
Citation: Faraji, M.A.; Shooshtari, A.;

El-Hag, A. Stacked Ensemble

Regression Model for Prediction of

Furan. Energies 2023, 16, 7656.

https://doi.org/10.3390/en16227656

Academic Editor: Mario Marchesoni

Received: 17 September 2023

Revised: 10 November 2023

Accepted: 16 November 2023

Published: 19 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Stacked Ensemble Regression Model for Prediction of Furan
Mohammad Amin Faraji 1,† , Alireza Shooshtari 2,† and Ayman El-Hag 3,*

1 Department of Mechanical Engineering, University of Tehran, Tehran 1439813141, Iran;
nima.faraji@ut.ac.ir

2 School of Electrical and Computer Engineering, University College of Engineering, University of Tehran,
Tehran 14395515, Iran; a.shooshtari@ut.ac.ir

3 Department of Electrical & Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
* Correspondence: ahalhaj@uwaterloo.ca
† These authors contributed equally to this work.

Abstract: Furan tests provide a non-intrusive and cost-effective method of estimating the degradation
of paper insulation, which is critical for ensuring the reliability of power grids. However, conducting
routine furan tests can be expensive and challenging, highlighting the need for alternative methods,
such as machine learning algorithms, to predict furan concentrations. To establish the generalizability
and robustness of the furan prediction model, this study investigates two distinct datasets from
different geographical locations, Utility A and Utility B. Three scenarios are proposed: in the first
scenario, a round-robin cross-validation method was used, with 75% of the data for training and the
remaining 25% for testing. The second scenario involved training the model entirely on Utility A and
testing it on Utility B. In the third scenario, the datasets were merged, and round-robin cross-validation
was applied, similar to the first scenario. The findings reveal the effectiveness of machine learning
algorithms in predicting furan concentrations, and particularly the stacked generalized ensemble
method, offering a non-intrusive and cost-effective alternative to traditional testing methods. The
results could significantly impact the maintenance strategies of power and distribution transformers,
particularly in regions where furan testing facilities are not readily available.

Keywords: furan; machine learning; transformer

1. Introduction

Power and distribution transformers are critical and costly components in any power
system grid. They play a vital role in ensuring the reliability of the power grid by trans-
ferring electrical energy from one voltage level to another. The overall health condition of
these transformers is mainly dependent on the state of their insulation system, and espe-
cially the paper insulation [1]. Overloading or internal faults during operation can expedite
the aging process of the transformer paper insulation. Hence, monitoring the transformer
insulation paper’s health condition is critical to ensure its satisfactory performance, effi-
ciency, and longevity. To ensure the stability and reliability of the power system, it is crucial
to monitor, maintain, diagnose, and upgrade transformers regularly. This helps prevent
costly accidents and damage, extend transformer life, increase grid reliability, and reduce
maintenance costs [2–4]. Accurately evaluating the condition of power transformers is
essential for creating and sustaining a highly reliable power system [5,6].

One key parameter in assessing the health condition of the transformer paper insula-
tion is the concentration of furan compounds. A correlation between the level of furan in
transformer oil and the degree of polymerization (DP) has been reported [7–9]. Moreover,
many studies have correlated the remaining lifespan of transformers with the condition
of the oil–paper insulation system [10–12]. Therefore, measuring the amount of furan in
transformer oil can effectively assess the transformer’s paper health condition. Thus, furan
measurements offer a non-intrusive way to estimate the degradation of the paper insulation
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instead of measuring the DP and tensile strength (TS) of cellulose insulation paper, which
requires taking a sample from the paper itself. This non-intrusive method is not only less
invasive but also reduces the need for transformers to be taken out of service, which can be
costly and disruptive to utilities.

Predicting furan concentrations can reduce the overall transformer maintenance cost.
This is mainly due to the fact that the furan testing facilities may not be readily available for
some countries, and hence testing one oil sample can be expensive [13]. This highlights the
importance of developing alternative methods, such as machine learning (ML) algorithms,
to predict furan concentration.

ML algorithms have seen significant advancements in recent years, proving efficacy in
numerous applications. Previous studies have applied intelligent techniques to monitoring
and diagnosing transformers. Most of these studies use intelligent techniques to analyze
and predict dissolved gas, oil tests, or transformer health [5,6]. Jahromi et al. presented
a practical approach to implementing the computed HI, which can serve as a basis for
developing a capital plan to replace assets nearing the end of their lifespan [14]. This
method has proven to be an effective tool for assessing the likelihood of transformer failure
and determining the remaining lifespan of the equipment. Another study developed an
AI-based health index approach to accurately assess power transformer conditions while
handling data uncertainty [15]. A hybrid AI system for the prognostic health management
of power transformers that integrates various algorithms and models for diagnostics, health
monitoring, and maintenance optimization has also been introduced.

In a different study, a general regression neural network (GRNN) was created to evaluate
the health index (HI) of four different conditions (very poor, poor, fair, and good). The trans-
former’s health condition was predicted with 83% accuracy using six crucial inputs, namely
the oil’s total dissolved combustible gas, furan levels, dielectric strength, acidity, water content,
and dissipation factor [16]. Alqudsi et al. focused on utilizing ML to predict the insula-
tion health condition of medium voltage distribution transformers based on oil test results.
The study demonstrated the effectiveness of ML algorithms by testing large databases of
transformer oil samples. The research highlights the potential cost reduction in transformer
asset management using ML prediction models [17]. Different ML algorithms have been
proven to be beneficial for the assessment of the transformer health index. A study compared
seven different ML approaches and found that random forest has the highest predicting
accuracy [15]. Another work employed the k-Nearest Neighbors (kNN) algorithm to classify
distribution transformers’ health index, and achieved good accuracy [18].

Leveraging ML techniques to predict furan concentrations in transformers can provide
a more economical and accessible approach to monitoring the health of transformer paper
insulation. Thus, some studies have focused on predicting such expensive tests as furan
concentrations. Ghunem et al. used an artificial neural network to predict furan content
based on input parameters such as carbon monoxide, carbon dioxide, water content,
acidity, and breakdown voltage [19]. The results showed an average prediction accuracy of
90%. Another paper took a similar approach and utilized a neural network with stepwise
regression to predict furan content in transformer oil using oil quality parameters and
dissolved gases as inputs. The model achieved around 90% prediction accuracy [20].
Mahdjoubi et al. used a different methodology and used least squares support vector
machines (LS-SVM) to predict furan in power transformers [21]. In this work, dissolved
gases (carbon monoxide and carbon dioxide) were used as input variables. This approach
was proven to reduce testing time and provides a good estimation of results validated by
experimental tests. Another work investigated using dissolved gas analysis, breakdown
voltage, oil properties, and furan compounds to estimate the degree of polymerization
of transformer insulating paper, which indicates paper aging and remaining transformer
life [22]. Furan content in transformer oil can also be estimated via a fuzzy logic approach
using UV-Vis spectroscopy, which was developed in [23].

This paper investigates the prediction of furan using two distinct datasets, Utility A
and Utility B, representing different geographical locations. To ensure the generalizability
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of the model, three scenarios are proposed based on common features between the two
datasets. In the first scenario, round-robin cross-validation was employed by training on
75% of the data from Utility A and testing on the remaining 25%, with results averaged
across all iterations. In the second scenario, the model was trained on the entirety of Utility
A and tested on Utility B. In the third scenario, the Utility A and Utility B datasets were
merged to create a new combined dataset, which was used for round-robin cross-validation
similar to the first scenario. These three scenarios are explored to establish the robustness
and generalizability of the furan prediction model across different geographical locations.

In the context of learning-based problems, the primary objective is to identify a
model that can accurately predict the output. Relying solely on a single model may
not yield the best results, as its accuracy is not guaranteed. To overcome this limitation,
a stacked regression model is proposed to generate a final, more robust model. This stacked
generalized model offers a more comprehensive and reliable approach to predicting outputs
by incorporating a diverse range of models. This can enhance the accuracy and effectiveness
of learning-based systems.

Given the shortcomings of the previous works, the difference between the scientific
contributions of this paper and the other ones can be summarized as follows:

• The proposed ML regression models (ExtraTress, KNN, and XGBoost) have been
proven to be effective in assessing the quality of transformer oils in numerous
studies [17,18,24]. These algorithms are successful in many fields, such as image
processing, biomedicine, and data science. They have anti-noising advantages
and better generalization abilities relative to other models [17]. Algorithms like
ExtraTrees and KNN are also suitable for building prediction models with small
amounts of data. Previous studies have applied these algorithms separately but
not in a combined way. We propose a novel approach that stacks all the models in
a generalized regression framework. This method is known to produce the most
accurate predictions and is among the best ML techniques in many data science
contests. Two different metrics evaluate these algorithms.

• The robustness of the models was tested on two datasets from different regions and
on three scenarios. A step-wise regression was also used to select the most relevant oil
test features for predicting the HI value and to eliminate the less-important ones.

To validate the model, a method known as round-robin cross-validation is employed,
which offers significant advantages over traditional training and testing approaches. Unlike
the conventional method, where a limited number of new cases is used for testing, cross-
validation allows us to utilize all available data for training and testing the regression
model concurrently. This comprehensive approach enables us to assess the algorithm’s
performance at multiple stages, such as before and after each data filtration step. By doing
so, we gain valuable insights into the influence of each filtering process on the results
produced by the classifier. This approach provides a better understanding of the model’s
effectiveness and improves our ability to make informed decisions.

2. Materials and Methods
2.1. Datasets

This study used two distinct datasets: Utility A and Utility B. The Utility A dataset
includes maintenance records for 730 power transformers from a local Gulf region utility.
The dataset encompasses test results of dissolved gas analysis (DGA) and oil quality tests,
such as breakdown voltage, water content, acidity, and furan content. The transformers
in this dataset were produced between 1960 and 2011, with power ratings ranging from
12.5 to 40 MVA and voltage levels of 66/11 kV. Utility B comprises 327 transformer oil
samples with a voltage level of 33/11 kV and a rating of 15 MVA. As some oil test results
in Utility A are absent in Utility B, only the common features between these two datasets
were considered in this study. For instance, CO, CO2, color, and dissipation factor data do
not exist in Utility B and were therefore excluded from Utility A to construct a comparable
model. Notably, both datasets differ in geographical location and were obtained from two
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different countries. Table 1 shows nine common features between Utility A and Utility B
that were used in this study, along with their corresponding index.

Table 1. List of used features.

Features Index

H2 1
Water 2
Acid 3
BDV 4
IFT 5

Methane 6
Ethylene 7
Ethane 8

Acetylene 9

2.2. Data Pre-Processing

The pre-processing of the data was divided into two main steps to ensure the quality of
the data used for regression. In the first step, outliers were identified and removed, as they
can significantly impact a regressor’s performance and lead to inaccurate results. Each
feature’s mean and standard deviation were computed to identify and remove outliers,
and any observation whose absolute difference from the mean exceeded three times the
standard deviation was removed. In the second pre-processing step, the data were nor-
malized to ensure that all features had the same significance. This was important because
features with larger values can dominate the learning process, leading to biased results.
A standard scaling method was employed, which involved subtracting the mean from each
feature and dividing by the standard deviation. This resulted in a feature with a mean of
zero and a standard deviation of one, which ensured that all features had equal weight in
the learning process and reduced the impact of any outliers that were not removed in the
first step.

2.3. The Machine Learning Methodology

This study used an ML approach to predict furan content. This approach involves
three phases: training, testing, and deployment. During the training phase, data with
known target values, which in this study were furan, were collected, and a subset of
features was selected to construct a predictive model, specifically a regressor. In the testing
phase, the performance of the models was evaluated on a separate set of data not used for
training, which ensures that the model can generalize well to new unseen data. Finally,
the model was applied to new data in the deployment phase to predict the furan content.
A feature selection method called stepwise regression was employed to eliminate irrelevant
and redundant features, reducing noise and dimensionality, which will be discussed later.

There are several algorithms available to build ML-based regression models, and in
this study, ExtraTrees, k-Nearest Neighbors, and Extreme Gradient Boosting were used to
predict furan content, followed by a stacked regression model that combines all of these
algorithms together, which will be discussed later. Each algorithm has its strengths and
weaknesses and may adapt differently to the given data. A brief description of the machine
learning algorithms that were used in this study is presented below:

• ExtraTrees is an ensemble learning method that builds on decision tree algorithms,
similar to Random Forests (RF) [25]. It utilizes an ensemble of decision trees trained
on different subsets of the input data. By averaging the predictions from multiple
decision trees, RF achieves better predictive performance and helps prevent overfitting
compared to using a single decision tree model. While Random Forests uses bootstrap
aggregating (bagging) to sample different variations of the training data for each
decision tree, ExtraTrees differs in that it trains each decision tree using the full dataset.
ExtraTrees randomly selects feature values to split on when creating child nodes
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in the trees [26]. This reduces bias but increases variance and computation cost,
though ExtraTrees still tend to be faster than Random Forests.

• The k-Nearest Neighbor (kNN) algorithm is a popular supervised learning technique
widely used in various ML applications. The core principle of kNN involves classi-
fying objects based on their proximity to the training examples in the feature space.
Specifically, the algorithm seeks to identify a predefined number of training samples
that are closest in distance to a given query instance and then uses these samples to
predict the label of the query instance [27]. While kNN shares some similarities with
decision tree algorithms, it is unique in that it seeks to find a path around the graph
rather than constructing a tree.

• XGBoost, or Extreme Gradient Boosting, is a powerful ML technique that combines
decision trees and gradient boosting to achieve high accuracy in both regression
and classification tasks. The algorithm works by repeatedly refining decision trees
using the errors from previous trees [28]. To improve the accuracy of the model,
a loss function is minimized to measure the discrepancy between predicted and
actual values. This is achieved through gradient descent, which involves adding
new decision trees that better fit the training data. To avoid overfitting, XGBoost
includes a regularization term in its objective function. What sets XGBoost apart
is its speed, scalability, and ability to work with high-dimensional features. It is
also adept at handling missing values, selecting important features, and performing
parallel processing.

A stacked regression approach is proposed to enhance the generalizability and perfor-
mance of the predictive model. Relying on a single model may not always yield optimal
results; therefore, a stack of multiple ML algorithms is used. The key concept behind this
approach is to overcome the limitations of individual algorithms, as a weakness of one
algorithm might be a strength of another [29].

For instance, kNN assumes that similar values close to each other are likely to belong
to the same class [27], which may not hold true in many physical systems where features are
not correlated. However, this method requires loading all labeled data points into memory
and computing distances between them and the test data points to assign a label. Combin-
ing these algorithms in a stacked regression model allows us to leverage their strengths
while overcoming limitations, leading to a more robust and accurate prediction model.

Stacked Generalization, an ensemble learning technique originally proposed by [30],
involves creating a meta-model by combining the predictions of multiple-base ML models,
also known as weak learners, using k-fold cross-validation. The meta-model is then trained
with an additional ML model called the “final estimator”, which in this study is a simple
linear regression model. The Stacked Generalization method consists of two stages of
training, referred to as “level 0” and “level 1”. Figure 1 illustrates a Stacked Generalization
architecture comprising three base models (weak learners) and a final estimator.

In the initial stage (level 0), k-fold cross-validation is implemented for each weak
learner to generate training data for the meta-model. The predictions of the weak learners
are then aggregated to create the new training set for the meta-model. In the second stage
(level 1), the meta-model is trained using the predetermined final estimator.

The key idea behind stacked generalization is to use the outputs of the initial weak
learners as the inputs to train a higher-level learner. By leveraging the predictions of the
weak learners, the meta-model can achieve better performance than any individual base
model. While stacked generalization is a powerful technique for improving ML models’
accuracy, it has drawbacks. One of the main drawbacks of stacked generalization methods is
their computation cost and slow processing time. The technique involves training multiple
base models, which can be computationally expensive, and then using them to generate
predictions for a meta-model, which increases the computational burden. Additionally,
the need for k-fold cross-validation and multiple training stages can further slow down
the process.
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Figure 1. Stacked regression model architecture containing three machine learning algorithms as
base models and a final estimator.

2.4. Stepwise Regression as a Feature Selection Method

Decreasing the number of tests needed to forecast furan levels will additionally lower
the cost of testing the transformer. As a feature selection method, Stepwise Regression is
a widely used statistical technique for selecting the most relevant features in a dataset by
iteratively adding and removing them from a predictive model based on their statistical
significance. The primary goal of this approach is to eliminate irrelevant and redundant
features and identify the most significant ones for building an accurate predictive model.
By applying feature selection, the dimensionality of the data is reduced, and the computa-
tion cost is minimized without compromising the model’s performance.

As described in [31] and detailed in [32], the stepwise regression approach involves
analyzing the statistical significance of a set of candidate features with respect to the target
variable. In this study, the stepwise regression technique is used to determine which of the
nine oil test features are sufficient for predicting the HI value accurately while eliminating
insignificant ones. The stepwise regression process develops a final multilinear regression
model for predicting the target variable by adding or removing candidate features in a
stepwise manner.

The process begins by including a single feature in the regression model and then
adding additional features to assess the incremental performance of the model in predicting
the target variable. In each step, the F-statistic of the added feature in the model is computed.
The F-statistic measures the significance of the relationship between the added feature and
the target variable. If the F-statistic is significant, the feature is retained, and the process
continues by adding another feature to the model. Otherwise, the feature is removed,
and the process continues with the remaining features until the optimal model is obtained.
The F-statistic is found using Equation (1).

Fj =
SSR(γj|γ0, γ1, γ2, . . . , γj−1)

MSE
(1)
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where the regression coefficient (γ) determines the association between a given feature
and the outcome variable, and the F-statistic value (Fj) is calculated for each feature
when added to the regression model, accounting for the other existing features in the
model. The regression sum of squares (SSR) represents the difference between the model’s
predicted output and the actual values of the dataset. The mean squared error (MSE)
measures the error of the model with all its current features.

During the stepwise feature selection process, a p-value is calculated for the F-statistic
of each added feature and tested against the null hypothesis. If the p-value is below the
pre-defined entrance threshold, the null hypothesis is rejected, indicating that the feature is
statistically significant to the target variable and is added to the model.

Once the forward stepwise process is completed, the backward stepwise process
begins. If a feature in the model has an F-statistic p-value above the exit threshold, the null
hypothesis is accepted and removed from the final model.

2.5. Evaluation Metrics

After the training phase, the model’s performance is evaluated on the test set using
commonly used metrics for evaluating regression models. The mean absolute error (MAE)
measures the average absolute difference between the predicted and actual values. It is
calculated by taking the sum of absolute differences between predicted and actual values
and dividing it by the number of observations. The formula for the MAE is given in
Equation (2).

MAE =
∑n

i=1 |yi − ŷi|
n

(2)

where n is the number of observations, yi is the actual value for observation i, and ŷi is the
predicted value for observation i.

The mean squared error (MSE) is a metric for evaluating the performance of regression
models that measures the average squared difference between the predicted values and the
actual values, as depicted in Equation (3).

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (3)

where n is the number of observations, yi is the actual value for observation i, and ŷi is the
predicted value for observation i.

3. Results and Discussions

As previously discussed, three different scenarios were followed to achieve the main
objective of this paper and to ensure the generalizability of the model based on com-
mon features of Utility A and Utility B. The results of each scenario are discussed in the
following subsections.

3.1. First Scenario: Round-Robin Cross-Validation on Utility A

In the first scenario, round-robin cross-validation was used by training on 75% of the
data, and then it was tested on the remaining 25%. The reported MSE and MAE results in
Table 2 are the average of four folds. As illustrated in Table 2, a marginal improvement is
evident in the Stacked Regression model.

By performing stepwise regression as a feature selection method and selecting only a
subset of features, not only was the computation cost and training time reduced, but also,
as shown in Table 3, there was a marginal improvement in the accuracy of the models,
since the noises of the dataset were reduced. The corresponding indices of the features are
represented in Table 1.
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Table 2. Evaluation metrics of each of the individual machine learning algorithms trained on all
features for the first scenario.

ML Algorithm MSE MAE

ExtraTrees 0.274 0.206
K-Nearest Neighbors 0.308 0.209

XGBoost 0.312 0.229
Stacked Regression 0.269 0.199

Table 3. Evaluation metrics of each of the individual machine learning algorithms with selected
features for the first scenario.

ML Algorithm Selected Features MSE MAE

ExtraTrees 1, 2, 3, 4, 5, 6, 7 0.269 0.206
K-Nearest Neighbors 1, 2, 3, 4, 5, 6, 7 0.279 0.201

XGBoost 1, 2, 3, 4, 5, 8, 9 0.303 0.229
Stacked Regression 1, 2, 3, 4, 5, 8, 9 0.256 0.198

3.2. Second Scenario: Training on Utility A and Testing on Utility B

In this scenario, models that were trained on Utility A were tested on Utility B to
assess their generalizability to unfamiliar data from a different geographical location. This
method was chosen to avoid bias in the evaluation and ensure that the models perform
well on unseen data. By testing the models on Utility B, insights can be gained into their
robustness and potential limitations. The MSE and MAE of different ML algorithms for
this scenario are reported in Table 4.

Table 4. Evaluation metrics of each of the individual machine learning algorithms trained on all
features for the second scenario.

ML Algorithm MSE MAE

ExtraTrees 0.687 0.343
K-Nearest Neighbors 0.734 0.309

XGBoost 0.571 0.314
Stacked Regression 0.674 0.333

By performing stepwise regression as a feature selection method, a subset of features
was selected, and as shown in Table 5, there was a significant improvement in the accu-
racy of the models, since the noises of the dataset were reduced. The Extreme Gradient
Boosting algorithm’s accuracy was slightly higher than the stacked regression model in
this scenario. Similar to the first scenario, the stepwise regression improved the results of
most of the cases.

Table 5. Evaluation metrics of each of the individual machine learning algorithms with selected
features for the second scenario.

ML Algorithm Selected Features MSE MAE

ExtraTrees 1, 2, 3, 4, 5, 6, 8, 9 0.651 0.34
K-Nearest Neighbors 2, 3, 4, 5, 7, 9 0.627 0.318

XGBoost 2, 3, 4, 5, 7, 9 0.542 0.296
Stacked Regression 2, 3, 4, 5, 7, 9 0.565 0.308

3.3. Third Scenario: Round-Robin Cross-Validation on the Mixed Dataset

The data from Utility A and Utility B were joined together to make a new dataset. This
new merged dataset was then used for round-robin cross-validation in the same way as
in the first scenario. The MSE and MAE of different machine learning algorithms for this
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scenario are reported in Table 6. In the first scenario, round-robin cross-validation was used
by training on 75% of the data, and then it was tested on the remaining 25%. The reported
data in Table 6 are the average of four folds. As shown in Table 6, the stacked regression
model outperformed the other ML models.

Table 6. Evaluation metrics of each of the individual machine learning algorithms trained on all
features for the third scenario.

ML Algorithm MSE MAE

ExtraTrees 0.305 0.212
K-Nearest Neighbors 0.356 0.222

XGBoost 0.313 0.213
Stacked Regression 0.3 0.208

When performing stepwise regression, a subset of features was chosen, and the models
with the best combination of features that resulted in the highest accuracy are presented
in Table 7. It is clear from Table 7 that the stepwise regression method, though it still
reduced the dimensionality of the data and training time, was not as effective as it was in
scenarios 1 and 2 in terms of accuracy.

Table 7. Evaluation metrics of each of the individual machine learning algorithms with selected
features for the third scenario.

ML Algorithm Selected Features MSE MAE

ExtraTrees 1, 2, 3, 5, 6, 8, 9 0.305 0.217
K-Nearest Neighbors 1, 2, 3, 4, 5, 6, 7, 8 0.343 0.218

XGBoost 1, 2, 3, 5, 6, 9 0.31 0.21
Stacked Regression 1, 2, 3, 4, 5, 6, 7, 8 0.306 0.211

It is worth mentioning that among all features, water content, acidity, and interfacial
tension were the only features that were present in all reduced models. This is evident
when calculating the feature importance using a stepwise regression algorithm as shown in
Figure 2a,b for utility A and B, respectively. While in the Utility A data set acidity was the
most important feature, water content was the most important feature for Utility B data
set. On the other hand, dissolved analysis tests were not consistent in the reduced models.
Nevertheless, at least two dissolved analysis gases were present in all models. Hence, while
dissolved analysis gasses can be used to detect incipient faults, oil test results are better
indicators of the overall aging state of the transformer insulation system.

Figure 2. Feature Importance of features based on stepwise regression for the (a) Utility A and
(b) Utility B datasets.
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4. Conclusions

Prediction of furan content provides a cost-effective approach for assessing the insula-
tion condition of transformers. This study demonstrates that ML algorithms can effectively
predict furan concentrations in transformer oil, which offers utilities a more economical
approach to assess paper insulation conditions. To assess the reliability of the models,
they were evaluated on two distinct datasets from different geographical regions under
three different scenarios. No algorithm achieved the best performance across all metrics
among individual ML models. However, using a stacked generalized ensemble model that
combines multiple algorithms provided the most robust and consistent predictions. Apply-
ing stepwise regression for feature selection improved the accuracy in most of the models
by reducing noise and dimensionality. Key inputs that emerged and proved to be strong
predictors were acidity, interfacial tension, and water content, which were present in all
reduced models. While dissolved gases were inconsistent, at least two of them were always
present in the reduced models. The achieved promising accuracy supports machine learn-
ing’s viability for inexpensive furan concentration prediction. This data-driven method
is especially valuable where testing facilities are limited. Further operational validation
could expand machine learning’s role in transformer asset management by deploying
these models.
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