system in QDNB was established based on
the results of several rounds of drilling. The method of numerical simulation was utilized to assess
the production capacity of the target hydrate system and clarify the evolution of hydrate and gas
saturation distribution with different well positions. The simulation results indicate that the producer
well built in the center of the highly-saturated hydrate zone has a limited gas production capacity,
with a cumulative production of only 7.25 × 106 m3 in 9 years. The well built at the boundary of the
hydrate zone can rapidly link up the gas in the transition zone through a large production pressure
differential, but it lacks control over the hydrates and its dissociated gas in the transition zone—the
cumulative gas production volume from hydrate accounts for only 12.3%. As for the wells built in
the transition zone and gas zone, they can directly invoke the free gas production capacity. Free
gas is produced as the formation pressure reduces and hydrate is induced to dissociate, making the
gas from the hydrate the subsequent production capacity. The cumulative production can exceed
6 × 108 m3 in 9 years. The stable production duration can extend to 2645 days, and the cumulative
proportion of gas at the wellhead from hydrate reaches close to 30%. It is necessary to avoid the free
water layer. The bottom water coning would improve the water production by 40% and shorten the
stable production duration. In summary, the complex hydrate system of this type in the QDNB has
the potential for industrialized exploitation. In the future, the well group can be used for the further
improvement of the hydrate utilization rate.

Keywords: natural gas hydrate; Qiongdongnan Basin; capacity assessment; production capacity
simulation

1. Introduction

Natural gas hydrates are ice-like cage compounds formed by the interaction of light
hydrocarbons and water at high pressure and low temperature [1], which are widely found
in the high latitude permafrost, such as the Alaska North Slope, the Mackenzie Delta in
Canada, the Qilian Mountains in Qinghai, China [2–6], the edge of the continental slope
under deepwater, such as the Black Sea, the Nankai Trough in Japan, the Ulleung Basin
in Korea, and the northern South China Sea [7–14]. Under standard conditions, 1 m3 of

Energies 2023, 16, 7447. https://doi.org/10.3390/en16217447 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en16217447
https://doi.org/10.3390/en16217447
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-2289-6173
https://doi.org/10.3390/en16217447
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en16217447?type=check_update&version=2


Energies 2023, 16, 7447 2 of 25

methane hydrate can yield 164 m3 of methane. Global estimates of the carbon equivalent
content in hydrates range from 1 × 102 Gt to 5.6 × 104 Gt [15–18]. For example, the gas
reserves in the Black Sea are estimated to be 7.7 Gt [19].

Due to its wide distribution and large resources, hydrate is regarded as a high-quality
and efficient alternative energy source. Some countries are actively carrying out corre-
sponding production tests [20,21]. The China Geological Survey (CGS) has carried out
two hydrate production tests in the Shenhu area, South China Sea, in 2017 and 2020 [22,23].

It is generally believed that the capillary force in sediment pores increases the methane
concentration required for hydrate generation, decreases the equilibrium temperature, and
makes hydrate growth more difficult, so gas hydrates with high saturation are usually
discovered from coarse-grained sandy reservoirs [24–27], e.g., mass flow deposits in the
Ulleung Basin and coarse-grained turbidite sands within them play an important role in
the enrichment of pore-filled hydrates [28,29]. According to the drilling reports in the Gulf
of Mexico, high abundance hydrates with 50–80% saturation are also found in channel
deposits with a very low content of clay [30–32]. It is generally believed that these high gas
hydrate saturations are attributed to the presence of sand-dominated lithology with high
porosity and high permeability [33]. However, the results of multiple rounds of drilling
and coring conducted by the CGS showed that the orebody in the Shenhu area comprised
dispersed hydrate accumulations. The reservoirs were composed of clay silt fine-grained
sediments rich in foraminifera, where the average saturation of hydrate cores exceeded 20%
and reached a maximum of 47.3%. However, the sand content was less than 10% and silt
content was 70–80% [34–37]. Obviously, hydrates in the Shenhu area are discoveries with
large saturation in fine-grained sediments. Due to the shallow storage and light compaction
of skeleton particles, part of the pore space is preserved. In addition, the foraminifera fossils
also provide a large amount of host space [38]. The porosity of the Shenhu formations
is not greatly affected by the fine particles. However, the high content of clay and other
fines results in a small volume of individual pores, poor connectivity between pore throats,
and even a large number of nano-scale pores and dead pores [39,40], all of which cause
the permeability of hydrate reservoirs in the Shenhu area to be significantly lower than
that of hydrate reservoirs in other seas. Interpretation of logs at Site W19 shows that the
average porosity of the hydrate layer is 0.3 and permeability is 5.5 mD, while the average
permeability of the underlying gas layer is only 1.16 mD [41,42]. Low-permeability clayed
formations definitely pose problems for the flow. The gas-water flow characteristics of the
Shenhu reservoir indicate the high connate water, narrow gas-water two-phase zone, and
weak gas flow capacity under the restriction of “water blockage”. In addition, clayed fine-
grained reservoirs are extremely sensitive to liquid flow rate, and the permeability decreases
irreversibly when the pressure gradient exceeds the threshold. The creep characteristics of
clayed soft rocks and particle transport will decrease permeability [43,44], which is a great
challenge for hydrate exploitation that relies strongly on pressure drop to break the phase
equilibrium.

In recent years, CGS has shifted the focus of exploration and drilling to another promis-
ing area, the Qiongdongnan Basin (QDNB). QDNB is located in the western part of the
continental slope of the South China Sea, bordering the Xisha Islands and Hainan Island in
the north-south direction and between the Pearl River Mouth Basin and Yinggehai Basin in
the east-west direction, with water depths ranging from 300 m to 2600 m [45,46]. The CGS
has acquired a large volume of 2D seismic data and high-definition 3D seismic data in the
deepwater area of QDNB, covering most of the favorable exploration and drilling areas for
hydrate. From 2018 to 2021, four hydrate scientific drilling campaigns were carried out in
the southern indentation area of QDNB, acquiring corresponding resistivity, gamma, acous-
tic, density, resistivity imaging, and NMR logging information. The sandy hydrate-bearing
cores were discovered, and field data such as CT scans and acoustic tests were also acquired.
It is confirmed that the sandy sediments in the deepwater area of the southern QDNB have
superior conditions for hydrate accumulation [47–50]. The type of hydrate formation and
output characteristics found so far in the QDNB are similar to those of leakage gas hydrate
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reservoirs in the Gulf of Mexico and Indian KG Basin [51,52]. Core samples show the
hydrates are visible and filled in unconsolidated sediment fractures as blocks, layers, and
nodules, which are significantly different from typical dispersed hydrates in the Shenhu
area [53]. More importantly, the seismic interpretation shows that the hydrate saturation in
the QDNB is extremely high, partially up to 60–80%. The local amplitude enhancement
and obvious boundary caused by high saturation hydrate can be identified in the hydrate
stability zone [54]. There are usually gas chimneys, faults, and other good channels for
deep fluid transport and migration in the lower part of hydrate-bearing sediments [55–57].
Temperature logging shows that the geothermal gradient exceeds 100 ◦C/km, while that of
the nearby hydrate layer is only 65 ◦C/km. The huge difference in geothermal gradient is
caused by the continuous convection effect between deep and shallow fluids. It reshapes the
shallow temperature-pressure system and changes the hydrate stability zone [58]. Milkov
has proposed that after fluids containing supersaturated gas flow from the deep to the
shallow hydrate stability zone, hydrocarbon-rich fluid diffuses and gradually cools, and
then hydrate grows in a ring around the gas chimney [59]. The discovery of thermogenic
shallow gas in the middle of the hydrate drilling target area of the QDNB in 2019 can pre-
cisely support the above idea [60]. Such a discovery confirms that the hydrate deposits in
the QDNB have a special distribution, where the gas gathers in the middle, and the hydrate
distributes around, unlike the conventional type 1 hydrate reservoir [61]. Similar complex
hydrate systems are widespread in QDNB, which meet the geological characteristics of
“multi-gas co-production” [62].

There have been many studies on the production capacity assessment of different
types of hydrate reservoirs, whether using depressurization, thermal stimulation, inhibitor
injection, or CO2 replacement [63–67]. For type 2 and 3 hydrate reservoirs with the most
economical and simple depressurization method, commercial gas flow can only be obtained
when the reservoir properties are superior, including large hydrate layer thickness, high
effective permeability, and high original temperature [68–71]. For type 1 hydrate, the
temperature and pressure conditions at the bottom of the hydrate layer are located at
the phase equilibrium point; only small changes in pressure and temperature can induce
hydrate dissociation. Moreover, a free gas can guarantee gas production even when
the hydrate contribution is small at the initial stage. The above studies can predict the
production potential of complex hydrate systems in the QDNB.

Therefore, this paper establishes the geological model of the target hydrate system
in the QDNB based on the results of multiple rounds of drilling by the CGS. The method
of numerical simulation was utilized to assess the capacity of the target hydrate deposit
and clarify the evolution of hydrate and gas distribution during exploitation with different
well positions. It can provide theoretical and technical support for the optimization of
commercial development schemes in the gas hydrate exploration pioneer experimental
area of QDNB.

2. Geological Background and Model

A preliminary geological model of the target hydrate reservoir was established with
logging data and seismic data in the QDNB. A large number of geological surveys have
been carried out in this target zone, including more than 20 drilling and coring wells
and adequate high-definition seismic data. The acquired logging and seismic data are
interpreted to determine the spatial distribution pattern of key geological parameters, such
as porosity, permeability, and phase saturation. It is extremely important to construct
the hydrate-gas transition zone. The geological model is also validated with the logging
data through Petrel. The water depth is about 1760 m, and the mudline temperature is
3.1 ◦C. Figure 1 shows the three-dimensional geological model of the target reservoir. The
horizontal and vertical span is about 4.8 km and 2.5 km, respectively. The thickness of the
sediment is small, usually less than 10 m. The absolute permeability of unconsolidated
sandy formations is relatively high (0–400 mD).
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Figure 1. Three-dimensional geological model of the target system.

Figure 2 shows the hydrate-gas distribution characteristics of the target hydrate system.
The hydrate system is controlled by a high geothermal gradient gas chimney. The hydrate
and gas are distributed in the same layer, with the gas in the middle and the hydrate
distributed around. The maximum saturation of free gas is up to 75%, and that of the
hydrate is 87%. The greater the depth, the larger the extension area of free gas. As shown
in Figure 3, there is a large lateral transition zone of hydrate gas in the system. The whole
sediment is characterized by strong horizontal heterogeneity, which can be mainly divided
into three parts: 1© Pure hydrate zone. It is like a type 3 hydrate reservoir. 2© Transition zone
of hydrate and free gas. It is similar to a type 1 hydrate reservoir, where free gas underlies
the hydrate. There is a free water zone under the transition zone in the western part of this
system. 3© Free gas reservoir. There is a relatively high-temperature gas reservoir in the
center of this system. The strong horizontal heterogeneity also increases the difficulty of
well selection during extraction.
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Figure 3. The hydrate system division (hydrate zone, transition zone, and gas zone).

The horizontal heterogeneity is also reflected in the reservoir temperature. The geolog-
ical background of the differential geothermal gradient of the hydrate system is extremely
obvious. The typical drilling wells in this zone reveal that the geothermal gradient ranges
from 65 ◦C/km to 105 ◦C/km. The geothermal gradient of the gas zone is high and de-
creases gradually from the transition zone to the pure hydrate zone. Briefly, the gas zone is
hot, and the hydrate zone is cold. Figure 4 illustrates the temperature characteristics of the
target hydrate system. Due to the lack of technology for deep water temperature logging,
the temperature distribution of this system can only be deduced by phase equilibrium in
sandy porous media.
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The CGS successfully utilized the horizontal well in the second production trial in the
Shenhu area, which verified the safety and efficiency of drilling and completing horizontal
wells in shallow formations. Theoretically, the large control area of the horizontal well can
effectively deal with the strong horizontal heterogeneity of this complex hydrate system.
However, it is noted that the thickness of this system is too thin, and the well trajectory
control accuracy is of high requirement, so the feasibility of a horizontal well is not high
enough. Considering that better reservoir physical properties and stronger mobility can
make the single vertical well able to collect distant gas, it is proposed to use a single vertical
well for capacity assessment.

As shown in Figures 5 and 6, the position of the well mainly targets the zone above
three different areas, namely the hydrate zone, transition zone, and gas reservoir. The first
position in the hydrate zone is Site 1, the center of the highly-saturated hydrate area. The
second is Site 2, the boundary of the hydrate zone, which is near the transition zone. The
Site 1 depth is at 1894–1900 m, and the Site 2 depth is at 1890–1899 m. For the transition zone,
the free water zone is considered separately. Site 3 and Site 4 are established, respectively.
The Site 3 depth is at 1893.4–1901.7 m, and it contains a 3.5 m thick hydrate layer and
a 4.8 m thick gas layer. The Site 4 depth is 1898.5–1906.9 m, and it includes a 5 m thick
hydrate layer, a 1.2 m thick gas layer, and a 2.2 m thick free water layer. Site 5, which is
located in the middle of the gas reservoir, is at 1897.4–1904.9 m. Five representative single
vertical well positions were initially selected for production capacity simulation.
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For both Site 1 and Site 2, which are in the single hydrate-bearing sediments, a
depressurization method with constant well-bottom pressure is adopted for rapid hydrate
dissociation stimulation. For Sites 3, 4, and 5 involving gas formation, the stable production
rate is used. The multi-parameter scheme for each location is shown in Table 1.

In order to speed up the simulation and reduce the arithmetic pressure, two sub-
models were extracted for different sites. The first sub-model, a, is in the hydrate zone,
with Site 1 as the center (Figure 7). The whole sub-model a grid is 156 × 101 × 116. The
sub-model has a transverse and longitudinal span of 1.56 km and 1.0 km, respectively. The
second sub-model, b, is larger and bounded by a fault in the north, including the central
gas zone, the transition zone, and part of the hydrate zone. The whole sub-model b, with
a grid number of 219 × 97 × 141, spans 2.19 km and 1 km. Sites 2–5 are included in the
sub-model b.
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Table 1. The multi-parameter scheme for simulation.

Well Location Production Scheme Simulation Time Description

Site 1 Differential pressure
15 MPa 9 years Hydrate zone, all

perforated

Site 2 Differential pressure
15 MPa 9 years Hydrate zone, all

perforated

Site 3

Constant gas rate
20 × 104 m3/d 9 years

Transition zone, all
perforated

Constant gas rate
30 × 104 m3/d 9 years

Constant gas rate
40 × 104 m3/d 9 years

Site 4 Constant gas rate
20 × 104 m3/d 9 years Transition zone, water

zone is not perforated

Site 5 Constant gas rate
20 × 104 m3/d 9 years Gas zone, all

perforated
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3. Mathematical Model

In this study, commercial reservoir simulation software for oil and gas production
(CMG) is used to assess the capacity of the target hydrate system. The well-established
reservoir numerical simulation model CMG STARS considers the kinetic model of hydrate
formation and dissociation. It can simulate the unequal temperature release, fluid flow, and
energy change of the gas hydrate reservoir under various complex formation conditions by
solving the material and energy conservation equations [72]. It can facilitate embedding
the above geological model and well setting. More importantly, it can effectively deal with
the mathematical operation and calculation of multi-million grids. Other researchers have
validated the results from the model using CMG STARS with other reservoir simulators,
such as Tough + Hydrate, HydrateResSim, and MH21. The results obtained are in good
agreement with other simulators.

3.1. Material Conservation Equation

In the process of hydrate extraction, solid hydrate decomposes into liquid and gaseous
hydrocarbon. The material conservation equation can be divided into two parts: mobile
phase (gas and liquid) and non-mobile phase (hydrate). Hydrate formation and dissociation
are considered reaction terms. Equation (1) is the mass conservation equation for mobile
phase i. Equation (2) is the mass conservation equation for non-mobile phase l.
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where V is the total volume of all phases, m3; φ f is the fluid porosity; ρj is the density

of each phase, kg/m3; Sj is the saturation of each phase; xj
i is the fraction of different

components in each phase; Tj is the transmissibility between grids; qjL is the volume of
source and sink, m3; s,

ki, ski are the stoichiometric coefficient of product and reactant. rk is
the volumetric reaction rate, mol/(m3·d); np is the number of phases; n f is the number of
adjacent grids; nr is the number of the reactions; φ is the porosity; Ckl is the content of each
non-mobile phase in unit volume, mol/m3.

3.2. Energy Conservation Equation

Heat absorption by hydrate dissociation will lead to a decrease in reservoir tempera-
ture, which affects the rate of hydrate dissociation and may cause secondary hydrate or
even ice generation. The change in temperature in the hydrate extraction can be expressed
as Equation (3)

V ∂
∂t
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=
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Tjρj Hj∆P + K∆T

))
+

np

∑
j=1

ρjqjLxj
i Hj + V

nr
∑

k=1
Hrkrk

(3)

where Uj is the internal energy of each mobile phase, J. Uj is the internal energy of hydrate,
J; Ur is the internal energy of the porous media; Hj is the enthalpy of each mobile phase,
J/mol; K is the thermal conductivity, W/(m·K).
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3.3. Kinetic Equation of Hydrate Formation and Dissociation

Hydrate formation and dissociation equations are established based on the Vysniauskas–
Bishnoi model [73] and Kim–Bishnoi model [74], as shown in Equations (4) and (5).

n f = k0
f exp

(
− E

RT

)(
φ2 AHSchSw + φAHSSw

)(
pg − pe

)
(4)

nd = k0
d exp

(
− E

RT

)(
φ2 AHSchSw

)(
pe − pg

)
(5)

where nf, nd is the hydrate formation and dissociation rate, mol/m3; k0
f , k0

d is the intrinsic

kinetic rate constants of hydrate formation and dissociation, mol/(m2·kPa·d); E is the
activation energy, J/mol; Ahs is the specific surface area of the hydrate, m3/m3, R is the gas
constant, J/(mol·K); Pe is the hydrate phase equilibrium pressure, kPa; Pg is gas pressure,
kPa; T is temperature, K; Sw is the water saturation.

3.4. Dynamic Equation of Permeability and Porosity

The change in permeability of porous media originates from hydrate formation and
dissociation, where the model of porosity change is shown in Equation (6).

φ f = φ − φh (6)

where φh is the volume content of hydrate per unit volume, m3/m3.
Permeability is calculated based on the classical Kozeny–Carman [75], as follows:

k = k0

(
φ

φ0

)N( 1 − φ

1 − φ0

)2
(7)

where k0 is the initial permeability, 10−3 µm3; N is the power law coefficient, with a value
of 3.

The relative permeability of gas and liquid is calculated as follows

Krw = (S∗
w)

n (8)

Krg =
(

S∗
g

)n
(9)

S∗
w =

Sw − Sirw
1 − Sirw

(10)

S∗
g =

Sg − Sirg

1 − Sirg
(11)

where Krw is the relative permeability of liquid; Krg is the relative permeability of gas; n is
the power coefficient, n = 3.752; Sw is the liquid saturation; Sirw is the irreducible water
saturation; Sg is the gas saturation; Sirg is the irreducible water saturation.

The specific parameters of the hydrate kinetic model and reservoir properties are
shown in Table 2.

Table 2. Specific parameters of hydrate kinetic model and reservoir properties.

Basic Parameters Value Basic Parameters Value

Molecular weight ρm/kg/mol 119.543 Mass density ρ/kg/m3 919.7

Decay rate λd/mol/(day·kPa·m2) 1.07 × 1013 Formation rate λf/mol/(day·kPa·m2) 2.5 × 105

Activation energy E/J/mol 81,084.2 Specific area AHS/m2/m3 3.75 × 105

Reaction enthalpy H/J/mol 51,858 Grain density ρR/kg/m3 2650
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4. Evaluation Criteria

For offshore gas production, gas production rate Qg and cumulative gas production
volume Vg must be the most important criterion. It is generally believed that considering
the complexity and high cost of deepwater operations, the economic production rate of
offshore gas fields exceeds 20 × 104 m3/d. The same is true for shallow hydrate systems.
The high gas production rate is a must for its commercial production. In addition, a
low water production Qw is another criterion to be examined. The larger the production
pressure differential, the higher the hydrate dissociation rate. For the depressurization, the
liquid column height in the well needs to be continuously controlled by electric submersible
pumps. Excessive water production will increase the difficulty in gas-water separation and
drop in bottom-hole pressure. Of course, the contribution from hydrate dissociation to gas
production rate and cumulative production volume becomes another special evaluation
criterion. This paper examines the hydrate dissociation at different sites using the ratio
of hydrate contribution to gas production rate at the wellhead and the ratio of hydrate
contribution to total production volume at the wellhead as evaluation criteria.

5. Simulation Results and Discussion
5.1. Site 1 Simulation Result

Site 1 is a typical Type 3 hydrate deposit. In the production capacity prediction
for Type 3 hydrate deposits, the basic cognition of both semi-analytical and numerical
solutions is that the gas production rate gradually grows as the extraction time increases
and pressure-front keeps advancing. The simulation result in this paper is also similar.
As shown in Figure 8, the gas production rate at the wellhead increases continuously.
However, the gas production rate is always not satisfactory, and it cannot break through
2500 m3/d in the 9 years of simulation. The gas is all contributed by hydrate dissociation.
The water production rate increases rapidly to a peak of 66 m3/d at the beginning, while
the gas production just climbs to 1250 m3/d. The instantaneous gas-water ratio at the
wellhead reaches a tough value of 19, which is an extremely undesirable value for gas
production. The water rate then gradually declines because the initial pressure drop relies
entirely on the discharge of free water in the reservoir. With the pressure front advancing,
the pressure gradient of the near-well reservoir declines. In addition, the dissociation of
hydrate also increases the space occupied by the gas and reduces the relative permeability
of the water phase. Both of them cause the water rate to decline gradually. Overall, the gas
production at Site 1 is insufficient, with a 9-year cumulative gas production volume of only
725.5 × 104 m3, making it difficult to meet commercial exploitation requirements.
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Poor gas production determines that Site 1 has no potential for commercial exploitation.
There are two major reasons. The first is the special formation property. Even if Site 1 is
fully penetrated, the effective thickness is less than 8 m. Compared to the 60 m-thick trail
desert in the Nankai Trough, there is an order of magnitude difference. The disadvantage
of the single vertical well is exposed, including the small control area and the strong
dependence on lateral gas-liquid flow and rapid pressure transfer. The overly high hydrate
saturation is also worrying. Although the sandy formations have high absolute porosity
and permeability, the hydrate fills the pore space, and the initial effective permeability
of porous media is too low. The pressure drop is slow, which directly inhibits the rate
of hydrate dissociation driven by pressure differential. Figure 9 shows the evolution of
hydrate and gas saturation distribution at Site 1. The hydrate saturation of the upper
reservoir is smaller, and the hydrate dissociation front has advanced to 30 m away from the
producer well at the end of the simulation. The hydrate saturation of the lower reservoir is
greater than 0.7, and the hydrate dissociation front has just advanced to 15 m. It is different
for rapid hydrate dissociation without enhancement measures such as fracture fracturing
and heat supply, which is an important problem in hydrate commercial development.
The second reason is that the location of Site 1 is far away from the free gas. There is
a high-saturated hydrate layer with low effective permeability and even lower relative
permeability of gas in the middle interval. The free gas cannot be transferred even with
a large pressure differential. As seen in Figure 9, the free gas in the southeast direction
cannot invade the hydrate zone and naturally cannot support the producer well, resulting
in the insufficient capacity of Site 1.
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5.2. Site 2 Simulation Result

Site 2 is also in the hydrate zone. However, the hydrate saturation around Site 2
is between 0.2 and 0.6, lower than that of Site 1. The initial effective permeability is
higher, which is conducive to pore water discharge and pressure drop diffusion. The
biggest difference is that Site 2 is close to the transition zone. Setting up this site aims to
accelerate the hydrate dissociation rate through a large production pressure differential
and communicate with free gas in the transition zone as soon as possible. It aims to drive
the effective dissociation of hydrate in the incoming gas direction through the favorable
element that the gas temperature is higher than that of the hydrate zone. The total gas
rate, gas rate from hydrate, and water production rate at Site 2 are shown in Figure 10. As
seen from it, the total gas production rate climbed rapidly in the first 500 days and reached
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32.5 × 104 m3/d. It is impossible to support such a large production rate just with hydrate.
The producer well at Site 2 effectively connects the free gas in the transition zone. The gas
rate produced by hydrate at the wellhead is also growing in the early stage and is close to
1.3 × 104 m3/d by 500 days. Figure 11 shows the instantaneous proportion of gas rate at the
wellhead from hydrate and the cumulative proportion of gas at the wellhead from hydrate.
When the well opens, the instantaneous proportion of gas rate at the wellhead from hydrate
cannot reach 100% because part of the well section is accompanied by the mixed hydrate–
gas–water layer. With the great pressure differential and hydrate dissociation, it begins to
increase and reaches a peak of 93%. After that, it starts to decrease rapidly, which means
the free gas in the transition zone has reached the producer well. Correspondingly, the
water rate also grows rapidly during this period, approaching 100 m3/d, which is due to
gas invasion into the hydrate zone and elastic drive to water relying on the high volume
coefficient of gas. However, the high water rate cannot last long, which also implies that
the free gas has established a continuous and stable flow channel to the well. Figure 12
shows the change in gas saturation distribution around the well at the initial point. The
gas from the transition zone invades rapidly through the mixed hydrate–gas–water layer,
displacing pore water along the way. The gas distribution on the 60th day validates the
above point, by which time the gas from the transition zone has successfully established an
efficient flow channel to the well. The instantaneous proportion of gas rate at the wellhead
from hydrate has dropped rapidly to 7%. Since then, the main driver of reservoir pressure
drop has changed from water drainage to gas discharge. The shrinkage in this ratio is not a
disadvantage. The expected gas invasion has significantly increased the gas production
rate, making Site 2 commercially exploitable. At the end of the simulation, the wellhead
cumulative gas production volume is 4.51 × 108 m3. The cumulative gas volume from
hydrate contribution is 5552 × 104 m3, accounting for 12.3%. Under the same production
pressure differential, the cumulative hydrate contribution of gas in 9 years at Site 2 is much
better than that at Site 1, almost 7.7 times.

Energies 2023, 16, 7447 13 of 26 
 

 

from hydrate contribution is 5552 × 104 m3, accounting for 12.3%. Under the same produc-

tion pressure differential, the cumulative hydrate contribution of gas in 9 years at Site 2 is 

much better than that at Site 1, almost 7.7 times. 

 

Figure 10. Variation of total gas water at the wellhead, gas produced from hydrate at the wellhead, 

and water production with time at Site 2. 

 

Figure 11. Instantaneous proportion of gas rate at the wellhead from hydrate and the cumulative 

proportion of gas at the wellhead from hydrate at Site 2. 

Figure 10. Variation of total gas water at the wellhead, gas produced from hydrate at the wellhead,
and water production with time at Site 2.



Energies 2023, 16, 7447 13 of 25

Energies 2023, 16, 7447 13 of 26 
 

 

from hydrate contribution is 5552 × 104 m3, accounting for 12.3%. Under the same produc-

tion pressure differential, the cumulative hydrate contribution of gas in 9 years at Site 2 is 

much better than that at Site 1, almost 7.7 times. 

 

Figure 10. Variation of total gas water at the wellhead, gas produced from hydrate at the wellhead, 

and water production with time at Site 2. 

 

Figure 11. Instantaneous proportion of gas rate at the wellhead from hydrate and the cumulative 

proportion of gas at the wellhead from hydrate at Site 2. 
Figure 11. Instantaneous proportion of gas rate at the wellhead from hydrate and the cumulative
proportion of gas at the wellhead from hydrate at Site 2.

Energies 2023, 16, 7447 14 of 26 
 

 

 

Figure 12. Change in gas saturation distribution around the producer well. 

As can be seen from Figure 10, the gas production rate at the wellhead begins to re-

duce gradually to 4.23 × 104 m3 after 500 days, where the wellhead gas rate from hydrate 

grows to 2 × 104 m3. As shown in Figure 11, the instantaneous proportion of gas rate at the 

wellhead from hydrate reaches 42.3%, and finally, the cumulative proportion of gas at the 

wellhead from hydrate reaches 12.3%. The main reason for the rise in hydrate contribution 

is the depletion of the free gas supply. The increase from the hydrate itself is not very 

significant. After 1000 d, the wellhead gas rate from hydrate stagnates and stays around 2 

× 104 m3. To this problem, there are two reasons suggested. One is that the hydrate disso-

ciation driving force is weak, i.e., the pressure drop is not enough or the temperature is 

too low, and thus, the gas rate produced from the hydrate cannot rise fast enough to sup-

port the limited capacity. The other one is that the gas produced by the hydrate cannot be 

available to the well. These conjectures can be evaluated by the evolution phase saturation 

distribution.  

Figure 13 shows the evolution of the hydrate saturation, gas saturation, and the 

proportion of free gas in the pore ω during extraction. Initially, only hydrate near the well 

can dissociate. It is noteworthy that the hydrate on the invasion route of gas can dissociate 

quickly. It is due to the elastic drive of gas, which accelerates the pressure drop in this 

zone. Moreover, the temperature of the free gas is higher than that of the hydrate, which 

provides a valuable heat supply. These are all the original design intentions of Site 2. 

Another main area of hydrate dissociation is the transition zone. The release of gas in the 

lower part of the transition zone facilitates pressure diffusion and stimulates the hydrate 

dissociation. However, the dissociated gas does not seem to support the wellhead gas rate. 

As can be seen from the gas saturation distribution, the dissociated gas in the transition 

zone increases the gas saturation, but only a small amount of it can flow directly to the 

well. The distribution of gas content shows that the gas from hydrate dissociation in the 

transition zone mainly goes to the lower part of the transition zone, filling the space 

originally occupied by the free gas. It means that the effective gas supply of hydrate at Site 

2 mainly comes from the near-well formations. The producer well at Site 2 has weak 

control over the gas from hydrate dissociation in the transition zone. The free gas content 

decreases significantly in the later period, corresponding to the shrinkage of the overall 

gas production rate. 

Figure 12. Change in gas saturation distribution around the producer well.

As can be seen from Figure 10, the gas production rate at the wellhead begins to
reduce gradually to 4.23 × 104 m3 after 500 days, where the wellhead gas rate from hydrate
grows to 2 × 104 m3. As shown in Figure 11, the instantaneous proportion of gas rate
at the wellhead from hydrate reaches 42.3%, and finally, the cumulative proportion of
gas at the wellhead from hydrate reaches 12.3%. The main reason for the rise in hydrate
contribution is the depletion of the free gas supply. The increase from the hydrate itself
is not very significant. After 1000 d, the wellhead gas rate from hydrate stagnates and
stays around 2 × 104 m3. To this problem, there are two reasons suggested. One is that
the hydrate dissociation driving force is weak, i.e., the pressure drop is not enough or the
temperature is too low, and thus, the gas rate produced from the hydrate cannot rise fast
enough to support the limited capacity. The other one is that the gas produced by the
hydrate cannot be available to the well. These conjectures can be evaluated by the evolution
phase saturation distribution.

Figure 13 shows the evolution of the hydrate saturation, gas saturation, and the
proportion of free gas in the pore ω during extraction. Initially, only hydrate near the
well can dissociate. It is noteworthy that the hydrate on the invasion route of gas can
dissociate quickly. It is due to the elastic drive of gas, which accelerates the pressure drop
in this zone. Moreover, the temperature of the free gas is higher than that of the hydrate,
which provides a valuable heat supply. These are all the original design intentions of
Site 2. Another main area of hydrate dissociation is the transition zone. The release of gas
in the lower part of the transition zone facilitates pressure diffusion and stimulates the
hydrate dissociation. However, the dissociated gas does not seem to support the wellhead
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gas rate. As can be seen from the gas saturation distribution, the dissociated gas in the
transition zone increases the gas saturation, but only a small amount of it can flow directly
to the well. The distribution of gas content shows that the gas from hydrate dissociation in
the transition zone mainly goes to the lower part of the transition zone, filling the space
originally occupied by the free gas. It means that the effective gas supply of hydrate at
Site 2 mainly comes from the near-well formations. The producer well at Site 2 has weak
control over the gas from hydrate dissociation in the transition zone. The free gas content
decreases significantly in the later period, corresponding to the shrinkage of the overall gas
production rate.
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5.3. Site 3 Simulation Results

Site 3 is arranged in the transition zone, the lower section of which is in contact
with the free gas. According to the production experience of conventional gas fields, this
reservoir capacity is sufficient, and non-fixed bottom hole pressure is generally used to
control the gas rate at the wellhead. The duration of stable gas production is the key. Site 3
is similar to the type 1 hydrate deposit, which collects free gas to reduce the formation
pressure and drives the hydrate dissociation. In this paper, the steady production rates
(20 × 104 m3/d, 30 × 104 m3/d, 40 × 104 m3/d) are adopted at Site 3 to compare the stable
production duration and evaluate the change in the production dynamic law.

Unlike the gas production from hydrate dissociation, free gas does not need to break
the equilibrium condition and complex kinetic reactions. A high and stable gas rate can be
obtained as long as the stratum energy is sufficient and the permeability is high. For the
underlying free gas with high gas saturation, porosity, and permeability, the relationship
between the stable production rate and duration depends on the controllable storage
volume of the single well. For the complex hydrate system in the QDNB, what needs to
be additionally evaluated in this paper is the effect of different production regimes on
hydrate dissociation. It is obvious that the higher the expected gas rate, the shorter the
stable production duration. Figure 14 shows the total gas and gas rates from hydrate at
the wellhead under different conditions of expected gas rates. For Site 3, the production
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rate 20 × 104 m3/d can be maintained for 2389 days, 30 × 104 m3/d can be maintained for
1350 days, and 40 × 104 m3/d can be maintained only for 865 days. In order to maintain a
stable gas rate, it is inevitable to continuously reduce the bottom-hole pressure and make
the pressure differential larger. The hydrate dissociation rate accelerates, thus providing
additional capacity replenishment in the stable production stage, where the free gas supply
is the main source. From Figure 14, it can be seen that the wellhead gas rate from hydrate
reaches its peak at the end of stable production, which prolongs the stable production
duration to a certain extent. The higher the stable production rate, the lower the total gas
rate at the end of the simulation, with the final gas rate reducing to 6.04 × 104 m3/d for
20 × 104 m3/d and 4.32 × 104 m3/d for 40 × 104 m3/d.
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Figure 15 shows the cumulative gas volume and gas from hydrate dissociation at
the wellhead. It can be seen that the higher the set gas production rate, the more gas
can be produced from Site 3. The increment is not significant. Compared with the stable
production rate of 20 × 104 m3/d, the cumulative gas production volume of 40 × 104 m3/d
for 9 years is 6.22 × 108 m3, with a slight increase of 0.48 × 108 m3. It is worth noting that
the increment almost completely comes from hydrate contribution. It can be inferred that
depressurization speed has little effect on the recovery of free gas but much on hydrate
dissociation. The larger the initial gas rate, the faster the depressurization speed, the more
intense the hydrate dissociation, and the higher the proportion of gas rate and cumulative
gas volume from hydrate. Figure 16 shows the instantaneous proportion of gas rate at the
wellhead from hydrate and the proportion of cumulative gas volume from hydrate. As
shown in Figure 16, the contribution from hydrate is greatly improved. The proportions of
cumulative gas volume from hydrate with different stable production rates reach 23.3%,
28.2%, and 29.9%, respectively. The ultimate proportions of gas rate from hydrate reach
83.6%, 92.6%, and 94%, respectively. It also implies the depletion of controllable reserves of
free gas at Site 3.
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Figure 15. Cumulative volume of gas produced from hydrate and total gas production under different
stable production rates at Site 3.
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Figure 16. Instantaneous proportion of gas rate at the wellhead from hydrate and the proportion of
cumulative gas volume from hydrate at Site 3.

The evolution of hydrate saturation at Site 3 with different stable production rates
is shown in Figure 17. The producer well at Site 3 strengthens the control of hydrate in
the transition zone. The rapid recovery of free gas becomes an important driving force
for hydrate dissociation in the upper part of the transition zone. When the pressure drop
is transferred to the hydrate zone, the dissociation occurs from the intersection with the
transition zone to the deeper part of the hydrate reservoir. The issue of concern is whether
the gas produced from hydrate can be efficiently transported into the well at a distance.
Figure 18 shows the evolution of gas saturation with different production rates. The gas
saturation in the lower part of the transition zone drops gradually over time. The upper
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part of the transition zone still has a “water blockage” effect after hydrate dissociation,
which hinders the gas produced by the hydrate from flowing into the well quickly.
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For the gas production in the shallow layer, unlike in the conventional gas reservoir,
the temperature is low. The temperature-pressure condition is very close to the hydrate
phase equilibrium point. The Joule–Thomson effect will cause the temperature to drop,
bringing about hydrate generation around the well, which can significantly reduce the
permeability. Fortunately, no hydrate generation problem was found in this simulation,
but it is still a concern in the development of a similar hydrate system.
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5.4. Site 4 Simulation Results

There is a 2 m thick water layer in the lower part of Site 4. In the development of
conventional bottom water reservoirs, due to the deformation of pressure potential, it is
easy to cause bottom water invasion. In order to avoid excessive water production, the
penetrated layer is set from the hydrate layer to the middle of the gas layer. If the bottom
water intrudes into the producer well, it will cause a production decline. To relieve the
bottom water invasion, the lower stable production target (20 × 104 m3/d) is adopted.
Figure 19 shows the variation in total gas water at the wellhead, gas produced from
hydrate at the wellhead, and water production with time at Site 4. The cumulative water
volume is 2.21 × 104 m3, which increased by 40.3% compared to the same regime at Site 3
(1.57 × 104 m3). The stable production time is shortened to 1857 days, more than 500 days
less. The hydrate dissociation performance is also weakened, with the peak rate of the
wellhead gas rate from hydrate reaching only 6.56 × 104 m3.
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5.5. Site 5 Simulation Results

Site 5 is located in the center of the gas zone and is developed with a stable gas rate.
Figure 20 shows the total gas rate, the gas rate at the wellhead from hydrate, and the water
rate with a stable gas rate of 20 × 104 m3/d. The stable production duration at Site 5
increases slightly to 2645 days. The development strategy of Site 5 is to reduce the reservoir
pressure by extracting the free gas in the center of the whole reservoir. Initially, hydrate
plays an unimportant role. The gas rate at the wellhead from hydrate rises very slowly to
only 1.38 × 104 m3/d on the 1500th day, much lower than other sites. After the recovery of
free gas is nearly completed, the gas rate from hydrate begins to rise significantly. At the
end of stable production, the hydrate contribution rate reaches 15.3 × 104 m3/d, accounting
for nearly 77% (Figure 21). At this point, the free gas recovery is close to the peak. The
depletion of the formation energy leads to a decline in the total gas rate. The gas production
is dominated gradually by the hydrate dissociation. It is worth noting that there is little
water coming out from this site because the formation near the well has a low water
saturation and a perfect gas flow channel. In summary, the cumulative gas production
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volume from Site 5 is 5.94 × 108 m3, which is 3% higher than that of Site 3 under the same
method.
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Figure 21. Instantaneous proportion of gas rate at the wellhead from hydrate and cumulative
proportion of gas at the wellhead from hydrate at Site 5.

Figure 22 is the cross-sectional view of the hydrate, gas, and free gas ratio distribution
in the middle layer of the reservoir. Most of the hydrate is still stable within 3 years. When
the pressure drop is transferred to the hydrate zone, the hydrate dissociation front advances
gradually from the transition zone to the deep part of the hydrate reservoir. It is found
from Figure 22 that the gas replaces the pore space after hydrate dissociation, and the gas
enrichment can be seen. However, a wide water zone is formed in the transition zone and
keeps expanding toward the producer well. The high water-saturated layer has not yet
invaded into the wellbore, so the water production always remains at a very low level.
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6. Summary

This complex gas-hydrate system was discovered in the QDNB and is controlled by a
gas chimney evacuation channel with a high geothermal gradient. The hydrate and gas are
distributed in the same layer, with the gas in the middle and the hydrate distributed around.
In this paper, the commercial potential of this gas-hydrate system is evaluated through
conducting production simulations of wells at different sites (Site 1–5). The following
summary has been made, including the simulation results, the limitations of this research,
and the future target.

1. Except for Site 1, the simulation results of all the other sites show that the complex
hydrate system in QDNB has commercial development potential. The system is highly
inhomogeneous in the transversal direction. Different sites have different production
characteristics. The cumulative gas production volume from Site 3 and Site 5 can
reach approximately 6 × 108 m3 in 9 years. The production capacity is based on the
free gas zone with high saturation and high permeability in the system. Especially in
the preliminary stage, it is an important support for gas production and a significant
channel for pressure diffusion. The wellhead gas rate from hydrate dissociation starts
to rise in the middle stage when the free gas recovery is nearly completed. The hydrate
dissociation can extend the duration of stable production and increase the extraction
life of the gas-hydrate system.

2. The producer well in the highly saturated hydrate zone at Site 1 is far away from
the free gas. The hydrate-filled pore causes a very low effective permeability and
slow pressure diffusion. The free gas cannot invade the hydrate zone and support
gas production. All the gas produced is from hydrate dissociation. Coupled with
the fact that the reservoir itself is thin and no innovative production enhancements
are used to drive rapid hydrate dissociation, the hydrate zone at Site 1 cannot obtain
commercial gas flow by depressurization. The 9-year cumulative production volume
is only 7.25 × 106 m3. Therefore, Site 1 can only be used as a scientific trial field.

3. The producer well at Site 2 is near the edge of the hydrate zone and close to the
transition zone. With the large pressure differential, the free gas from the lower part
of the transition zone can effectively invade the hydrate zone and enter the wellbore
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in the short term. The elastic energy of gas can quickly drive the water of the hydrate
zone into the well, making the rapid hydrate dissociation in the gas-affected area.
After the breakup of free gas, the gas rate can be increased, and the peak gas rate
reaches 32 × 104 m3/d. However, the intensity of hydrate dissociation is insufficient.
Although the ultimate ratio of instantaneous gas rate can climb to more than 40%, the
cumulative gas production volume from hydrate accounts for only 12.3%.

4. As for the well of the sites in the transition zone, it directly invokes the free gas
capacity. Free gas is produced as the formation pressure reduces and hydrate is
induced to dissociate, making the gas from the hydrate the subsequent production
capacity. For example, with the initial stable production rate of 30 × 104 m3/d at Site 3,
the cumulative gas volume at the wellhead from hydrate can reach 1.73 × 108 m3,
and the total gas volume is 6.1 × 108 m3. Due to the high quality of the free gas
zone, the smooth gas flow channel is ensured, and the recovery rate of free gas from
a single vertical well is close to 90%, which can meet the commercial development
demand. The cumulative gas production volume from hydrate accounts for up to
29.9%. Notably, any producer well laid above the water zone would result in a 40%
increase in water production and a decrease in stable production length. Avoiding the
water layer in developing a hydrate system of this type is recommended.

5. The producer well built in the gas zone (Site 5) can acquire the longest stable produc-
tion duration. The well is far away from the hydrate zone, so the gas rate from the
hydrate rises very slowly. After the recovery of free gas is nearly completed, the gas
rate from hydrate begins to rise significantly. The water output at this site is small.
Building a single vertical well in the gas zone is recommended to exploit the complex
hydrate system of QDNB.

6. A single vertical well still faces the defect of a small control area when facing a large
area of an inhomogeneous reservoir. The control here means the ability to collect the
gas produced by hydrate. The simulation found that the “water belt” is easy to form
after the hydrate dissociation, which hinders the transport of dissociated gas into the
well. In the future, we can try to exploit these hydrate systems with the well group to
improve the utilization rate of hydrate.

7. There are definitely some limitations in the assessment. The amount of in situ core is
scarce. The key parameters of the geological model cannot be examined by pressure-
preserving core experiments, such as saturation and permeability. The geological
model needs further validation and improvement. In addition, the in situ formation
mechanical test has not been carried out. The mechanical properties are not considered
seriously in the simulation. It is generally known that, for shallow hydrate reservoirs,
the porosity will be reduced due to the increase in the effective stress, which will affect
the efficiency of gas production if the formation fails. Therefore, the assessment in
this paper is actually an optimistic result.

8. There are many such complex hydrate systems with hydrate-gas mixing in the QDNB,
including surveyed and unproven. The CGS will increase the survey efforts and the
number of cores in the future. More experiments on the flow characteristics of in-situ
hydrate layers must be carried out to improve the accuracy of capacity assessment.

7. Conclusions

1. The discovered complex hydrate system in the QDNB, with gas and hydrate distribut-
ing in the same layer, has commercial development potential.

2. The simulation results show that wells located in the transition and gas zones have
significant gas production capacity. To this single deposit, the maximum stable
production duration with a gas rate of 20 × 104 m3/d can last more than 2600 days.

3. The hydrate dissociation can extend the duration of stable production and increase the
extraction life of such a gas-hydrate system—the cumulative gas production volume
from hydrate accounts for up to 29.9%.
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4. The well in the highly saturated hydrate zone has a limited gas production capacity.
The low effective permeability and slow pressure diffusion make that unfavorable
result. This innovative simulation method should be used to further improve the
contribution from hydrate dissociation.
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