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Abstract: This paper presents the Robust Constant Exponent Coefficient Fixed-Time Control (CECF-
SMC), an innovative control technique for precisely regulating the speed of a permanent magnet
synchronous motor (PMSM) by utilizing fixed-time stability with constant exponent coefficients to
provide not only faster convergence but also in a specific period of time. The effect of chattering
is also lessened. To ensure that the designed controller produces the desired performance under
bounded disturbances, a finite-time extended sliding-mode observer (ESMO) is also designed to
estimate the PMSM velocity while also estimating lumped load disturbances. The considered PMSM
is the surface-mounted PMSM. Finally, a numerical simulation with PMSM drive shows good ro-
bustness against load disturbances, better convergence, and a reaching time of less than 2 s, thereby
demonstrating that the proposed fixed-time constant exponent coefficient offers good performance
and is much simpler than the conventional finite-time method.

Keywords: permanent magnet synchronous motor (PMSM); sliding mode control (SMC); speed
control; fixed-time control; Lyapunov stability; extended sliding-mode observer (ESMO)

1. Introduction

Over the past 20 years, permanent magnet synchronous motors (PMSMs) have become
widely used in a variety of industrial applications and equipment [1], including electric
bicycles, cars, trams, shuttles, and computer numerical control (CNC) machines [2,3], re-
placing brush-type motors. This is due to their compact size, simple design, ability to
deliver high torque in comparison to inertia, and high efficiency. PMSMs are generally non-
linear, multivariable, and highly coupled systems, presenting quite enormous challenges in
their mathematical modeling [4,5]. Such challenges prevent traditional linear controllers
such as a proportional–integral (PI) controller and a proportional–integral–derivative (PID)
controller from effectively controlling PMSMs. To meet the desired dynamic performances,
PMSM drive controllers should feature the abilities of providing quick responses, small
overshoots, higher tracking accuracies, and strong disturbance rejection, making their
designs a recent hotspot for researchers worldwide.

Various advanced control techniques have been developed over the years in an at-
tempt to satisfy the desired features. These have included fuzzy logic control [6], neural
network (NN)-based control [7], model reference adaptive control (MRAC) [8], model
predictive control (MPC) [9], synergetic control [10], and sliding mode control (SMC) [11].
The SMC in particular has attracted high attention from engineering researchers because
of its high robustness and successful applications in various fields, including electric
vehicles [12,13] and renewable energy [14]. Even though numerous practical uses of the
SMC exist, the utilization of the signum function embedded within the SMC algorithm
gives rise to the chattering phenomenon, causing adverse effects on the actuators. In this
light, a number of control methodologies have been proposed to reduce the chattering
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phenomenon. Continuous functions such as the saturation function and the sigmoid
function have been proposed instead of discontinuous signum functions in the reaching
law, but these models produce an unavoidable steady state error in the system [15]. A
nonsingular sliding mode control was also introduced to solve the chattering problem,
where the reaching rate decreases as the state trajectory approaches the manifold [16].
Other reaching laws have also been proposed to mitigate the chattering problem; some
examples include constant, power, and exponential reaching laws [17–19], with the added
feature that these reaching laws also result in finite-time stability controllers.

The fixed-time stability concept was introduced by Polyakov [20] and later developed
by many researchers [21–24]. The new robust global fixed-time stability result is provided
by using constant and state-dependent variable exponent coefficients, as intended by
Moulay in 2021 [25]. Moreover, robust global fixed-time stabilization of the global x-system
is achieved by using state-dependent variable exponent coefficients in the sliding variable
and the controllers. These new sliding mode controllers are simple to use, non-singular,
robust against disturbances of bounded size, and independent of time [25].

The conventional discontinuous sliding mode control method necessitates a high
switching frequency in order to mitigate interference, yet this high frequency results in
undesirable phenomena such as chattering and steady state errors. To solve this issue,
a composite sliding mode control technique using an extended state observer (ESO) is
proposed in [26]. This observer has better robustness against the load disturbances, faster
convergence rates, and better tracking accuracy than the conventional continuous sliding
mode control method. An adaptive terminal sliding mode reaching law, together with
continuous fast terminal sliding mode control, was introduced in [27] to enable convergence
within a finite-time period, enhancing the tracking precision and significantly diminish-
ing input signal chattering. The extended state observer was designed to estimate the
system disturbance and enable the disturbance rejection. In [28], a super-twisting sliding-
mode observer-based model reference adaptive speed controller technique for a permanent
magnet synchronous motor was proposed. Here, an augmented variable representing
the disturbance compensation term was estimated using the super twisting sliding mode
observer. A non-singular fast terminal sliding mode disturbance observer was developed
in [29] to estimate disturbances and use these values to reduce the impact caused by total
disturbances. The nonlinear feedback transformation sliding mode disturbance observer
was reported to enhance the observer’s response speed and estimation accuracy while
effectively mitigating sliding-mode chattering, outperforming the traditional sliding mode
disturbance observer [29]. A disturbance observer-based robust adaptive fuzzy tracking
control algorithm is used to perform trajectory tracking and disturbance resolution in
a quadrotor unmanned aerial vehicle. An adaptive fuzzy controller can provide highly
efficient control, while a state disturbance observer is used to estimate other variables
and disturbances of wind [30]. In [31], an antisaturation adaptive fixed-time sliding mode
controller was developed for quadrotor motion control. A nonsingular fast fixed-time
sliding mode surface is designed to prevent the singularities, while an adaptive mechanism
is designed to prevent inappropriate controller gains. An adaptive finite-time control for
spacecraft proximity operations was presented in [32] to account for disturbances, uncertain-
ties, and actuator saturation for spacecraft applications. Here, a complicated mathematical
model was developed to describe the motion of the spacecraft, which was controlled mainly
through the use of the finite-time controller-based non-singular integral terminal sliding
mode. While these advanced algorithms have demonstrated their capability to achieve
finite-time and fixed-time controls, many of them present considerable challenges when it
comes to real-world implementation. These challenges include the necessity of fine-tuning
numerous parameters and the inherent complexity of their programming, making their
practical application a formidable task. The development of a fixed-time stable controller
that allows for simple fine-tuning and alleviating the programming intricacies is indeed
desirable, particularly for the PMSM speed control in industrial settings.
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In this paper, a further enhancement of the PMSM speed control is proposed. This
work therefore puts forward the following key contributions:

(1) A constant exponent coefficient fixed-time SMC (CECFSMC) will be used in this
research. To the best of the authors’ knowledge, it is probably one of the simplest
methods to regulate nonlinear systems and is easy to tune with respect to other fixed-
time control methods. The controller has only six parameters to tune. A stability proof
of the designed controller will be given, demonstrating that the closed-loop error
responses converge to zero in a fixed amount of time. An additional feature of the
designed controller also includes the chattering reduction.

(2) An extended sliding mode observer (ESMO) is designed to estimate the PMSM
velocity and lumped load disturbances at the same time. This is so the sliding mode
controller can work as expected when disturbances are limited. The semi-global
practical finite-time stable with finite reach time Treach is also theoretically proven.

The remainder of this article is organized as follows: Section 2 presents a mathematical
model of the permanent magnet synchronous motor. In Section 3, a fixed-time SMC is
shown along with the development of an ESMO for PMSM velocity control. The Lyapunov
stability theory is used to show that the system is stable. Section 4 presents the simulation
results of the presented controller, along with comparisons with finite-time exponential
reaching laws. Finally, Section 5 presents the conclusion of this research work with a
summary of the main objectives.

2. Control Model and PMSM Dynamical System
2.1. PMSM Mathematical Model

The mathematical model of the surface-mounted PMSM subjected to uncertainties,
load disturbances, speed, and current control is expressed as (1) [33,34]. The stator winding
is sinusoidal and uniformly spread in the air gap.

.
ω = G

J iq − B
J ω− TL

J.
id = − Rs

L id + npωiq +
ud
L.

iq = − Rs
L iq − npωid −

np ϕ f
L ω +

uq
L

(1)

In the above expressions, G = (3/2)np ϕf is the torque constant, np is the number of pole
pairs, ϕf is the flux linkage, J is the moment of inertia, B is the viscous damping coefficient,
and id, iq, ud, and uq are the d- and q-axis currents and voltages, respectively. Here, Rs and L
are the resistance and inductance of the stator, TL is the load torque of the motor, and the
speed ω is the control target. In this work, a control method for surface-mounted PMSM is
developed without considering the effect of saliency. The block diagram of a field-oriented
control (FOC) variable speed control is shown in Figure 1. Because the electric current
that creates a magnetic field will be set to zero, the model does not have a coupling effect
between speed and current. As a result, the d- and q-axis inductances of PMSM are set
to be equal to each other (L = Ld = Lq). The model of (1) can thus be simplified into the
following system of differential equations:

.
ω = G

J iq − B
J ω− TL

J.
iq = − Rs

L iq − npωid −
np ϕ f

L ω +
uq
L

(2)

Note that the rotor speed can be measured directly from the speed encoder or position
encoder and will be inversed by inverse Park’s transformation as inputs to the space vector
modulation to generate the signal to drive the IGBT module in the power sector. All
three phase currents are measured and fed back to be calculated and compared to the
reference signal.
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2.2. Robust Fixed-Time Stability and Constant Exponent Coefficient

This section outlines the general robust fixed-time stability theory that will be used to
develop the fixed-time controller for the PMSM system.

Here, R+ is a set of positive real numbers, considering the cases of finite-time stability
and fixed-time stability from the differential equation.

.
x(t) = f (x(t)), x(t) ∈ Rn

x(0) = x0
(3)

where f is a continuous function, and f (0) = 0.

Definition 1 [35,36]. The dynamic system (3) is said to be global finite-time stable if and only
if it is Lyapunov stable, and for all x0 ∈ Rn there exists T(x0) ≥ 0 depending on the initial
condition, such that for any x(·) solution of (3) with x(0) = x0 , limt→T(x0)‖x(t)‖ = 0, i.e., for
all t ≥ T(x0). The function T is called settling time.

Definition 2 [37]. System (3) is said to be global fixed-time stable if: (1) The system is globally
finite-time stable. (2) The settling time function T is upper bound by the constant T > 0, i.e., for all
x0 ∈ Rn, T(x0) ≤ T, and T is regardless of initial conditions.

Lemma 1 [37,38]. If there is a continuous differentiable positive definite radially unbounded
function V : Rn → R+ , such that

.
V(x) ≤ −a1V(x)κ − a2V(x)ϕv (4)

where x ∈ Rn, a1 > 0, a2 > 0, and 0 < ϕv < 1 < κ, then the dynamic system (3) is called global
fixed-time and the settling time satisfies:

T(x0) ≤
1

a1(1− ϕv)
+

1
a2(κ − 1)

(5)

The robust fixed-time stability of the constant exponent coefficient is given as follows:
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Theorem 1: Define below the dynamical system

.
x = −c1sgn(x)− c2|x|κsgn(x)− c3|x|ϕv sgn(x)− c4x + d
x(0) = x0

(6)

where x(t) ∈ R, κ > 1, 0 < ϕv < 1, d(t) ∈ R, and the external disturbance such that |d(t)| < δ
for some given δ > 0, c1 > 0, c3 ≥ 0, and c4 > 0. This system is known as global fixed-time stable
with settling time, stated as:

T(x0) ≤
1

c1 − δ
+

1
c2(κ − 1)

(7)

Proof. Consider the simple quadratic Lyapunov function below:

V(x) = x2 (8)

Its time derivative is evaluated simply as:

.
V(x) = −2c1|x| − 2c2|x|κ+1 − 2c3|x|ϕ+1 − 2c4x2 + 2 δ x

≤ −2(c1 − δ)|x| − 2c2|x|κ+1

≤ −2(c1 − δ)V(x)
1
2 − 2c2V(x)

κ+1
2

(9)

where κ+1
2 > 1.

Applying Lemma 1, we then arrive at the settling time given by (7). �

Remark 1: In the case of function with x → |x|ϕsgn(x) , 0 < ϕ < 1may not be necessary to take
this term into consideration for fixed-time stability. If interested, it can be taken into account as well.
In cases where the value of the sign function x → sgn(x) coupled with x → |x|κsgn(x)where
κ > 1 can be considered together for fixed-time stability and it is known that this term is capable of
rejecting disturbances, this is the reason why robust fixed-time stability is obtained. However, if we
consider only the first term, we obtain only robust finite-time stability.

3. Design of Speed Controller
3.1. Controller Design

The speed controller is designed to be able to track the reference speed signal even
when there are load disturbances and system noise. Therefore, the tracking error of the
speed variable can be defined as:

ε = ωr −ω (10)

In this work, the PMSM’s rotational speed is assigned to be the variable to be controlled.
Therefore, we can rearrange (4) and (5) as follows:

.
ω = mi∗q + σ(t),

σ(t) = − B
J ω− TL

J −
G
J (i
∗
q − iq),

(11)

where m = G/J and (i∗q − iq) is the error between reference and actual q-axis current.
Determining the speed error to be controlled from (10), we take the derivative of the
tracking error and combine it with (11), yielding

.
ε =

.
ωr −

.
ω =

.
ωr −mi∗q − σ(t) (12)

Note that for the disturbance σ(t), there exists a constant ζφ > 0, such that the deriva-
tive of the disturbance

∣∣ .
σ(t)

∣∣< ζφ .
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Proposition 1: Consider the PMSM speed error system (12). The control signal can be designed as
follows:

i∗q = m−1(χeq + χb) (13)

χeq =
.

ωr + µ1|ε|sign(ε) (14)

χb =

t∫
0

c1sign(s) + c2|s|κsign(s) + c3|s|ϕsign(s) + c4s dγ (15)

where µ1 > 0, c1 > 0, c2 > 0, c3 ≥ 0, c4 ≥ 0, κ > 1, 0 < ϕ < 1. The closed-loop controller
from (13)–(15) will cause the system to converge to the sliding surface in fixed-time as follows:

T(s0) ≤
1

(c1−
∣∣ζφ

∣∣) +
1

c2(κ − 1)
(16)

Proof. To simplify the sliding surface design while still achieving fixed-time control, we
design the sliding surface as follows:

s =
.
ε + µ1|ε|sign(ε) (17)

Substituting (10) into (17) yields:

s =
.

ωr −mi∗q − σ(t) + µ1|ε|sign(ε) (18)

The closed-loop sliding surface can now be obtained by substituting the control signal i∗q in
(13)–(15) into (18), yielding:

s =
.

ωr −m[m−1(χeq + χb)]− σ(t) + µ1|ε|sign(ε) (19)

A simplification of the above expression yields:

s = −χb − σ(t) (20)

The derivative of the sliding surface is then:

.
s = − .

χb −
.
σ(t)

= −c1sign(s)− c2|s|κsign(s)− c3|s|ϕsign(s)− c4s− .
σ(t)

(21)

Define the Lyapunov function candidate:

V = s2, (22)

whose time derivative is by virtue of (20)–(21):

.
V = 2s

.
s

= 2s[−c1sign(s)− c2|s|κsign(s)− c3|s|ϕsign(s)− c4s− .
σ(t)]

= −2c1
∣∣s∣∣−2c2

∣∣s∣∣κ+1 − 2c3
∣∣s∣∣ϕ+1 − 2c4s2 − 2s

.
σ(t)

(23)

The time derivative of the Lyapunov candidate can further be expressed as

.
V ≤ −2(c1+

∣∣ζφ

∣∣)∣∣s∣∣−2c2
∣∣s∣∣κ+1 − 2c3

∣∣s∣∣ϕ+1 − 2c4s2

≤ − 2(c1 + |ζφ|)V
1
2 − 2c2V

κ+1
2

(24)

Applying Theorem 1, we then have the settling time given by (16). �
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The block diagram of the feedback control system is shown in Figure 2. The effect of
system disturbances will be considered in the next section.
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3.2. Fixed-Time Sliding Mode Controller with State Disturbance Estimation
3.2.1. Extended Sliding Mode Observer (ESMO)

In order to increase the efficiency of the PMSM control against disturbances, in this
study, the finite-time extended sliding mode observer (ESMO) is designed to estimate the
lumped disturbances in finite-time, and the estimated values are fed into the feed-forward
compensation. The structure of the ESMO is based on a conventional load torque observer,
whose block diagram is shown in [27,39]. In designing the load torque observer, we will
select the velocity as the observed variable, and treat the electromagnetic torque as the
input to the designed system. Because the switching frequency is very high, the load torque
can be assumed to be constant within one controller cycle. The ESMO equations are written
as follows: .

x1 = x2 + mi∗q.
x2 = σ(t)

(25)

The second-order finite-time ESMO can be described as:

.
ν1 = ν2 − 2b(ν1 − x1) + mi∗q − ρ

[
sig(e1)

α1 + ρsig(e1)
β1
]
− k1sign(e1)

.
ν2 = −b2(ν1 − x1)− ρ2

[
sig(e1)

α2 + ρsig(e1)
β2
]
− k2sign(e2)

(26)

where v1 and v2 are the estimated values of states x1 and x2, respectively, b is the desired
double pole of ESMO with b > 0, and

sig(x)a =
∣∣x∣∣asign(x) (27)

The parameters α1, α2, β1, and β2 are in the range of (0, 2), and the gain parameters ρ,
k1, and k2 are nonnegative constants.

Proposition 2 Consider the system given in (25) with an ESMO given by (26). This ESMO will
be semi-global practical finite-time stable with finite reach time Treach given by:

Treach =
1

θ1M( α1
2 − 1)

[
V(0)(

α1
2 −1)ϕ +

(
M3

(1− θ1)M

) 2
2+(1−α1)ϕ

]
(28)
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where 0.5 < α1 < 1, α2 = 2α1 − 1, β1 = 1
α1

, β2 = β1 +
1
β1
− 1, and ϕ = β1β2, k1 > 0, k2 > 0,

and

M1 =

[
Max

X:V(x)=1
L fα

Vα(x)
]

, M2 =

[
Max

X:V(x)=1
L fβ

Vβ(x)
]

,

M3 = 4b
ϕ

λMax(P)
λMin(P)

, M4 = 2k1
ϕ

λMax(P)

[λMin(P)]
1− ϕ

2

(29)

M5 =
2b2

αϕ
(k2 + σ)

λmax(P)[
λMin(P)

]1+ (1−α1)
2 ϕ

and P is some positive definite matrix. The observer bound is given by:

uobs = −
(

M3

(1− θ1)M

) 2
2+(1−α1)ϕ

(30)

Proof. The error dynamics are given by:

.
e1 =

.
v1 −

.
x1

= v2 − 2b(v1 − x1) + mi∗q − (x2 + mi∗q )
= e2 − b2

1e1 − σ(t)− ρ sig(e1)
α1 − ρ sig(e1)

β1 − k1sign(e1)
.
e2 = −b2

1e1 − σ(t)− ρ2sig(e1)
α2 − ρ2sig(e1)

β2 − k2sign(e1)

(31)

where 0.5 < α1 < 1, α2 = 2α1 − 1, β1 = 1
α1

, β2 = β1 +
1
β1
− 1

(1) Consider the system α, which is given by neglecting the terms
−b2

1e1 − σ(t) − ρsig(e1)
β1 − k1sign(e1) in (31) and −σ(t) − ρ2sig(e1)

β2 − k2sign(e1)
in (31):

.
e1 = e2 − ρ sig(e1)

α1 ≡ fα1(e1, e2) (32)

.
e2 = −ρ2sig(e1)

α2 − k2sign(e1)− b2
1e1 ≡ fα2(e1,e2)

Let

e =
[

sig(e1)
1
ϕ , sig(e2)

1
ϕα1

]
, ϕ = α1α2 (33)

Define V = eT Pαe , where Pα is some diagonal positive definite matrix. Define also the
function fα as:

fα(e1, e2) =

[
e2 − ρ sig(e1)

α

−ρ2sig(e1)
α2 − k2sign(e1)− b2

1e1

]
(34)

and let L fα
V(e1, e2) represent the Lie derivative of V(e1, e2) along the flow of fα given in (34).

It is then quite straight forward to verify that V(e1, e2) is homogeneous with degree l1 = 2
ϕ ,

and L fα
V(e1, e2) is also homogeneous with degree l2 = 2

ϕ−1+α2
in view of Kawski [40].

Applying lemma 4.2 in [41], it is obvious that

L f Vα ≤ −
[

Max
X:V(x)=1

L fα
Vα(x)

]
Vγ1

α ≡ M1Vγ1
α (35)

where γ1 = l2
l1
= 1− ϕ

2 + α1γ
2 , and

lim
α→1

[
Max

X:V(x)=1
L fα

Vα(x)
]
≥ ρ

λmax(Pα)
(36)
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(2) Consider the system β which is given by neglecting the terms e2 − b2
1e1 − σ(t) −

ρsig(e1)
α1 − k1sign(e1) in (31) and b2e1 − σ(t)− ρ2sig(e1)

α2 − k2sign(e1) in (31):

.
e1 = −ρ sig(e1)

β1 ≡ fβ1(e1, e2) (37)

.
e2 = −ρ2sig(e1)

β2 ≡ fβ2(e1,e2)

Using the error vector as:

e = [sig(e1)
β1 , sig(e2)

1
ϕβ1 ], ϕ = β1β2 (38)

The vector in (38) is similar to the vector given in (33). The vector fβ is defined as:

fβ(e1, e2) =

[
−ρ sig(e1)

β1

−ρ2sig(e2)
β2

]
(39)

using Lyapunov candidate V = eT
β Pβeβ with Pβ being some positive definite matrix reveals

that V is homogeneous with degree l1 = 2
ϕ , while its Lie derivative Vβ(e1, e2) can be shown

to be homogeneous with degree l2 = 2
ϕ − 1 + β1. Applying Lemma 4.2 in [35] again yields:

L f Vβ ≤ −
[

Max
X:V(x)=1

L fβ
Vβ(x)

]
Vγ2

β ≡ −M2Vγ2
β (40)

where γ2 = l2
l1
= 1− ϕ

2 + β1 ϕ
2 and,

lim
β→1

[
Max

X:Vβ(x)=1
L fβ

Vβ(x)

]
≤ ρ2

λmin(Pβ)
(41)

Now, define the overall Lyapunov function:

V = eT Pe (42)

where e =
[

sig(e1)
1
ϕ , sig(e2)

1
ϕα1

]
, and P is a positive definite matrix.

Computing the time derivatives of the overall Lyapunov function yields:

.
V = L fα

V(e1, e2) + L fβ
V(e1, e2) + 2eT P

[
|e1|(1/ϕ−1)(−2be1/ρ)

0

]

+2eT P

 −|e1|(1/ϕ−1)(k1sign(e1)/ϕ)

|e2|1/ϕα1−1
[

b2
1e1−σ(t)−k2sign(e1)

ϕα1

]  (43)

Using inequalities (35) and (40), the time derivative of the overall Lyapunov function can
be written as: .

V ≤ −M1Vγ1 −M2Vγ2 + 2‖e‖ λmax(P) 2b
ϕ |e1|1/ρ

+2‖e‖λmax(P) |e1|1/ϕ−1 k1
ϕ

+ 2
ϕα1
‖e‖λmax(P) |e2|(1/α1 ϕ−1) b2

1|e1|[k2 + σ]

(44)

Note that we may apply the following inequalities

|e1|1/ϕ ≤ ‖e‖ =
(
|e1|2/ϕ + |e2|2/ϕα1

)1/2

|e2|1/ϕα1 ≤ ‖e‖
(45)
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|e1||e2|(1/α1 ϕ−1) ≤ ‖e‖ϕ‖e‖2−α1 ϕ = ‖e‖2+(1−α1)ϕ

Hence, .
V ≤ −M1Vγ1 −M2Vγ2 + 4b

ϕ λmax(P)‖e‖2

+2 k1
ϕ λmax(P)‖e‖2−ϕ

+ 2b2

ϕα [k2 + σ]‖e‖λmax(P)‖e‖2+(1−α1)ϕ

(46)

Furthermore, note that since V = eT P e, the following inequality follows:

λmin(P)‖e‖2 ≤
.

V ≤ λmax(P)‖e‖2 (47)

Applying (47) to (46) gives:

.
V ≤ −M1Vγ1 −M2Vγ2 + 4b

ϕ
λmax(P)
λmin(P)

V

+2 k1
ϕ

λmax(P)

[λmin(P)]
1− ϕ

2
V1− ϕ

2

+ 2b2

ϕα [k2 + σ] λmax(P)

[λmin(P)]
1+

(1−α1)
2 ϕ

V1+(
1−α1

2 )ϕ

.
V ≤ −M3Vγ1 − (M1 + M2 + M4 + M5)V1+(

1−α1
2 )ϕ

≡ −M3Vγ1 −M1V1+(
1−α1

2 )ϕ

≤ −(M1 + M2 + M3 + M4 + M5)V1+(
1−α1

2 )ϕ + M3

(48)

Suppose now that there is a constant θ1 ∈ (0, 1), such that (48) may be written as:

.
V ≤ −θ1MV1+(

1−α1
2 )ϕ − (1− θ1)MV1+(

1−α1
2 )ϕ + M3 (49)

Suppose there exists a state x, such that

V1+(
1−α1

2 )ϕ <
M3

(1− θ1)M
(50)

which is also taken as the residual observer bound. Then, the overall inequality (49)
reduces to

.
V ≤ −θ1MV1+(

1−α1
2 )ϕ (51)

Applying Lemma 3 in [42], the developed observer is finite-time stable with the reaching
time given by:

Treach =
1

θ1M( α1
2 − 1)

[
V(0)(

α1
2 −1)ϕ +

(
M3

(1− θ1)M

) 2
2+(1−α1)ϕ

]

�

3.2.2. Extended Sliding Mode Observer-Based Fixed-Time Controller Design

In this section, a composite Robust Constant Exponent Coefficient Fixed-Time Control
(CECFSMC) can be designed for a speed loop based on ESMO estimation. Its design and
stability analysis can be given in the following theorem.

Theorem 2: Suppose a composite CECFSMC with the structure of (13) is designed with the
disturbance σ̂(t) = v2 being estimated from (26), whose observer bound is given by (29) and (30).
Design the ESMO-based CECFSMC as:

i∗q = m−1(χeq + χb − ν2)

χeq =
.

ωr + µ1|ε|sign(ε)
(52)
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χb =

t∫
0

c1sgn(s) + c2|E|κsgn(s) + c3|E|ϕsgn(s) + c4s dγ

Then, this designed controller is fixed-time stable with the reaching time given by

Treach ≤
1

c2

(
1− 3

ϕα1
− 1−α1

2α1

) +
1

(θ1 M)
1/2

(λmin(ρ))
3/2

(
k−1

2

) (53)

Proof. We divide the proof into two parts. The first part rests on proving the stability of
the closed-loop system. Based on the structure of (17), the sliding surface is designed as
follows:

s =
.
ε− σ(t) + µ1|ε|sign(ε) (54)

Substituting the closed-loop controller (52), (54) can be rewritten as:

s =
.

ωr −mi∗q − σ(t) + µ1|ε|sign(ε)
=

.
ωr −m[m−1(χeq + χb − ν2)]− σ(t) + µ1|ε|sign(ε)

= −χb − εa(t)
(55)

where εa(t) = σ(t)− ν2 ≡ e2(t).
Note that, from proposition 2, the following inequalities follow:

∥∥∥ .
e
∥∥∥ ≤ .

V
γ2

2
√

λmin(ρ)
(56)

∣∣ .
εa
∣∣ ≤ ∥∥∥ .

e
∥∥∥ ≤ (θ1M)

2
√

λmin(ρ)
V1/2+( 1−d

4 )ϕ (57)

Hence, ∣∣ .
εa
∣∣|s| ≤ ∣∣ .

εa
∣∣|εa| ≤

θ1M

2(λmin(ρ))
3
2

V3/2+(1− α1
4 )ϕ (58)

Now, consider the following Lyapunov candidate:

Vc = s2 ≥ ε2
a + 2εaχb (59)

Note that the Lyapunov candidate function V of (42) also implies that:

V ≥ |e1|
2
ϕ + |e2|

2
ϕα1 ≥ |e2|

2
ϕα1 (60)

Since the quantity of ϕα1 is in (0, 2), inequality (59) along with (50) implies that:

V
3
2+(

1−α1
4 )ϕ ≤ Vc

3
ϕα1

+(
1−α1
2α1

) (61)

Hence, (58) is now rewritten as:

∣∣ .
εa
∣∣|s| ≤ (θ1M)

1
2

2(λmin(ρ))
3/2 Vc

3/ϕα1+(
1−α1
2α1

) (62)

Now, the time derivative of Vc is:
.

Vc = s
.
s

= s[− .
χb −

.
εa(t)]
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Substituting the controller (52), we have:

.
Vc = −2c1|s| − 2c2|s|k+1 − 2c3|s|ϕc+1 − 2

.
εa(t) · s

≤ −2c2V
k+1

2
c − (θ1 M)

1
2

(λmin(ρ))
3
2

Vc
3

ϕα1
+(

1−α1
2α1

) (63)

which is definitely nonnegative, thereby proving the stability of the closed-loop system.
For the next stage of proving the fixed-time stability, we simply apply Lemma 1 to (63) to
arrive at the reaching time for the system as follows:

Treach ≤
1

c2

(
1− 3

ϕα1
− 1−α1

2α1

) +
1[

(θ1 M)
1
2

(λmin(ρ))
3/2

](
k−1

2

) (64)

�

Remark 2: Note that the value of the reaching time Treach given in (64) is influenced mainly by the
control gain parameter c2 and parameter M. The quantity M is influenced, in turn, by the observer
parameter k1 from (29). Hence, choosing a bigger value of c2 and k1 would then lower the reaching
time. However, since both parameters are the switching gain of the SMC, the main cost of having
larger values for these parameters is the increment of the chattering, so they cannot be chosen at too
high a value. For industrial applications, it is acceptable to have a Treach that is not over 2 s, and so
a good guideline for choosing c2 is c2 ∈ (0.5, 3) and k2 ∈ (0.1, 5).

Figure 3 now shows the block diagram of the fixed-time controller with a conventional
sliding mode surface and a finite-time ESMO.
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4. Simulation Results

The simulation is based on the use of the servo motor parameters given in Table 1 [43].
It is a well-known surface-mounted PMSM servo motor. The sampling frequency used
in the simulation is 100 Hz. Note that the emphasis for the simulation study is on the
computation of the control signal iq applied to the speed control of the PMSM, whose
model is given in differential equation (2), rather than the SVPWM process. Hence, the
switching frequency of the SVPWM is not considered in the simulation tests. The control
parameters used in the simulation for the proposed controller are c1 = c2 = c3 = c4 = 2, κ = 1.5
and ϕ = 0.5. The observer gains are b = 50, k1 = 5, k2 = 5. To compare the performances of
the controllers, a PI controller with parameters kp =10, ki = 1000 as inspired by [44], and a
conventional SMC with controller parameters c = 0.5, η = 0.5 has been designed. To verify
the robustness of the strategy, the disturbance is set to σ(t) = 0.01 sin(60t).
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Table 1. Parameters of the servo motor used in simulation [43].

Parameter Value Unit

Number of pole pairs np 6 -
Rated power P 0.4 kW

Stator resistance Rs 1.55 Ω
dq-axis inductance L 6.71 mH
Rotational inertia J 0.0054 kg.m2

flux linkage ϕf 0.174 Wb
Viscous damping B 0.00072 N.m.s

Figures 4 and 5 depict the application of the proposed controller CECFSMC-ESMO
in the tracking of the sinusoid reference r(t) = sin(ωrt), ωr = 1 Hz. As is seen, the
closed-loop response exhibits a good ability in the tracking of the reference signal, even
under the presence of disturbance, with no steady state errors within a short, fixed time of
2 s. This result is consistent with the control input seen in Figure 6, where the input signal
approaches a typical sinusoidal signal after 2 s, albeit with a little chattering. Note that it
is also possible to reduce this chattering further in the real-world implementation of the
proposed controller with the use of the signr function introduced in [42]. Nevertheless, the
closed-loop system is demonstrated to be robust, with a proper convergence rate.

Figure 7 shows the phase-plane trajectory response of the system under constant
exponent coefficient fixed-time control based on finite-time ESMO. It expresses that the
phase trajectory exhibits convergence performance to a small neighborhood of the origin
from the initial state within a fixed time. It again indicates that the system has a proper
convergence rate and a smooth steady-state process.
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Figure 8 shows that sliding mode variable converges to zero in a short fixed time and
under a constant exponent coefficient fixed-time controller. Finally, Figure 9 illustrates
the estimated disturbances calculated by the in comparison to the system disturbance
σ(t) = 0.01 sin(60t). It is apparent from the figure that the presented ESMO gives a
good estimation of the total disturbance, with its convergence occurring in finite-time as
designed.
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Figures 10 and 11 depict the comparison between the PI controller, the conventional
SMC, and the proposed controller scheme CECFSMC-ESMO. As is seen, the PI controller
exhibits good tracking for both position and speed. However, it is important to note that
a persistent steady-state error persists due to the influence of the generated disturbances.
The conventional SMC has quite a poor response at the beginning of the simulation, only
being able to track the reference after some 8 s. This is simply because although SMC is
known to persist against disturbances, the basic reaching law simply cannot cope with the
high frequency content of the disturbance. Note that before the attainment of the reaching
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time Treach, the controller takes into consideration the observer variable, resulting in the
generation of the overall control signal, as specified in (52). Even though the observer
successfully estimates disturbances within a finite time of less than one second, there may
still be some residual errors requiring mitigation by the CECFSMC. Consequently, this
extends the convergence time to approximately 2 s. Note also that although this time could
be made shorter by the increment of the parameters c2 and k1 in theory, as discussed in
Remark 2, choosing these parameters at too high a value could exacerbate chattering, which
would result in detrimental effects on the PMSM, incurring substantial costs in industrial
settings.
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5. Conclusions

This paper introduces a novel control technique for regulating the speed of the PMSM
using fixed-time stability and a constant exponent coefficient. It presents a mathematical
model of the PMSM that takes into account uncertainties and load disturbances. The SMC
is then made to improve the system dynamics by utilizing robust fixed-time stability with
a constant exponent coefficient. This makes sure that the reaching time is less than T(x0).
A composite SMC technique utilizing a finite-time ESMO for estimating disturbances is
then designed to counteract the effect of matched and unmatched disturbances. A feedback
regulation mechanism is incorporated to ensure satisfactory closed-loop performance based
on SMC. Additionally, a feed-forward compensation technique is employed to counteract
system disturbances. A finite-time stability proof is given for the extended sliding mode
observer, while fixed-time stability proofs were given for the fixed-time sliding mode
control, both in the absence and presence of disturbances. A guideline of parameters
tuning is also given to ensure that the chattering phenomenon is sufficiently suppressed,
whilst also retaining stability. Moreover, the proposed CECFSMC-ESMO gives a simple
platform where the controller only has six parameters to tune, as opposed to other fixed-
time algorithms that have much more tuning parameters, whilst still retaining a good
reaching time under the presence of disturbances. Numerical simulation results show that
the proposed method is robust against load disturbances, has better convergence, and has a
reaching time of less than 2 s, thereby demonstrating that the proposed fixed-time constant
exponent coefficient offers a good performance and is much simpler than the conventional
finite-time method. For future works, this developed controller can be used with a higher
order nonlinear system to further reduce the chattering phenomenon.
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