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Abstract: This article presents a design method for the active power decoupling (APD) circuit of a
PFC converter for high power density on-board chargers (OBCs) utilized in electric vehicles (EVs).
The utilization of electrolytic capacitors to mitigate power ripple at the input is a common practice
in PFC converters. However, these electrolytic capacitors are associated with issues such as limited
lifetime and low current ratings, resulting in a significant portion of the OBC’s volume being occupied
by them. To address these challenges and achieve power density, the relationship between the power
of the APD circuit and DC-link voltage is derived, and a design method for the APD circuit for high
power density is proposed. The feasibility of this design approach is validated through the PFC
converter prototype designed for 6.6 kW OBC. Consequently, a substantial volume reduction of 19.7%
is realized when compared to the utilization of the electrolytic capacitor approach, and a reduction of
36.2% is achieved in comparison to the conventional APD design method. This reduction in volume
proves advantageous for fulfilling the requisites of high power density OBCs.

Keywords: active power decoupling; electric vehicle; high-power density; on-board charger; totem-
pole converter

1. Introduction

Currently, nations around the world are strongly supporting research activities to
reduce dependence on fossil fuels and reduce dangerous air pollutants due to abnormal
climate change, i.e., global warming [1]. The biggest of these changes is the replacement
of internal combustion engine vehicles with electric vehicles (EVs), which increase energy
conversion efficiency and reduce greenhouse gas emissions. Therefore, as the demand
for EVs increases, a significant amount of related research is being conducted. The EV
charging system field aims to secure faster charging times and longer driving mileages
for user convenience. The key research topics in the charging field are high power density
and high efficiency [2–5]. Achieving high power density is important because it allows the
driving mileage to be increased by reducing the size of the power conversion system (PCS)
and mounting more batteries. On-board chargers (OBCs) are vital components of EVs
that are responsible for efficient charging. A typical single-phase OBC consists of a power
factor correction (PFC) converter that increases the power factor and a DC–DC converter
that performs electrical isolation and controls battery charging [6–8]. In single-phase OBC,
the PFC converter controls the AC side input current so that it is in phase with the input
voltage; therefore, in addition to the constant average power supplied to the DC load, a
low-frequency power ripple of 120 Hz occurs, which degrades performance.

In general, high-capacity electrolytic capacitors, with a passive power decoupling
(PPD) method commonly used in OBCs, are employed to reduce power ripple [9–11].
Electrolytic capacitors have a higher single-element capacitance than film capacitors, but
their relatively low current rating requires the use of a large number of capacitors in
parallel. This can lead to problems with reduced power density and also causes reliability
issues because the lifetime is shorter than that of film capacitors. Therefore, a great deal of
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research has been done on active power decoupling (APD) methods that use additional
active circuits to eliminate large electrolytic capacitors [9–11]. Research on conventional
APD circuits has been applied to renewable energy, such as solar power, where power
density is not important. This is because the addition of switches and passive elements
cause the volume and cost of the APD circuit to increase compared to the existing PPD
method. Additionally, efficiency is reduced because power consumption increases due
to additional switches. However, as the reliability of EVs has recently become important,
research on the applicability of APD has become necessary. For EVs, achieving high power
density is important to increase driving mileage and fuel efficiency. When applying the
APD circuit to OBCs, the volume may increase due to additional circuits and the use of a
large-volume film capacitor, so analysis is required.

The APD circuit typically comprises power semiconductor devices, inductors for
storing power ripple, and film capacitors. Prior research has explored various APD circuit
topologies, including buck-boost [12], capacitor split [13,14], and H-bridge types [15–18],
along with control techniques for estimating passive element sizes. However, previous
studies have tended to reduce the DC-link capacitance to absorb all power ripple, leading
to an increase in system volume due to bulky film capacitors. The DC-link voltage in
single-phase OBCs exhibits a ripple tolerance that aligns with the regulation characteristics
of the employed DC–DC converter. Therefore, there is no need for the APD circuit to absorb
all of the ripple power, and if this is used, the capacity of the film capacitor used in the
APD circuit can be reduced, resulting in a volume reduction effect.

Therefore, in this paper, an optimal design approach is introduced that is aimed at
enhancing the power density of OBCs incorporating the APD circuit. The relationship
between the absorbed power of the APD circuit and the tolerance for DC-link voltage ripple
is analyzed, and a design technique that can reduce the capacitance of the film capacitor
is proposed. In addition, the proposed design method’s capacity reduction and volume
reduction effects according to the ripple power absorption rate are applied to the 6.6 kW
OBC structure for electric vehicles to verify its feasibility. The remainder of this paper
is organized as follows: Section 2 proposes the system configuration, specifications, and
optimal design method for APD circuits. Section 3 verifies the validity via simulation and
experimental results, and Section 4 concludes the paper.

2. Design of APD Circuit for High Power Density
2.1. Conventional APD Circuit Design

Figure 1 illustrates the PFC converter in a single-phase 6.6 kW OBC with an APD
circuit applied. The PFC converter uses a two-phase interleaved totem-pole configuration,
while the APD circuit utilizes a buck-type design that can operate independently from the
PFC converter. Table 1 presents the design specifications of the PFC converter, which is
responsible for input power factor correction and DC-link voltage control. Meanwhile, the
APD circuit is in charge of power decoupling control.

Table 1. Specifications of a 6.6kW single-phase PFC converter with APD circuit.

Parameters Value

Input voltage, vin 220 Vrms
DC-link voltage, Vdc 700 V

PFC Converter rated power, P 6.6 kW
PFC converter switching frequency, fsw,PFC 50 kHz
APD circuit switching frequency, fsw,APD 50 kHz
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Figure 1. PFC converter in a 6.6 kW single-phase OBC with APD circuit.

The power decoupling control allows the power ripple prip to be absorbed by the
power pdec out of the input power Pin,, which the APD circuit stores in the decoupling
capacitor Cdec, as Figure 2 illustrates. The expression for pdec is as follows:

prip(t) = −Vin Iin cos(2ωt) = pdec = vdec × idec, (1)

then pdec can be reconstructed from the voltage and current relationship of the decoupling
capacitor as follows:

pdec(t) = −Pdec cos(2ωt) = Cdec
dvdec

dt
vdec, (2)

by combining (1) and (2), voltage and current in the APD circuit are expressed as follows:

vdec(t) =

√
Pdec

ωCdec
(k− sin(2ωt)), (3)

idec(t) =
pdec
vdec

=
−Pdec cos(2ωt)√
Pdec

ωCdec
(k− sin(2ωt))

, (4)

here, k is a parameter that defines the ratio of the energy capacity of Cdec to the amount of
energy absorbed by the APD circuit. It has a value of 1 or more and can be expressed as
follows:

k + 1
2

=
Edec,max

Erip
=

Cdecv2
dec,max

2Pripω
. (5)
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ripple.
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Figure 3 illustrates the change of vdec and idec according to the k. Through (3), when
k = 1, vdec fluctuates from 0 to the maximum voltage, and through (4), idec fluctuates rapidly
with the current slope. In this case, minimizing the size of Cdec is possible, but controlling
the point at which vdec reaches 0 becomes challenging. Therefore, designing k to have a
value greater than 1 offers advantages in terms of controlling the voltage and current in a
sine wave form [19,20].
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Therefore, the initial design of the APD circuit begins with the decoupling inductor
Ldec. Ldec is responsible for delivering ripple power to Cdec and is designed to operate in
discontinuous current mode (DCM) to minimize its volume. Figure 4 illustrates the current
waveform of Ldec when the APD circuit operates in DCM. Ldec is subject to two design
criteria. First, since the DCM operation must be maintained throughout all periods, the
following equation must be satisfied.
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Ton + To f f ≤ Tsw, (6)

though (6), the upper limit size condition of Ldec is as follows:

Ldec ≤
1

2idec fsw
×

Vdc,min × vdec − v2
dec

Vdc,min
. (7)

Secondly, the peak value of the DCM current must not exceed the maximum current
rating of the switch used. Therefore, the lower limit size condition of Ldec is as follows:

2idec

I2
peak fsw

×
Vdc,maxvdec − v2

dec
Vdc,max

≤ Ldec. (8)
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The design range of Ldec is determined through (7) and (8) as follows:

2idec

I2
peak fsw

×
Vdc,maxvdec − v2

dec
Vdc,max

≤ Ldec ≤
1

2idec fsw
×

Vdc,minvdec − v2
dec

Vdc,min
. (9)

Therefore, Figure 5 illustrates the range of Ldec that satisfies the 6.6 kW design condition
in this study. To meet the switching frequency requirement and enhance power density.
Ldec is chosen to 40 µH and it is designed by stacking two High-Flux CH330060 cores.
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Next, the design of Cdec can be expressed as follows using (3):

Cdec =
Pdec(k + 1)

ω×V2
dec,max

. (10)

Regarding the size of Cdec, similar to Ldec, a value of k is selected as 1.1 to minimize the
capacity. The size of the maximum Vdec values is selected as 650 V, and Table 2 presents the
parameters and device information of the APD circuit designed based on this.

Table 2. APD circuit design result with conventional design method.

Item Design Result

Decoupling inductor, Ldec Changsung/CH330060 × 2/40 [µH]
Decoupling capacitor, Cdec WIMA/DCP4L054007I × 4/160 [µF]

Since the purpose of this study is to design a PFC converter for high power density
OBC, Table 3 presents the results of comparing the volume of the conventional PPD circuit
using only electrolytic capacitors and the designed APD circuit.

Table 3. Volume analysis of conventional design method.

Power Decoupling Type Item Value Volume

Passive power decoupling Cdc 720 [µF] 259.2 [mL]

Active power decoupling

Cdc 40 [µF] 59.2 [mL]
Cdec 160 [µF] 236.8 [mL]
Ldec 40 [µH] 26.6 [mL]

SWdec - 3.9 [mL]
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As a result, the total capacitance used is reduced by approximately 70%. Nevertheless,
the addition of elements, along with the transition from electrolytic capacitors to film capac-
itors, led to an increase in volume, resulting in a 25% overall volume increase. Therefore, it
is necessary to propose the APD circuit design method to achieve high power density.

2.2. Proposed APD Circuit Design

Conventional APD circuit designs set pdec equal to prip, as illustrated in Figure 2.
Consequently, any ripple power at the input is eliminated from the APD circuit. To reduce
the size of Cdec, which occupies the largest volume in the previously designed APD circuit,
one can either decrease pdec or increase the maximum voltage of vdec, as shown in (10).
However, the maximum voltage of vdec is limited by the characteristics of the APD circuit
and device rating limitations, so reducing pdec is the only possible solution. Nevertheless,
when pdec is reduced, as Figure 6 illustrates, prip is not entirely eliminated, resulting in
ripples appearing in the output DC-link voltage. These ripples can manifest as a current
ripple in the final output of the OBC system.
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Studies on the effects of the charging current ripple on lithium-ion batteries have
shown the following [21–23]. When charging or discharging a lithium-ion battery with
a sinusoidal current, the charging efficiency is lower compared to using a DC current.
However, the sinusoidal current exhibits characteristics such as a slower rate of decrease
in battery capacity and a lower rate of increase in internal resistance. Consequently, low-
frequency ripples in the charging current do not significantly cause problems such as
increased battery temperature or shortened battery life. And, because the final charging
current of OBC is controlled by the DC–DC converter, the DC-link voltage has an allowable
ripple considering the regulation characteristics of the DC-DC converter.

Therefore, in this study, the optimal design of Cdec is proposed under the condition
that DC-link has ripple to reduce the volume of the APD circuit. Figure 7 explains the
proposed design method and illustrates the process for deriving pdec from input power
through input voltage and current. First, assuming unity power factor control on the input
side through the PFC converter, it is expressed as shown in Figure 7a, and the voltage,
current, and input power can be expressed as follows:

vin(t) =
√

2Vin sin(ωt), (11)

iin(t) =
√

2Iin sin(ωt), (12)
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pin(t) = vin(t)iin(t) = Vin Iin −Vin Iin cos(2ωt), (13)

based on this, the input power pin is expressed, as Figure 7b illustrates, and it is divided
into average power Pavg and power ripple prip, as Figure 7c illustrates, and the relational
expression is derived as follows:

Pavg(t) = Vin Iin, (14)

prip(t) = −Vin Iin cos(2ωt). (15)
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If only a portion of the power ripple is absorbed through the APD circuit, as Figure 7d
illustrates, the DC-link voltage is expressed as a voltage with ripple, as Figure 7e shows.
The output power po and voltage of the DC-link can be derived using (2), (14) and (15),
assuming no losses, as follows:

po(t) =
v2

dc
Ro

= Pavg + prip − pdec = Vin Iin − (Vin Iin − Pdec) cos(2ωt), (16)
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vdc(t) =
√

Ro × {Vin Iin − (Vin Iin − Pdec) cos(2ωt)}, (17)

Ro represents the load resistance of the final power, and using (17), the DC-link voltage
ripple is as follows:

∆vdc = vdc,max − vdc,min =
√

Ro × (2Vin Iin − Pdec)−
√

Ro × Pdec. (18)

Finally, the relational expression between DC-link voltage ripple and decoupling
power is as follows:

pdec = −
∆vdc

√
4Vin IinRo − ∆v2

dc − 2Vin IinRo

2Ro
(19)

As a result, if the allowable current ripple of the OBC system is designed to be 4 A, the
allowable range of DC-link voltage ripple becomes 100 V. As Figure 7f illustrates, the size
of Pdec at which the DC-link voltage ripple reaches 100 V is derived as 5.66 kW. Using (10),
the capacity of the final Cdec is designed to be 80 µF.

In order to verify the optimal design of Cdec proposed in this paper, the results of
volume comparison analysis with the previously designed existing APD design method
and PPD method are presented in Table 4. Additionally, if the PPD method also allows
the same voltage ripple, the capacitance size is reduced to 270 µF. However, owing to the
characteristics of electrolytic capacitors, the current allowable value is lower than that of
film capacitors, so a large number of parallel capacitors are required when considering
rating. Therefore, when using the electrolytic capacitor, select 720 µF, the same as the
existing PPD method.

Table 4. Comparison parameters of the conventional design and the proposed design method.

Power Decoupling Type Item Value Volume

Passive power decoupling
(Electrolytic capacitor) Cdc 720 [µF] 259.2 [mL]

Passive power decoupling
(Film capacitor) Cdc 270 [µF] 500.2 [mL]

Conventional active
power decoupling

Cdc 40 [µF] 59.2 [mL]
Cdec 160 [µF] 236.8 [mL]
Ldec 40 [µH] 26.6 [mL]

SWdec - 3.9 [mL]

Proposed active
power decoupling

Cdc 40 [µF] 59.2 [mL]
Cdec 80 [µF] 118.4 [mL]
Ldec 40 [µH] 26.6 [mL]

SWdec - 3.9 [mL]

As Figure 8 shows, the proposed APD circuit design method reduces the volume by
19.7% compared to the conventional PPD method, and it is confirmed that the volume is
reduced by 36.2% compared to the conventional APD circuit design method. In the case
of the proposed APD circuit design, the efficiency decreases, and the cost increases due to
the additional components compared to the PPD method, similar to the conventional APD
circuit design method. However, it offers the advantage of addressing the volume increase
issue that occurs when applying the conventional design method.
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3. Verification

In order to verify the feasibility of the proposed APD circuit design method, simulation
and experimental verification of the PFC converter prototype for 6.6 kW OBC are conducted.
Figure 9 shows the circuit diagram of the PFC converter used for verification. Table 5 details
the simulation and experimental conditions, and Table 6 provides the information about
the device used.
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Table 5. Simulation and experimental verification conditions.

Item Value [Unit]

Input voltage, vin 220 [Vrms]

PFC converter output power, Po 6.6 [kW]

APD circuit power, Pdec 5.66 [kW]

DC-link voltage, Vdc 700 [V]

Maximum APD voltage, vdec,max 650 [V]

PFC converter switching frequency, fsw,PFC 50 [kHz]

APD circuit switching frequency, fsw,APD 50- [kHz]
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Table 6. Information on devices used in the PFC converter prototype for 6.6 kW OBC.

Item Mark Vendor/Model/Value

PFC switch S1, S2, S3, S4 Wolfspeed/C3M0075120D/-

PFC diode D1, D2 ST/STP3C40H12C/-

Input inductor Lin,A, Lin,B Changsung/CH330060 × 3/350 [µH]

DC-link capacitor Cdc WIMA/DCP4L054007ID4MSSD/40 [µF]

APD switch S5, S6 Wolfspeed/C3M0032120D/-

Decoupling inductor Ldec Changsung/CH330060 × 2/40 [µH]

Decoupling capacitor Cdec WIMA/DCP4L054007I × 2/80 [µF]

Figure 10 shows the simulation operation waveforms. Figure 10a represents the
waveform when the PFC converter operates alone before the APD circuit operates. Owing
to the small value DC-link capacitor value, the voltage exhibits a significant ripple of 510 V.
When the APD circuit operates as shown in Figure 10b, it is confirmed that the existing large
voltage ripple is reduced to less than 100 V. Figure 10c,d shows the voltage and current
waveforms of the APD circuit during that time.
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Figure 10. Simulation verification waveform of the proposed APD design method. (a) Only PFC
converter operation. (b) PFC converter and APD circuit simultaneous operation. (c) APD circuit
decoupling voltage. (d) APD circuit decoupling current.

Through the above simulation results, it can be seen that the DC-link voltage ripple
has a voltage ripple of approximately 100 V, similar to the design value. Figure 11 below
shows the prototype of the PFC convert and APD circuit for 6.6 kW OBC. The prototype
is designed with a focus on performance implementation. Figure 12 is the experimental
verification result waveform.
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Energies 2023, 16, x FOR PEER REVIEW 12 of 14 
 

 

 

Figure 12. Experimental waveform of the 6.6 kW PFC converter using the proposed design 

method. 

It is confirmed that the system operates with a voltage ripple of approximately 100 

V, matching the simulation results. Consequently, this validates the effectiveness of the 

APD circuit design method proposed in this paper. 

4. Conclusions 

As the use of electric vehicles increases, research on electric vehicle charging is essen-

tial to achieve high efficiency and high power density. The on-board charger (OBC) con-

sists of a PFC converter and a DC–DC converter; the PFC converter typically uses an elec-

trolytic capacitor, i.e., a passive power decoupling (PPD) method, to decouple the power 

generated through input power factor correction. However, because electrolytic capaci-

tors have a low current rating and short lifetime, an active power decoupling (APD) 

method is applied to replace the electrolytic capacitors with film capacitors. Since the con-

ventional APD method increases in volume compared to the PPD method, it is not suitable 

for research to achieve high power density, so a design method to achieve high power 

density is proposed. 

To achieve an APD circuit for high power density, a volumetric comparison between 

the conventional APD circuit design and the PPD method is performed. Determine the 

effect of DC-link voltage ripple on the battery to reduce the volume of the decoupling 

capacitor, which occupies the largest volume. Then, the relationship between the power 

of the APD circuit and DC-link voltage ripple was derived. DC-link voltage ripple is ob-

tained through OBC’s allowable current ripple, and through the capacitance derived from 

this, it is confirmed that volume could be reduced by 19.7% compared to the PPD method 

and by 36.2% compared to the conventional APD method. To verify the feasibility of the 

final design, experiments are performed using the PFC converter prototype for a 6.6 kW 

OBC. Through this, the feasibility of the proposed APD circuit design for high power den-

sity OBC is verified. As a result, it is believed that, since high power density can be 

achieved, more batteries can be mounted in EVs and the driving mileage can be increased, 

which will have a positive impact on EV sales. Additionally, the goal is to conduct exper-

iments in the near future to confirm whether the APD circuit design method for high 

power density proposed in this study can be mounted on an actual OBC. These experi-

mental tests aim to verify the feasibility of the design implementing the design proposed 

in this paper, thereby demonstrating the potential for developing a high power density 

OBC by installing the APD circuit in the actual OBC. This study is expected to be applica-

ble to the field of new and renewable energy using APD circuits. 

5 ms/div.

ΔVdc = 105 [V]

vdec: 500 V/div.

idec: 50 A/div.

Vdc: 500 V/div.

iin: 100 A/div.

vin: 500 V/div.

Figure 12. Experimental waveform of the 6.6 kW PFC converter using the proposed design method.

It is confirmed that the system operates with a voltage ripple of approximately 100 V,
matching the simulation results. Consequently, this validates the effectiveness of the APD
circuit design method proposed in this paper.

4. Conclusions

As the use of electric vehicles increases, research on electric vehicle charging is essential
to achieve high efficiency and high power density. The on-board charger (OBC) consists of
a PFC converter and a DC–DC converter; the PFC converter typically uses an electrolytic
capacitor, i.e., a passive power decoupling (PPD) method, to decouple the power generated
through input power factor correction. However, because electrolytic capacitors have a low
current rating and short lifetime, an active power decoupling (APD) method is applied to
replace the electrolytic capacitors with film capacitors. Since the conventional APD method
increases in volume compared to the PPD method, it is not suitable for research to achieve
high power density, so a design method to achieve high power density is proposed.

To achieve an APD circuit for high power density, a volumetric comparison between
the conventional APD circuit design and the PPD method is performed. Determine the
effect of DC-link voltage ripple on the battery to reduce the volume of the decoupling
capacitor, which occupies the largest volume. Then, the relationship between the power of
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the APD circuit and DC-link voltage ripple was derived. DC-link voltage ripple is obtained
through OBC’s allowable current ripple, and through the capacitance derived from this, it
is confirmed that volume could be reduced by 19.7% compared to the PPD method and
by 36.2% compared to the conventional APD method. To verify the feasibility of the final
design, experiments are performed using the PFC converter prototype for a 6.6 kW OBC.
Through this, the feasibility of the proposed APD circuit design for high power density
OBC is verified. As a result, it is believed that, since high power density can be achieved,
more batteries can be mounted in EVs and the driving mileage can be increased, which will
have a positive impact on EV sales. Additionally, the goal is to conduct experiments in
the near future to confirm whether the APD circuit design method for high power density
proposed in this study can be mounted on an actual OBC. These experimental tests aim to
verify the feasibility of the design implementing the design proposed in this paper, thereby
demonstrating the potential for developing a high power density OBC by installing the
APD circuit in the actual OBC. This study is expected to be applicable to the field of new
and renewable energy using APD circuits.
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