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Abstract: Nontechnical losses of electrical energy (NTLEE) have been a persistent issue in both
the Russian and global electric power industries since the end of the 20th century. Every year,
these losses result in tens of billions of dollars in damages. Promptly identifying unscrupulous
consumers can prevent the onset of NTLEE sources, substantially reduce the amount of NTLEE and
economic damages to network grids, and generally improve the economic climate. The contemporary
advancements in machine learning and artificial intelligence facilitate the identification of NTLEE
sources through anomaly detection in energy consumption data. This article aims to analyze the
current efficacy of computational methods in locating, detecting, and identifying nontechnical losses
and their origins, highlighting the application of neural network technologies. Our research indicates
that nearly half of the recent studies on identifying NTLEE sources (41%) employ neural networks.
The most utilized tools are convolutional networks and autoencoders, the latter being recognized for
their high-speed performance. This paper discusses the main metrics and criteria for assessing the
effectiveness of NTLEE identification utilized in training and testing phases. Additionally, it explores
the sources of initial data, their composition, and their impact on the outcomes of various algorithms.

Keywords: nontechnical losses of electrical energy; theft of electrical energy; electrical energy
accounting; distribution networks; machine learning; neural networks

1. Introduction

Nontechnical losses of electrical energy (NTLEE) are mainly associated with an under-
estimation of electric energy (EE) released from the networks of the electric grid organiza-
tion (EGO). NTLEE lead to a decrease in financial revenues from EE transmission services
and to an increase in fees for EE losses, which creates damage to EGO and undermines their
economy. Such losses are caused by unaccounted and noncontractual consumption, errors
and malfunctions of electric power measurement systems (EPMS), or errors in invoicing.

In this article, nontechnical losses of electrical energy (NTLEE) refers to the difference
between the input and output values of electrical energy on a section of the electrical
network, minus the technical losses of EE caused by the conversion of EE into thermal
energy, mechanical energy (like vibrations, noise), and other forms of natural dispersion.
NTLEE are primarily associated with the supply of electric energy released from the
networks of an electrical grid organization. NTLEE lead to a decrease in financial revenues
from services for the transfer of EE and an increase in fees for EE losses, which damages
energy supply organizations and undermines their economy.

Identifying NTLEE and sourcing them is a classic task in both the Russian and global
electric power industry, retaining its relevance since the end of the 20th century. The annual
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damage resulting from NTLEE is estimated at tens of billions of dollars globally [1] and
billions of rubles in the Russian Federation [2].

In the Russian Federation, NTLEE, in terms of the volume supplied to the distribution
network, varies from 0.06% [3] to over 25% [4], depending on the region and the electric
grid organization. In countries undergoing difficult socioeconomic and sociopolitical
circumstances, relative nontechnical losses can constitute a large percentage of the electricity
distributed, reaching up to 60% in Libya and 22% in Iraq [5]. These losses stem from
widespread unauthorized EE consumption, either bypassing existing accounting tools
or in their complete absence. Meanwhile, even in countries with robust accounting for
energy resources and socioeconomic stability like China, Japan, or Germany, the relative
values of NTLEE have only decreased to a range of 4.0–5.5% [6]. These figures cannot
solely be attributed to the approximated 1.0% error margin of modern EE accounting
tools. Main culprits include sudden and hidden failures of EE metering devices and
systems, transmission and reception failures over unreliable communication channels, and
fraudulent consumption by unscrupulous entities [6–8].

Timely identification and mitigation of these issues halt the systematic emergence of
NTLEE sources, preventing their persistence and substantially reducing NTLEE values.
This positively influences the cost of electrical energy in power systems and the overarching
economic climate. Historical analysis reveals that the initial installation of EE meters
could exponentially reduce NTLEE by 1.9–2.6 times over 10–15 years [9], equating to
a reduction from 18–24% to 8–11% in developing countries, and from 10–12% to 4–5%
in developed nations [1,2]. Nonetheless, the decline in NTLEE has plateaued; stricter
accuracy requirements and the broad implementation of auxiliary EE accounting tools
have not materialized, leading to undesirable capital inflows into the network. This
proves unprofitable for energy supply firms, imposing an extra financial burden on EE
consumers. Therefore, there is a pressing need for fundamentally diverse approaches to
NTLEE identification, involving computational and analytical methodologies.

The objective of this article is to analyze the present efficacy of informational methods
used in the search, detection, and identification of NTLEE and in determining their sources.
Modern advancements in the fields of mathematics, informatics, cybernetics, along with
machine learning and artificial intelligence methodologies, facilitate the identification of
NTLEE sources through the detection of anomalies in EE consumption data [6]. These
developments contributed to the resurgence in the popularity of information methods for
pinpointing NTLEE between 2020 and 2023, building on simple rules of thumb previously
used in practice. Since 2021, the Russian Federation has employed software platforms and
complexes leveraging machine learning techniques to detect NTLEE [10,11]. Similar trends
are evident in other nations [12]. Nonetheless, these IT solutions, while nonspecialized
and primarily devised to engage with a user audience and undertake socio–geo analytics,
do not account for the attributes requisite for addressing the technical and technological
aspects of EE accounting. Thus, this work aims to compare the foundational mathematical
methods used in NTLEE analysis and to assess their operational settings.

In the existing classification, computational and analytical methods for identifying
NTLEE are divided into two principal categories [8]: schematic [13,14] and informational
methods explored in this article.

Schematic approaches hinge on controlling EE balances and calculating technical
losses through electrical ratios. These require details on the electrical network topology and
replacement circuit parameters. While these methods boast high sensitivity and the capacity
to pinpoint systematic NTLEE, they necessitate complete and reliable source data. Proving
effective in networks exceeding 35 kV, where network replacement scheme parameters
are well defined and the electrical network possesses limited connectivity and branching,
they allow for dual EE accounting and mitigate the likelihood of unauthorized connections.
However, implementing these methods broadly in 6–10 kV networks, and especially in
0.4 kV networks, poses challenges due to extensive network lengths and branching, the
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prevalence of diverse accounting tools, and significant errors in the parameters of such
networks’ replacement schemes.

In turn, information methods are methods based on the identification of patterns
and anomalies in the power consumption of the final consumer of EE. The advantages
of these methods include the fact that they do not require information about network
parameters and can be used in the absence of a balance counter. The data source and
the basis for the analysis are consumption data. This information is easier to obtain than
network characteristics or measurements of operating parameters. The disadvantages
of such methods are the need for a large sample of initial data and an unobvious choice
of empirical patterns that ensure the identification of NTLEE. Nevertheless, modern EE
accounting tools allow for the collection of synchronized high-precision measurements of
EE consumption at half-hour intervals, storing this information, as well as measuring of
electrical mode parameters. The integration of such systems benefits from the support of
the government and network companies, as it is being implemented today in the Russian
Federation according to the Government Decree of 19 June 2020. N 890 changes the
approach to the identification of NTLEE. In these conditions, the volume of available data
ceases to be an obstacle to the application of the information approach, and the methods
of machine learning and artificial intelligence allow for automating the assessment of
the power consumption profile. Such methods make it possible to identify complex and
nontrivial patterns in the change in users’ power consumption, detecting periods of time
of the probable existence of the NTLEE. Empirical information methods, in fact, are often
hybrid, combining information and schematic methods. Information methods have the
potential for application in 6–10 kV networks and especially 0.4 kV.

Before proceeding to the description and analysis of methods for identifying NTLEE,
it is necessary to describe the methodology of bibliography search. For the review, a
search was carried out for articles by leading publishers, primarily devoted to information
methods for the period from 2013 to 2023. The second direction of the search was the
work considering the correlation between socioeconomic factors and the amount of theft
of electricity. In total, about 300 publications were analyzed. Those of them in which
mathematical methods of searching for sources, damages were described in detail, and
various machine learning methods were used were of the greatest interest and are included
in Table 1 as the most significant in the framework of the review. As will be seen from
the following sections, the use of such algorithms is the main trend in the field of NTLEE
detection for today.

The remainder of the paper is structured as follows: Section 2 contains brief classifi-
cation and description of the main nontechnical loss detection methods and publications
related to the topic. Section 3 outlines specific features of the algorithms observed, demon-
strates the impact of initial data completeness on the result, compares sensitivity and
computational efforts needed for neural network learning, testing and operation, and so
on. Finally, Section 4 summarizes the main findings of this research.

2. Methods of Identification and Assessment of Nontechnical Losses of
Electrical Energy

The primary classification of the methods has been delineated in [8], as illustrated in
Figure 1; this is consistent with several other classifications, albeit with minor variations,
found in [15,16]. This schema is employed to pinpoint locations of electrical energy theft
by leveraging an extensive knowledge base to analyze a substantial amount of data. Pre-
dominantly, this analysis involves approaches such as machine learning, anomaly/outlier
detection, distribution network analysis, and cybersecurity.
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Figure 1. Classification of methods for detecting nontechnical losses of electrical energy [8].

As it is underlined in the introduction, nontechnical losses of electrical energy de-
tection methods can broadly be categorized into two groups: methods concentrating on
consumer data (informational methods) and ones centered on network topology and tech-
nical data (schematic methods). In addition, there are hybrid methods that combine the
two philosophies mentioned. A distinguishing factor among these methods is their reliance
on data pertaining to the power supply system—encompassing elements like network
topology and data measurements at the input and/or branching points of supply sub-
stations. It is important to emphasize that the efficacy of these methods is significantly
tethered to the precision of electrical energy metering devices. Consequently, minimizing
both instrumental and methodological errors is pivotal in enhancing the accuracy of results
in identifying sites of electrical energy theft [17,18].

Methods focusing on consumer electrical energy data can be further divided into
subcategories: observable and unobservable. Observable methods employ classifications
that categorize consumers into two groups. The first group encompasses those involved in
the theft of electrical energy, identified using algorithms, as dishonest. The second group
consists of honest electrical energy consumers who were not flagged by the algorithm.
Methods that bypass this binary classification of users are termed unobservable. Another
approach utilizes a classification with only one type of consumer; however, it is seldom
adopted in contemporary publications and is thus not discussed further.

Methods utilizing network information typically disregard consumer classification,
concentrating instead on the analysis of the supply network’s topology and the physical
principles underlying its operation [19–22]. These strategies can be categorized based on
their foundational methods: state assessment-based methods, flow distribution assessment-
based methods, and approaches founded on sensor networks [16,23]. Hybrid methods aim
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to integrate both consumer and network data [24]. The focus of this study narrows down
to methods engaged with consumer data. While network information may be referred to in
the publications under review, it serves only as supplementary data.

Currently, the prevalent methods for identifying sites of electrical energy theft include
ensembles of fuzzy logic methods, regression and correlation analyses, multilayer neural
networks, empirical methods, decision trees, support vector methods, convolutional neural
networks, and hybrid models rooted in them, as well as autoencoders and their related
hybrid models utilizing various types of boosters. A concise explanation of each mentioned
method follows:

Fuzzy logic methods are grounded in classical mathematical logic, wherein a math-
ematical expression can denote sets involving conjunctions, disjunctions, and negations.
Unlike the discrete “true” or “false” values, it utilizes a “degree of truth” that can assume
any value between zero and one, with the extreme values representing truth and falsehood,
respectively. Instances of employing this nuanced logic are illustrated in [25,26].

Regression and correlation methods involve the analysis of a large amount of informa-
tion to identify existing patterns. Based on the revealed dependencies on the input data, the
behavior of the model is predicted. Regressions were used in [27–31]; correlation analysis
was used in [32–39].

Multilayer neural networks, distinct from single-layer variants, incorporate additional
hidden layers, thereby enhancing their accuracy. It is not necessary for the number of
hidden layers to be large—even with just one, the model’s efficiency is elevated. Thanks
to these hidden layers, input signals undergo preliminary processing before reaching the
adder. Studies employing this type of neural networks can be found in [25,27,40–48].

Empirical methods are predicated on identifying verifiable instances of embezzlement
through patterns observed in real-world scenarios. Consider a situation in a network with
a distributed load: if a specific electricity user’s meter readings decrease, yet no similar
decline is registered on the state metering device placed on the outgoing connection or at
the entrance of a 10/0.4 kV transformer substation, one can infer that the user has tampered
with their metering apparatus. A substantial set of such rules has been put forward in
research, with several elaborated in [34,49–65].

Decision trees are methods of automatic analysis of large data arrays. A decision tree
is based on a hierarchical tree structure, which uses the rule “If . . . then . . .”. The data
are split when one of two conditions is met: either it is no longer possible to create a new
rule “If . . . then . . .”, or when the allowable number of rules is reached. Examples of using
decision trees can be seen in [27,40,66].

A support vector machine is a linear algorithm that is used in classification and
regression tasks. The idea of the method is to divide objects into several classes by a
single line or hyperplane. The points on the graph that are closest to the separation line
(hyperplane) are used as reference vectors. Support vectors were used in [27,67–72].

Convolutional neural networks (CNNs) feature a distinctive architecture among ar-
tificial neural networks, characterized by the presence of a convolution operation. This
operation involves utilizing a confined matrix of weights, initially termed the “convolution
core”, which progressively traverses the entire layer it processes. Weight coefficients emerge
solely during the learning phase, culminating in the generation of a neuron activation signal
destined for the subsequent layer of the network. Eventually, the neuron outputs’ products
are aggregated according to their respective weights, delineating the conclusive output, a
process documented in [70,73–90].

Developed originally to facilitate machine vision, CNNs now excel in discerning vari-
ous images through the identification of local features within them. To pinpoint occurrences
of electricity theft, one can employ one-dimensional (Figure 2) or two-dimensional CNNs,
or a combination of both.
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Figure 2. One-dimensional convolutional neural network for searching theft of electrical energy [73].

One-dimensional convolutional neural networks are utilized when the resolution
of the output data is limited. A specific instance is the daily monitoring of electricity
consumption over a month, from which an input data vector with a dimensionality ranging
between 28 and 31 can be derived from the power consumption graph.

Two-dimensional convolutional neural networks come into play in the scrutiny of
highly detailed values, such as semi-hourly or hourly recordings of electric energy use
spread over a month and differentiated by day. This approach provides the input data
vector (image) a resolution embodying 28 to 31 × 24 values.

The integration of two-dimensional and one-dimensional convolutional networks
affords the capacity to individually inspect anomalies and patterns before amalgamating
the results for deeper analysis. To facilitate the comparison of diverse data sources, time
series differing in intervals, specificity, and consumer sets, separately tailored convolutional
networks are devised to operate in parallel. For the evaluation of nontemporal series,
the convolutional network might be substituted with a direct distribution network. In
this scenario, normalization and neuron elimination procedures are advised to mitigate
overfitting. The culmination is reached via a pooling layer tasked with standardizing the
errors emanating from each parallel-operating neural network, as well as orchestrating the
influence of every individual network on the final classification outcome.

Autoencoders are a type of neural network that reconstructs the information fed into
its input. This neural network comprises two primary components: an encoder and a
decoder. The encoder receives the input information and transforms it into an internal
representation. Subsequently, the decoder takes this internal representation generated by
the encoder as the source information and endeavors to reconstruct the original input.
Examples of autoencoder applications can be found in [91–98].

To elucidate the workings of an autoencoder, we can refer to the results depicted in
Figure 3 [92]. The initial data are illustrated in Figure 3a, where anomalies are highlighted
in red, representing potential unscrupulous consumers of electrical energy. The blue hue
denotes conscientious consumers. As observed, these categories of consumers are signifi-
cantly intermingled, making it challenging to segregate and differentiate them. Utilizing
particle swarm optimization to discern characteristics facilitates a clearer differentiation as
seen in Figure 3b, albeit some points from distinct categories remain overlapped. Applying
two variants of autoencoders to the dataset enables almost complete separation of the
data points. Specifically, Figure 3c showcases the outcome of utilizing a simple autoen-
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coder with three hidden layers, while Figure 3d demonstrates the results achieved with a
stacked autoencoder also comprising three hidden layers. Employing an autoencoder aids
in pinpointing the distinctive power consumption patterns of diverse consumers and in
reducing noise, essentially diminishing the “dimensionality” while retaining the variation
in parameters.
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Figure 3. Distribution of consumer data: (a) the original dataset; (b) data processed using the particle
swarm optimization algorithm; (c) the result of a simple autoencoder with three hidden layers; (d) the
result of a stack autoencoder with three hidden layers [92].

Thus, the use of an autoencoder makes it possible to almost completely separate points
in the power consumption profile of various categories of consumers with the possibility
of their further quantitative (according to the threshold principle) or qualitative (using
clustering) classification.

Table 1 reviews the most significant papers analyzed in terms of the research.
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Table 1. Review of existing solutions in the field of nontechnical loss detection.

Ref. Method/Algorithm Time Step Data Source Additional Data Used Metrics Used Efficiency Comments

[26]

Fuzzy logic:
c-means algorithm,

maximum likelihood
criterion

1 h Synthetic (33-bus
distribution system)

Topology, types of
consumers -

The error of load
estimation in 80% of
feeders was obtained

less than 6%

The article, in addition to identifying
power imbalances associated with

non-commercial losses, focused on the
optimal placement of accounting tools.

[27]

Logistic regression,
random forest,

support vector machine,
artificial neural network
with various balancing

techniques

1 day State Grid Corporation
of China (SGCC) dataset - ROC curve

F1 score accuracy

Accuracy: from 49 to
92% depending upon
method and balancing

technique used

The article was primarily devoted to
comparing different methods of

classifying consumers with unbalanced
data.

[28] Gradient boosting,
logistic regression 1 month

Anonymous dataset,
containing Spanish

house and apartment
energy profiles for two

regions

Visit-related customer
features, sociological

features (average
annual income, etc.),

contractual information

- -
The paper proposed a regression model
to identify the sources of nontechnical

losses.

[30]

Decision tree regression,
linear regression,

sequential neural network,
multilayer perceptron

regression

15 min

Energy consumption
from three smart meters

over a 2-year horizon
(time step—15 min)

- MAPE
MAPE: from 11 to 27 %
depending on method
and size of database

In the article, several machine learning
methods were tested and compared on

real data. It was shown how the
accuracy of the assessment of

involvement in theft varies depending
on the dataset for training.

[31] Linear regression-based
algorithms 30 min

Synthetic: real SEAI
consisting of

half-hourly energy
usage reports for over
5000 Irish residential

and commercial
premises. Energy fraud

was simulated.

-
Own indexes: anomaly

and detection
coefficients

-

A methodology for determining and
managing accounts in the smart grid
network was proposed. Consumer

attention was drawn to the presence of
anomalies and detection coefficients.

[35] Pearson correlation
algorithm 5 min

Sample consisted of real
data but was very small

(only 16 users)
- - Accuracy: 62.5%

The work aimed at identifying mining
farms involved in the theft of electrical

energy based on the correlation between
subscriber consumption and network

losses.

[36] Outlier detection -

Real voltage data
consisting of 320

high-voltage consumers’
energy and voltage

profiles

- - -

Theft of electrical energy was
determined based on the difference in

voltage profiles: the greater the
discrepancy, the more likely it is that the

deviant was involved in the theft.
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Table 1. Cont.

Ref. Method/Algorithm Time Step Data Source Additional Data Used Metrics Used Efficiency Comments

[38]
Fuzzy logic algorithm based
on covariance analysis and

optimization
15 min

State Grid Corporation
of China (SGCC)

dataset. Energy fraud
was simulated.

- AUC, ROC curve AUC: 0.998

The method is based on the following
observation: the correlation between the

graph of total nontechnical losses and
the graph of the consumer is maximal if

he is involved in these losses. At the
same time, only fixed-ratio electrical

energy thieves were considered. Then,
the optimization method identified
consumers who best explained the

presence of NTL.

[39] Correlation analysis 5 min

“Smart”
dataset UMass (114

single-family
apartments, western

Massachusetts)

- MAP@K

MAP@K: from 0.60 to
0.86 depending on

fraction of thief
consumers

Similar to the article above, consumers
involved in theft were identified based

on the correlation between their
consumption schedule and the curve of
nontechnical losses in the network area.

[43]

Artificial neural network
with balancing approach +

simulated annealing for
hyperparameter

configuration

1 h

State Grid Corporation
of China (SGCC) dataset

(3615 dishonest and
38,757 fair consumers)

- TPR, FNR, FPR, TNR,
AUC AUC: 0.987

The paper described a complete
framework for identifying unscrupulous

consumers, including data
preprocessing, data resampling and
balancing, optimal hyperparameters

using simulated annealing, ANN
classifier.

[44]

Long short-term memory
with the attention

mechanism + particle
swarm optimizer

1 h
Public dataset of the

University of
Massachusetts

Hourly temperature,
humidity, body

temperature

RMSE, MAE, MAPE,
AE, M, PR, FPR

MAPE: 0.087
MAE: 0.152
RMSE: 0.186

The paper presented a model for
identifying unscrupulous consumers

based on LSTM with attention
mechanism while particle swarm

algorithm was used in order to choose
optimal neural network settings. Results
were compared with CNN-LSTM, LSTM,

gated recurrent unit (GRU), SVM, RF,
and LR.

[45] Artificial neural network +
Bayesian optimization 1 h State Grid Corporation

of China (SGCC) dataset - TPR, FNR, FPR, TNR,
AUC, MAP@N, F1-score

F1 score: 0.582
AUC: 0.919

The paper proposed a framework for
identifying sources of commercial losses.
Its basis was a neural network while a

Bayesian optimizer was used to optimize
hyperparameters and network

architecture.
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Table 1. Cont.

Ref. Method/Algorithm Time Step Data Source Additional Data Used Metrics Used Efficiency Comments

[48]

Multilayer perceptron
artificial neural network

(MP-ANN) with
self-organizing mapping

(SOM)

3 h
Synthetic dataset based

on IEEE70 test
distribution network

-
FPR, detection rate

(DR), highest difference
(HD)

DR: 93.4%
FPR: 1.9%
HD: 91.5%

The paper proposed to identify
unscrupulous consumers in two stages:

at the first stage, they were classified
using SOM in the form of a daily load

schedule for characteristic groups, at the
second—with the help of MP-ANN

trained into separate
groups—unscrupulous EE consumers

were identified.

[60] Anomaly coefficient method 1 h
Original synthetic

dataset
(five consumers)

- - -

The paper proposed a method for
calculating anomaly coefficients for

consumers, according to which
unscrupulous subscribers could be

prioritized. To evaluate these coefficients,
a system of linear equations was solved
based on measurements of individual

consumer counters and a balancing
counter.

[63] Correlation analysis
algorithm 1 h

Original synthetic
dataset

(50 consumers)

Current and voltage
daily profiles, type of

meter placement
- -

Unscrupulous consumers were
identified based on the correlation

between technical losses in the network
and the profile of consumers’ electrical

energy, taking into account the
installation location of the meter and the

possibility of theft.

[65]
k-means, support vector

machine (SVM), risk
assessment

1 h
Real data from Tianjin

Electric Power
Company (460 feeders)

Grid topology - -

A three-stage algorithm for identifying
sources of commercial losses: feeders

with an abnormal loss profile (clustering
and SVM) were determined, the time
points at which abnormal losses were
observed (according to statistics) were

determined, the source of such losses in
the network was based on steady-state

simulation.
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Table 1. Cont.

Ref. Method/Algorithm Time Step Data Source Additional Data Used Metrics Used Efficiency Comments

[66] Extreme gradient-boosted
trees 6 h Real energy recordings

over 10 years

Alarm signals from
meters, reactive power,

voltage and current
magnitudes, GIS,

contract conditions,
meter location

ROC curve, TPR, FPR,
precision, AUC

AUC: from 0.76 to 0.91
depending on input

data types

The main value of the work is an
experiment to train a classifier model on
a large sample of real measurements of

data and other information about
consumers. In particular, it was shown

that taking into account additional
factors and data makes it possible to
increase the accuracy of the model.

[67]
Convolutional neural

network, support vector
machine

1 day

Real energy recordings
over 1 year containing

energy profiles of 26,530
consumers

-
TNR, TPR, ROC curve,

F1 score, precision,
recall

All metrics: greater than
85%

The paper proposed a consumer
classifier model based on a

convolutional neural network and SVM.
The first one was used to reduce the
dimension of the problem state space

and identify the main features (specific
features). The values obtained at the

output were processed using an SVM to
classify consumers into honest and

unscrupulous.

[70]
Decision tree combined

k-nearest neighbor, support
vector machine

30 min

Real Irish Smart Energy
Trial energy

consumption dataset
(theft data were
generated using

Wasserstein generative
adversarial networks)

A number of energy
curve characteristics

(daily maximum load,
load rate, coefficient of

variation, etc.)

Accuracy, AUC Accuracy: 95.6%

The paper proposed a model combining
decision tree, k-nearest neighbor

algorithm, and support vector machine.
The influence of the number of factors
taken into account on the accuracy of
classification was also investigated.

[71] Support vector machine,
voltage sensitivity analysis 30 min

Real Irish Smart Energy
Trial energy

consumption dataset
(theft data were

generated)

Topology, voltage
measurements DR, accuracy, AUC

Accuracy:
(1) 91.2
(2) 99.4
(3) 99.4
AUC:

(1) 93.7
(2) 99.9
(3) 99.9

The study described three approaches to
identifying sources of losses: based on
SVM (1), based on the results of stress
sensitivity analysis (2), and also as a

solution to the optimization problem of
distribution of losses between nodes (3).

For the last two cases, voltage
measurements were required.

[77]
Deep reinforcement

learning, convolutional
neural network

30 min

Real Irish Smart Energy
Trial energy

consumption dataset
(theft data were

generated)

- TPR, FPR, FOR,
F1-score, Precision

F1 score: from 90.16 to
99.89 depending on
balancing method

The paper described how consumer
classification can be implemented using
the reinforcement learning method. A

convolutional network was used to
increase the sensitivity of the framework

when analyzing time series of
consumption.
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Table 1. Cont.

Ref. Method/Algorithm Time Step Data Source Additional Data Used Metrics Used Efficiency Comments

[80] Convolutional neural
network, k-means 1 h State Grid Corporation

of China (SGCC) dataset - TPR, FPR, AUC, FOR,
F1 score, precision

AUC: 0.92
F1 score: 0.60

In addition to the scheme of joint use of
CNN and k-means, a new factor was

introduced in the article—location
information of missing values.

[83]

Convolutional neural
network with gated

recurrent unit + manta ray
foraging optimizer for

tuning

1 day State Grid Corporation
of China (SGCC) dataset - Accuracy, precision,

recall, F1 score

Accuracy: 91.10%
AUC: 0.91
Recall: 93%

Precision: 91.11%
F1 score: 89%

The paper showed that the use of a
metaheuristic approach, for example,

manta ray foraging optimizer, for setting
up a neural network makes it possible to

increase the sensitivity of the network
when identifying unscrupulous electrical

energy consumers.

[84]
Convolutional neural

network, long short-term
memory

1 h State Grid Corporation
of China (SGCC) dataset

Accuracy, precision,
recall

Accuracy: 89%
Precision: 0.90

Recall: 0.87
In many ways similar to [86].

[85]

Deep Siamese network,
long short-term memory,

convolutional neural
network

1 h State Grid Corporation
of China (SGCC) dataset -

Accuracy, precision,
recall, F1 score,

specificity, AUC,
MAP@N

AUC: 0.934
Accuracy: 0.953

The paper proposed a model that allows
users to search for unscrupulous

consumers. The model involved data
processing in four stages: preprocessing

of electrical energy profiles, feature
extraction with convolutional neural
network, analysis of sequential time

series, and classification of consumers.

[86]
Convolutional neural

network, random forest
classifier

1 h

Electric Ireland and
Sustainable Energy

Authority of Ireland
dataset (5000 residential

households and
business). Thefts were

generated synthetically.

- Precision, recall, F1
score, AUC, accuracy AUC: 0.99

The paper showed a framework in which
CNN was used to identify essential

features of consumption profiles, and RF
was used to classify consumers,

according to these characteristics, into
conscientious and unscrupulous.

[87] Deep neural network 1 h

State Grid Corporation
of China (SGCC) dataset

(3615 dishonest and
38,757 fair consumers)

-
AUC, accuracy, TPR,
FPR, F1 score, MCC,

PPV

AUC: 97%
Accuracy: 91.8%

The study showed the prospects of using
a deep learning network to identify
sources of losses. The experiment

demonstrated that such a multilayer
neural network can provide

classification accuracy higher than
solutions combining autoencoders,

convolutional networks, etc.
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Table 1. Cont.

Ref. Method/Algorithm Time Step Data Source Additional Data Used Metrics Used Efficiency Comments

[89]

Component analysis, sparse
autoencoder + differential

evolution and JAYA
methods for classification

1 h

State Grid Corporation
of China (SGCC)

dataset (3615 dishonest
and 38,757 fair

consumers), UMass (114
single-family

apartments, western
Massachusetts)

-
Accuracy, AUC, F1

score, specificity, recall,
precision

Accuracy: from 0.956 to
0.993

AUC: from 0.833 to
0.957 depending on

dataset and
metaheuristic classifier

The paper proposed an algorithm for
identifying unscrupulous consumers

based on component analysis, an
autoencoder, as well as classifiers based

on differential evolution and JAYA
techniques (DE-RUSBoost and

JAYA-RUSBoost, respectively). The
developed solution was compared with

other classification methods.

[91]
Denoising autoencoder and

attention-guided triple
GAN

1 h

State Grid Corporation
of China (SGCC) dataset

(3615 dishonest and
38757 fair consumers)

-
Accuracy, AUC, F1
score, MCC, recall,

precision

Precision: 0.987
AUC: 0.952

The paper proposed a combination of
autoencoder and attention guided triple
GAN, which made it possible to identify
significant features from the input data

and identify sources of commercial
losses.

[92] Stack autoencoder 1 h

Real energy profiles
dataset for 1201

consumers from Fujian,
China

- DR, FPR, ROC curve,
AUC

DR: 95%
FPR: 7%

The paper proposed and investigated a
noise-resistant autoencoder model. In

addition, the optimal attack vector was
obtained in the work, which allows users

to assess the vulnerability of the
developed model, to determine the

limiting case in which the autoencoder
does not react to the source of

commercial losses.

[93]

Autoencoder with long
short-term memory-based

sequence to sequence
structure

30 min

Real Irish Smart Energy
Trial energy

consumption dataset
(theft data were

generated)

- DR, FA, accuracy, AUC,
ACC, F1 score, SP, PR

AUC: 90
Accuracy: 94.5

The authors of the article proposed the
structure of an autoencoder that also

includes LSTM blocks. The effectiveness
of various variants of the structure for
detecting standard types of theft was

investigated.

[96]

AlexNet and AdaBoost
algorithms + artificial bee

colony for hyperparameter
tuning

1 h

State Grid Corporation
of China (SGCC) dataset

(3615 dishonest and
38,757 fair consumers)

- AUC, REC, PRE, F1
score, MCC, TPR, FPR

Precision: from 0.55 to
0.86 depending on
balancing method

The article suggested a combination of
existing methods to improve the results
of the classification of consumers. The

influence of data balance on
classification results was investigated
and three approaches were compared:
no balancing, near miss, and synthetic

minority oversampling techniques.
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Table 1. Cont.

Ref. Method/Algorithm Time Step Data Source Additional Data Used Metrics Used Efficiency Comments

[97] Ensemble machine learning 30 min

Real energy profiles
over 1 year. Thefts were

simulated using
predefined patterns

-
ROC curve,

AUC,
precision

Precision: form 0.88 to
0.99 depending on

ensemble model and
number of users

considered

The work verified the effectiveness of
ensemble machine learning models to

identify unscrupulous consumers
according to the daily load schedule.

The accuracy of the classifier was
investigated depending on the number

of consumers under consideration.

[99]

XGBoost, random forest,
Bayesian dropout neural
network, support vector

machine, linear regression,
k-nearest neighbors

1 month
Real database of 10,000
actual energy profiles

clients over 1 year
-

ROC curve, precision,
recall, AUPR (original

authors’ metric)
Precision: 75%

The article proposed a method
combining SVM and RF to identify new
instances of unfair consumption. At the
same time, the paper introduced a target

cost function to determine consumers
whose verification is economically

feasible.

[100] Random forest classifier 1 month
Real database of 6029

clients from
Montevideo city

Maximum power, days
passed since the last
inspection, contract

conditions

AUC, accuracy,
precision, recall,

F1 score

Accuracy: 0.643
AUC: 0.646

Depending on set of
metrics used

The paper presented an analysis of the
impact of taking into account additional

factors on the results of consumer
classification. The results confirmed the
expediency of taking into account many

factors during classification.
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Until 2020, support vector methods and decision trees employing various nodes were
prevalently featured in publications, as seen in [66,96]. However, post-2020, there has
been a noticeable uptick in the active utilization of various types of neural networks in
research publications.

As of now, CNNs stand as the most frequently used type of neural network, accounting
for nearly a quarter of the publications analyzed. Direct feedforward neural networks and
autoencoders find less representation in the current literature, a trend visually represented
in Figure 4.
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Currently, there are two fundamental approaches to detecting nontechnical losses
due to electrical energy theft, which subsequently influence the configuration of neu-
ral networks: identifying NTLEE in a suspicious segment of the profile [73–75,81], and
pinpointing NTLEE tied to a suspicious consumer [26,78,83,86].

Searching for dishonest consumers in a dubious section of the profile offers several
advantages. It allows for the analysis of a specific consumer’s profile, reducing the fre-
quency of false positives. The approach involves feeding a square matrix and standard
convolution settings into the artificial neural network (ANN), demanding relatively low
computational power. Moreover, it distinctly identifies the source of nontechnical losses
of electrical energy. However, it falls short in detecting already established, continuous
energy thefts and unmarked thefts, leaving them unnoticed. Although it specifies the theft
source, it fails to pinpoint the exact time of the energy theft occurrence.

On the other hand, the approach focusing on suspicious consumers stands out for
its high sensitivity to power consumption anomalies against the broader backdrop. It
facilitates the detection of relatively constant energy losses and previously unnoticed thefts,
always revealing the time when the NTLEE occurred. Despite these merits, it requires
a comparison with neighboring power consumption data, which might not always be
available, and struggles to accurately determine the precise source location of the theft.

Since the advantages of one of the approaches can be attributed to the disadvantages
of another approach, the logical conclusion is that the greatest efficiency will be achieved
only with the joint application of approaches in a modular algorithm.
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3. Analysis of the Methods Used to Identify NTLEE

Based on the review presented in Section 2, this section delineates a comparison of
the different methods in terms of their sensitivity, the initial data required for identifying
sources of nontechnical losses due to electrical energy theft (NTLEE), operational time,
and other attributes pertinent to information methods. Moreover, it tackles the challenges
encountered in analyzing NTLEE through the utilization of balance and neighbor meters in
a power supply system with a distributed load. The analysis also explores the extent to
which additional data influences the outcomes of electrical energy theft detection, alongside
identifying which supplementary parameters derived from electrical energy consump-
tion profiles could enhance the training efficiency and speed of artificial neural networks
(ANNs). Furthermore, the issue of data balance is highlighted, and the optimal strategies
for harmonizing the output from measurements of consumed electrical energy are outlined.

3.1. Comparison of the Sensitivity of the Main Models and Methods

The sensitivity of the algorithm is one of the main indicators of its operation. The
higher the sensitivity, the more likely it is that the algorithm is able to detect theft of
electrical energy, and at the same time, the less likely it is that the algorithm determines a
simple change in energy consumption as theft of EE.

The boxplots in Figure 5 show the expected accuracy of the methods for detecting
NTLEE. It can be concluded that linear regressions have the lowest classification accuracy
(about 60–75%); correspondingly, they are the least suitable for determining NTLEE. At
the same time, convolutional neural networks with controlled recurrent blocks have the
highest sensitivity (about 97%), hybrid models of an autoencoder with memory elements
are slightly less sensitive (sensitivity is about 96%). It is worth noting that hybrid models
based on an autoencoder are easier both in implementation and in training.
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The support vector methods, actively utilized until 2020, yield a considerable range
of sensitivities depending on the various model types, averaging around 85%. Notably,
decision trees paired with learning boosts stand as the most sensitive among the methods
generally considered visually interpretable by humans, reaching sensitivities of up to 95%.

To better understand what the sensitivity of algorithms means, it is necessary to
understand which metrics of the effectiveness of detecting NTLEE are used in various
publications [15,16] (Table 2).
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Table 2. Sensitivity metrics.

Metric Full Name Formula

Rec, Sen, TPR Recall, sensitivity, true positive rate TP
TP+FN

FPR False positive rate FP
FP+TN

Spe, TNR Specificity, true negative rate TN
TN+FP

Pre Precision TP
TP+FP

Acc Accuracy TP+TN
TP+TN+FP+FN

ROC curve Receiver operating characteristic -
AU-ROC Area under ROC S(ROC)

S(FPR·TPR)
PR-curve Precision recall curve -
AU-PR Area under PR S(PR)

S(Rec·Pre)
Rec, Sen, TPR Recall, sensitivity, true positive rate TP

TP+FN
FPR False positive rate FP

FP+TN
Spe, TNR Specificity, true negative rate TN

TN+FP

To better comprehend the implications of the values derived from the formulas, we
need to introduce a measurement classification matrix. This matrix is depicted in Table 3.
According to the table, when the measurements from consumers engaged in electrical
energy theft are correctly identified as involving theft, such an outcome is termed true
positive. Conversely, if theft goes undetected despite occurring, the situation is labeled as
false negative.

Table 3. Measurement classification matrix.

Consumer Data Recognized as Measurements
that Do Not Contain NTLEE

Recognized as Measurements
Containing NTLEE

Without NTLEE True negative (TN) False positive (FP)
With NTLEE False negative (FN) True positive (TP)

In instances where no EE theft has occurred according to the energy measurements,
and the employed algorithm corroborates this by not signaling any theft, this scenario is
described as true negative. However, if the algorithm incorrectly signals theft in a situation
devoid of any, it results in a false positive error.

In conclusion, the first term in each label (false (F)/true (T)) reflects the accuracy of the
algorithm in mirroring the reality of the situation. Meanwhile, the second term (negative
(N)/positive (P)) indicates the actual occurrence or nonoccurrence of nontechnical losses of
electrical energy (NTLEE).

Returning to Table 2, we can conclude that the sensitivity of the algorithm is best
described by the frequency of true positive values (true positive rate), since network
organizations are more interested in finding the presence of theft of electrical energy than
in finding its bona fide consumption. Nevertheless, such characteristics as the frequency
of false positive values (false positive rate), the frequency of true negative values (true
negative rate), and accuracy (precision) make it more correct to compare different methods
and models with each other.

Such a parameter as accuracy can be used correctly only if balanced data are available,
since this metric shows how well the model determines data both with and without energy
theft. Balanced is defined as data in which conscientious and unscrupulous consumers are
represented in equal proportions.

A similar characteristic is the PR curve [73,81], which is in the coordinates of the
accuracy (precision) of the model along the vertical axis and the completeness (recall) of
the data along the horizontal axis, as shown in Figure 6.
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Figure 6. Operating (PR) characteristic of the receiver [81]. Differently colored lines with the same
style correspond to experimental neural network performance in terms of one test case but with
different network settings.

Similarly, to the ROC curve, when using a PR curve, it is necessary to analyze the area
under the curve: the larger the area under the graph, the more accurate the model is.

3.2. Comparison of Learning and Recognition Times

One of the primary criteria for comparing different types of neural networks involves
evaluating factors such as training time and recognition time. These factors are vital in
assessing a trained neural network’s capability to identify dishonest electricity consumers.

Figure 7a,b illustrate that convolutional neural networks appear to be more adept at
recognizing unscrupulous electricity consumers [81]. However, it is important to note that
autoencoders are only slightly less capable. Specifically, they lag by a margin of up to 3% in
terms of sensitivity and up to 1% regarding specificity.
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As can be seen from Table 4, which shows the learning and recognition times character-
istic of different types of neural networks, the autoencoder learns much slower than simple
direct propagation networks or convolutional neural networks. However, its speed is much
higher than hybrid models that use several types of neural networks. The recognition times
for different types of networks are almost identical [81].

Table 4. Comparison of different types of ANN by information processing speed.

№ Type ANN Training Time, s Recognition Time, s

1 Convolutional neural network with
recurrent neural network (CNN + GRU) 1611.10 2.49

2 Autoencoder (AE) 303.42 2.37
3 Deconvolutional neural network (DNN) 42.04 2.35
4 Convolutional neural network (CNN) 38.81 2.13

Additionally, it is worth pointing out that the autoencoder is easier to understand and
configure. To better understand how the autoencoder and convolutional neural networks
work, the following section describes their graphical interpretation.

3.3. The Main Hyperparameters of ANN

Table 5 shows hyperparameters of convolutional neural networks and Table 6 shows
hyperparameters of other neural networks that are also used to detect theft of electrical energy.

Table 5. Hyperparameters of convolutional neural networks for detecting electrical energy theft.

№ Parameter Comparison within a Group of Points of Time of a Single
Consumer

Within a Group of Consumer
Points for a Single Point of Time

1 Multidimensionality Two-dimensional—Intervals
1 h and more often

One-dimensional—Daily,
monthly intervals One-dimensional—Any interval

2 Dimension of the input layer
Number of days (31, no more

than 90) × Number of
measurements per day

Sampling depth × Number of
measurements per day (1))

Number of consumers × Number of
measurements per day

3 Number of convolutional
layers 4–6 2–4 6+

4 Dimension of the filter core 3 × 3, 5 × 5 3 × 1–5 × 1 51 × 1–251 × 1

5 Number of channels 32–128 (fixed or layer-by-layer
growth)

32–128 (fixed or layer-by-layer
growth) 5–20 (growth by layers)

6 Number of subdiscretization
layers

1–2 times less convolutional
layers

1–2 times less convolutional
layers = number of convolutional layers

7 Number of normalization
layers

1 or = number of convolutional
layers

1 or = number of convolutional
layers not used or 1

8 Normalization bucket size 30–50 30–50 minimum
9 Step 1, in subdiscretization layers 2–3 1, in subdiscretization layers 2 1, in subdiscretization layers 2
10 Learning rate variable 10−5–10−2 variable 10−5–10−2 variable 10−5–10−2

11 Percentage of excluded
neurons 0.3 0 0–0.3

12 Number of fully connected
layers 3–5 3 1–3

13 Number of neurons in a
fully connected layer 32–128 32–128 6+

14 Number of training epochs 100–300 to 500 100 50
15 Activation function ReLU, LeakyReLU ReLU, Sigmoid (last layer) Sigmoid, ReLU
16 Learning algorithm SGD Adam, SGD SGD, Adam

From the tables presented, it can be concluded that in most publications, only two
learning algorithms are used: SGD and Adam. Autoencoder-controlled recurrent blocks
and direct propagation networks have a smaller number of learning epochs compared
to convolutional neural networks; nevertheless, the learning rate of convolutional neural
networks is higher than that of most models.
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Table 6. Hyperparameters of neural networks for detecting electrical energy theft.

№ Parameter Autoencoder (AE, SAE,
DAE, VAE, etc.)

Managed Recurrent
Blocks

Long-Term-Short-
Term Memory

Networks

Direct Distribution
Networks (Multilayer

Perceptrons)

1 Application Time series analysis Memory elements NON-time series analysis for
NTLEE

2 Number of layers 3, rarely 5 1–2 4

3 Number of neurons 256-128-64-128-256
400-300-200-100-200-300-400 50–100 64–512

4 Learning rate variable 10−4–10−1 variable 10−4–10−1 variable 10−5–10−2

5 Percentage of
excluded neurons 0.2–0.4 0.3–0.4 0–0.4 5–20 (growth by layers)

6 Number of training
epochs 30–60 20–30 50 =number of convolutional

layers
7 Activation function ReLU Tanh Sigmoid, ReLU not used or 1
8 Learning algorithm SGD Adam, SGD Adam SGD, Adam

3.4. Source Data, Metric, Depth of Retrospective, and Sampling Rate

Each model works with a specific set of source data. The introduction of smart meters
allows users to significantly expand the set of necessary source data, as well as increase the
sampling rate, that is, the number of counter surveys for a given time period.

During the analysis of publications, it was revealed that for most models, only the
consumption load profile is required as initial data (76% of publications); for a small propor-
tion of algorithms, additional data are needed regarding the receiver power characteristics
in accordance with the specifications issued by the network organization, such as the
installed active power, permissible reactive power, or power factor (9% of publications);
even fewer models use weather data and consumption integrals for a week and a month
(6% of publications for each dataset); and the smallest part of the algorithms separately use
data on the geographical location of the object (3% of publications), for example, in [41,100].
The distribution can be seen in Figure 8a.
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It is worth noting that in the territory of Russia today, most of the electrical energy is
transmitted only once a month by consumers of electric energy when paying utility bills;
therefore, without the active introduction of smart meters, the search for unscrupulous
consumers of electric energy is a rather difficult task. At the same time, after the installation
of intelligent metering devices, losses are already reduced by several cents in the first
months, as noted above.

From Figure 8b, it can be seen that most models and algorithms require a retrospective
of data from 1 to 2 years [69]. From this, it can be concluded that if a newly connected con-
sumer immediately, after their connection, starts to use electrical energy and is not detected,
while maintaining certain patterns of their behavior, it is unlikely to be detected further
by existing algorithms. Only 9% of publications describe how to detect theft of electrical
energy online, and in such cases, it is necessary to fulfill certain requirements [24,42,101].

Regarding metrics or characteristics, thanks to which it is possible to separate “good”
algorithms and models from “bad”, sensitivity or TPR is most often used (about 33% of
publications), as can be seen from Figure 8c. Reliability or accuracy is used less often (about
29% of publications), which is most likely due to the fact that it requires balanced data,
which, of course, are absent in real measurements [43,98]. Such a qualitative characteristic
as the ROC curve or the operating characteristic of the receiver and its quantitative charac-
teristic is used only in 21% and 17% of models, respectively. By means of this characteristic,
an assessment was made in [27,40,43,97–99].

Regarding how accurate the energy consumption readings should be, the analysis
of publications shown in Figure 8d suggests that half-hour and hourly time intervals are
equally used (25% of publications in both cases). The expenditure of electric energy over a
longer period of time does not make it possible to identify patterns in consumption, so that
in the future it would be possible to detect the moment of theft of electrical energy. On the
other hand, more frequent sampling of data, often in large network organizations, for each
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consumer may be impractical from an economic point of view. A similar conclusion was
reached in [102].

As already described above, a consumption profile is used for the analysis of energy
consumption in order to identify NTLEE, which is collected from the meters of individual
users of electric energy. At the same time, it is obvious that in the presence of a distributed
load, the use of data from the head counter installed on the feeder of a transformer substa-
tion, or at the input of a transformer substation, can help in reducing the search area for
places where theft of electrical energy occurs. However, the analysis of publications shown
in Figure 8e shows that only 3% of models use data on electrical energy consumption from
the head meter.

This fact may indicate that when using real data, there is no section of the electrical
network in which data on energy consumption is present simultaneously, both at the head
section and at all outgoing consumers of electric energy.

Since the algorithms in question use artificial intelligence, an important aspect is the
training of the algorithm with a “teacher”—a person who can correct the behavior of the
algorithm if there is absolute confidence in the presence or absence of NTLEE in a specific
measurement of electrical energy. The analysis of publications presented in Figure 8f shows
that in most publications, a “teacher” is not used, while it is worth noting that the difference
in the number of publications where a “teacher” is used necessarily and not used at all is
3%. From this, it can be concluded that the presence or absence of a “teacher” is not a strict
requirement that determines the practical suitability of the algorithm. One of the important
characteristics of any algorithm aimed at detecting NTLEE is the operating time of the
algorithm before the detection of theft of electrical energy. That is, as a duty, the algorithm
must analyze the data in order to then assert that the theft of electrical energy took place at
a certain point in time.

Figure 8g shows that most algorithms (40%) take several months to identify patterns in
the behavior of a particular consumer and then determine the presence of theft of electrical
energy with specified accuracy. Fewer algorithms (33%) take 1 year to do this; the fastest
algorithms that can detect a pattern in a few days are used only in 18% of publications. The
smallest number of publications (9%) considers algorithms that can determine the presence
of NTLEE within a few weeks. Thus, in most cases, if the connection to the power supply
system occurred in January, then most algorithms will be able to determine the presence of
the NTLEE, in the best case, in March.

3.5. Types and Features of Measurement Information Sources

All sets of electrical energy measurements that are used by any algorithm can be
divided into three categories: real data, data from open sources, and synthesized data.

Table 7 shows open datasets for the search for NTLEE in various studies. The informa-
tion in these sets is collected on real objects and correspond to the behavior of real users of
electric energy.

Regarding the advantages of real data, it can be noted that they can be connected
to the network topology, which allows for calculations to be made not only taking into
account data obtained from a specific metering device but also using data from neighboring
metering devices, as well as devices that are located “higher” in the topography network
logs, that is, the use of balance sheet accounting, which is discussed in Section 3.6. There is
also a retrospective for several years in the real data, which allows for training the model
and then using it as one of the tools for organizing field raids by network companies
in order to confirm the presence of NTLEE. On the other hand, real measurements are
classified information, especially with network topology, since, to a certain, extent it
borders on personal information of subscribers, which is not subject to disclosure. Not
every organization is ready to share such information. It is even more difficult to get
information about whether there was theft by a specific subscriber, as well as the volume of
this theft. In practice, for example, on the territory of the Russian Federation, the Decree
of the Government of the Russian Federation No. 442 of 04.05.2012 is in force, according
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to which, when the fact of unaccounted consumption of electric energy is revealed, it
is assumed that a similar consumption took place from the date of the last check of the
metering device. That is, there is no precise indication of the period of theft of electrical
energy. Also, real data differ in dimension both within the same network (0.4 kV power
supply system with a distributed load) and for one specific subscriber. Additionally, it is
worth noting that the data obtained directly from the measurement points are subject to
manual filtering, since events may occur that affect the readings of the metering device
marked in another system (network topology change, incorrect operation of the metering
device, etc.).

Table 7. Open datasets for NTLEE search.

№ Dataset Name Number of Consumers Time Horizon Discreteness

1 UMass Smart dataset [103] Over 400 anonymous houses Over 2 years 1 min

2 SGCC dataset [104] 42,372 users Over 2 years Day 1

3 Irish Smart Energy Trial
(ISET) dataset [105]

Over 5000 household, industrial and
small-motor consumers 535 days 30 min

4
Individual household electric
power consumption dataset

[106]
1 house About 4 years old 1 min

5 Electricity Load Diagrams
dataset [107] 370 consumers About 4 years old 15 min

6 Load Profiles for TMY3
Locations dataset [108]

More than 16 types of small-engine
and household buildings at three

locations in the USA
1 year 1 h

7 Low Carbon London Smart
meter trials dataset [109] 5567 households Over 2 years 30 min

8 Open Energy Information
(OpenEI) [110] 936 household consumers 1 year 60 min

9 Pecan Street dataset [111] More than 1000 consumers In real time

10 AER dataset [112] 25 households 2 year 30 min

11 PRECON [113,114] 40 domestic households 1 year 1 s

Databases from open sources are publicly available. It is worth noting that the depth
of the data sample is sufficient for analysis (from a year), the dimension varies from 1 min
to 1 day, and the primary data processing is carried out by publication. Nevertheless, these
data contain measurements of electric energy consumed by a specific subscriber (household,
industrial, small-motor), and there is no binding to the power supply system, that is, there
is no possibility of the phenomenon of noncontractual consumption of electric energy. In
this regard, the correctness of these data is also questioned. According to the previous
section, data from open sources are recognized by the scientific community as well-known
electrical energy consumption, that is, even if there is unaccounted for consumption, there
is no corresponding markup (with the exception of the SGCC dataset database, in which
there are marks of electrical energy theft, although there are no guarantees that they are
exhaustive). One of the important advantages of open databases is the ability to compare
the results of new models and algorithms with existing models and algorithms.

The synthesized data contain simulated information based on known patterns of
electrical energy consumption and depend on the experience of the person responsible
for creating these data. One of the obvious advantages is that these data can be easily
linked to any network topology, both real and modeled, independently. Sampling depth,
dimensionality, and determination of time limits of unaccounted and noncontractual
electrical energy consumption can be modeled for any task.
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3.6. The Effect of Additional Data on the Sensitivity of the Algorithm

According to this literature review, the availability of additional data can increase the
sensitivity of the algorithm by 7–10%, while reducing the frequency of false positive values
by 3–5%.

In particular, in [88], the weekly power consumption profile, zero measurements,
missing measurements, and the season were used as additional data. For comparison, ROC
curves are presented for two cases: with additional data and without them.

In the case of using additional data, the area of the ROC curve is 0.83 in the case of a
training sample, while without additional data, the logical area is only 0.74.

The results of [73], which are partially presented in Figure 9, can serve as confirmation
that the use of additional data is justified. In particular, it is shown that the larger the
training sample, the more sensitive the neural network becomes. The PR characteristic of
the model without additional data is indicated by a dotted line, and it is located below the
other curves, which indicates that the presence of additional data increases the accuracy of
the model.
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Figure 9. PR characteristic for a different amount of source data and for a different size of the training
sample [74]. Differently colored lines with the same style correspond to experimental neural network
performance in terms of one test case but with different network settings.

As additional source data, one can use the percentage of zero measurements, the
percentage of measurement losses, the season of the year, the geographical coordinates
of the power supply facility, the district (municipality, district, locality), the maximum
capacity in accordance with the issued specifications, the tariff number, the location of the
electrical energy meter, the type and brand of the meter, firmware version, year of issue of
the metering device, and date of the last verification of the metering device.

If we talk about additional electrical parameters, it is recommended to use no more
than five such characteristics. Among them, according to this review, the following values
may be present: daily peak load power, share of off-peak power consumption, share of
peak power consumption, share of hourly constant power consumption, daily power
consumption, number of hours of maximum loads, daily average power, ratio of peak
power to average power for the period, power variance per day, power variation per
day. The use of more than five parameters leads to the creation of linear combinations of
parameters with each other, and therefore the accuracy of the algorithms begins to decrease
markedly, as can be seen from Figure 10. Nevertheless, theoretically, the method of (deep)
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machine learning should “independently” identify complex regressions in the presence of
a sufficient training sample and effective training methods [70].
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Hybrid models for detecting theft of electrical energy, created for pattern recognition
and autoregressions, have less ability to generalize dependencies. Deconvolutional neural
networks (DNNs) work better in this regard.

3.7. The Problem of Balanced Source Data

Balanced source data in the context of searching for NTLEE refers to data that equally
include both bona fide consumers of electrical energy and subscribers involved in commer-
cial losses. It is worth noting that in real samples, the instances of electrical energy theft are
significantly fewer compared to instances of conscientious use. Consequently, training with
such samples often results in a high number of unfavorable false negative classification
cases. Increasing the representation of electrical energy theft in the training sample not
only raises the number of false positive outcomes generated by the model but also reduces
the number of false negative outcomes, as illustrated in Figures 11 and 12.
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Figure 12 illustrates that when true positive values are fewer than true negative values,
the neural network tends to produce a small number of false negative values. If the count
of true positive values is comparable to that of true negative values, the number of false
negative outcomes decreases to zero [43].

Furthermore, Figure 12a,b demonstrate that when operating on a specific sample
or on real unbalanced data, the neural network is less efficient compared to when it is
working on a training selection [95]. This is attributed to both the introduction of new data
and the inadequate representation of electrical energy theft cases in the training sample.
These figures highlight that balanced data enhances the metrics responsible for the model’s
accuracy and sensitivity. It is noteworthy that the error rate in the test samples becomes
roughly equivalent to that in the training samples. Without balanced data, the error rate in
the test samples surpasses that in the training samples. This aspect was considered in [95].

Some of the methods of balancing the sample with measurements of electrical energy
are described below [76,84]:

1. Weight coefficients: The task of the weighting coefficients is to equalize the data and
create a balance by multiplying by the value of the weighting coefficient, which is
equal to the inverse of the percentage of data.

2. RUS: This technique reduces the number of measurements without theft of electrical
energy to the number of measurements with theft of electrical energy.

3. ROS: This technique acts like RUS, but instead of reducing the number of measure-
ments without theft, it, on the contrary, increases the number of measurements with
theft of electrical energy.

4. RUS-ROS: A compromise solution between RUS and ROS, the essence of which is to
simultaneously reduce the number of measurements without theft of electrical energy
and increase the number of measurements with theft of electrical energy until equal
proportions are achieved.

5. K-medoids, K-means: In this technique, clustering of the initial data to centroids/medoids
is performed, taking them as new points. In fact, there is a decrease in the number of
measurements without theft of electrical energy.

6. Tomek links: If a measurement without theft of electrical energy is located next to
a measurement in which there is theft of electrical energy, then the measurement
without theft is deleted.

7. SMOTE: Additionally, new points with thefts of electric energy are synthesized next
to the original points where the theft data is present.
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8. ADASYN: A kind of SMOTE with the number of synthesized points proportional to
the weighting factor of the number of points with electrical energy theft.

9. CBOS: When using this technique, additional points with NTLEE are synthesized near
the measured points with NTLEE, but the number of points is modeled in proportion
to their distance to the cluster centroid.

It is important that a decrease in the sample or its increase leads to certain conse-
quences, which is demonstrated in Table 8. A decrease in the data sample can lead to the
loss of abnormal samples of electrical energy consumption that do not contain theft of
electricity. In this connection, it becomes more likely that a false positive result appears. An
increase in the sample size leads to longer training of the ANN.

Table 8. The time of training and operation of the convolutional ANN with various balancing
techniques.

№ Measurements
Recognized as

Measurements, Not
Containing NTLEE

Recognized as
Measurements

Containing NTLEE

1 Without balancing 44 min 12.58 s
2 Weight coefficients 46.5 min 15.85 s
3 RUS 13 min 9.13 s
4 ROS 60 min 13.52 s
5 K-medoids 27 min 11.66 s
6 SMOTE 8 h and 12.5 min 4 min and 12.71 s
7 CBOS 8 h and 2 min 30.59 s

Based on this table, we can conclude that complex algorithms such as SMOTE and
CBOSS do not accelerate the neural network; however, they significantly reduce the learn-
ing rate.

Figure 13 a,b show that the networks trained on balanced data utilizing the CBOS
method are the most accurate [80]. Following the CBOS method in terms of accuracy,
according to the AUC criterion, is the ROS method.
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It is worth noting that ROS is the least demanding in terms of computing costs.
Therefore, it is proposed to use this algorithm to balance the initial data [79].
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4. Conclusions

Modern information methods for detecting nontechnical losses of electrical energy
serve as alternatives to schematic methods. These methods do not aim to calculate the
exact magnitude of nontechnical losses or offer a strict formal description of the conditions
leading to their occurrence. However, they do facilitate the identification of events such
as hidden failures in EE accounting facilities and complexes, transmission and reception
failures of EE accounting displays via unreliable communication channels, and attempts at
theft or unaccounted consumption of EE by individual unscrupulous energy entities—all
without requiring detailed knowledge of the network’s topology and replacement scheme,
and aiding in the reduction of EE imbalances pertinent to 0.4–6 (10) kV networks.

Simultaneously, 41% of the analyzed publications utilized neural networks to identify
nontechnical losses of electrical energy (NTLEE). The most popular choices are convolu-
tional neural networks (CNNs) and autoencoders (AEs), with the median performance
of such models and methods delivering a sensitivity rate to NTLEE of around 92%. The
highest-performing setups achieve levels between 95 and 97%. Moreover, the majority of
publications undertake the analysis of power consumption profiles as time series, employ-
ing pattern recognition theory.

Convolutional neural networks (CNNs) have emerged as the primary method for
detecting NTLEE in the field of pattern recognition, particularly in publications from 2020
to 2022. Highly discrete profiles, characterized by hourly or half-hourly measurements of
electrical energy consumption, leverage two-dimensional networks. In contrast, scenarios
limited to daily consumption data over a month or hourly data within a single day employ
one-dimensional convolutional networks.

While autoencoders present a viable alternative for pattern recognition, they generally
trail behind specialized neural networks in terms of accuracy and data processing speed.
However, they operate faster than the more complex convolutional neural networks.

The selection of ANN hyperparameters hinges on one of two strategic approaches to
detecting electricity theft: analyzing the profile of an individual consumer over an extended
period or examining a group of consumers at a single point in time. To accommodate
different approaches and initial datasets, the algorithm can exhibit modularity, potentially
incorporating several neural networks working in tandem but connected sequentially.

Key metrics and criteria for evaluating the performance of NTLEE detection models,
methods, and algorithms include sensitivity (the frequency of true positive outcomes),
accuracy (the proportion of correctly identified true positive and true negative instances),
and the area under the receiver operating characteristic curve, which considers the relative
coordinates of false positive and true positive values.

A substantial retrospective depth, spanning at least one year—though preferably
extending to two or more years—is critical when analyzing power consumption profiles.
The typical measurement interval falls between 0.5 and 1 h. Publications frequently utilize
real and synthesized measurements alongside archival databases from open sources for the
training, verification, and fine-tuning of the ANN. These sources are favored for their acces-
sibility, realistic load schedules, and the reduced necessity for extensive data preprocessing.

In 76% of publications, only power consumption profiles are used without involving
additional source data, while ensuring high sensitivity to NTLEE. Auxiliary data are
electrical parameters, meteorological data and, less often, cadastral data and geolocation.
At the same time, the use of additional data within reasonable limits makes it possible to
increase the sensitivity of neural networks. To search for consumers who use electrical
energy on a noncontractual or unaccounted for basis, several characteristics can additionally
be applied that relate both directly to loads (parameters of the load and power consumption
graph) and characteristics unrelated to loads (coordinates, locality, etc.). The recommended
number of additional characteristics, related to power consumption is four. A greater
number of characteristics leads to the emergence of linear combinations, and therefore the
sensitivity of the model sharply deteriorates.
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Most researchers are faced with the problems of marking up the source data, incom-
pleteness of images of theft in the source data and the amount of source data, as well as the
imbalance in the dataset. Balancing of the initial data in conditions of their shortage occurs
by increasing the dimension in the part of the measurement sample with the presence of
theft of electrical energy. Q-learning based on the Bellman optimality criterion can be taken
as an alternative option for balancing data, as well as sample synthesis using a generative
adversarial ANN with an autoencoder.
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