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Abstract: The electric capacitance tomography (ECT) technique has been widely used in phase
distribution reconstruction, while the practical application raised nonideal noise and other errors
for cryogenic conditions, requiring a more accurate algorithm. This paper develops a new image
reconstruction algorithm for ECT by coupling the traditional Landweber algorithm with the least
square support vector regression (LSSVR) for cryogenic fluids. The performance of the algorithm is
quantitatively evaluated by comparing the inversion images with the experimental results for both
the room temperature working medium with the dielectric constant ratio close to cryogenic fluid and
the cryogenic fluid of liquid nitrogen/nitrogen vapor (LN2-VN2). The inversion images based on
the conventional LBP and Landweber algorithms are also presented for comparison. The benefits
and drawbacks of the developed algorithms are revealed and discussed, according to the results.
It is demonstrated that the correlated coefficients of the images based on the developed algorithm
reach more than 0.88 and a maximum of 0.975. In addition, the minimum void fraction error of the
algorithm is reduced to 0.534%, which indicates the significant optimization of the LSSVR coupled
method over the Landweber algorithm.

Keywords: ECT; LSSVR; cryogenic; experiment; algorithm

1. Introduction

The occurrence of gas–liquid two-phase flow is prevalent in cryogenic fluid machin-
ery [1], including transfer pipes, heat exchangers, evaporators, and condensers. Therefore,
the determination of the phase distribution, which is one of the most vital parameters
to classify the two-phase flow, as well as the void fraction, is essential to the cryogenic
fluid industry [2,3]. Nevertheless, it is still intractable to measure the phase distribution of
cryogenic fluids, either because of the fluid properties or the working conditions [4].

Many efforts have been made to obtain the phase distribution of the cryogenic two-
phase flow, including the use of the capacitive probe method [5], the radio-frequency sensor
(RF-sensor) [6–8], the dual-electrode capacitance sensor [4], and particle image velocimetry
(PIV) [9]. Comparably, electrical capacitance tomography (ECT), as a non-intrusive mea-
surement technique, can reconstruct the phase distribution image based on the dielectric
permittivity difference between the phases. It also has the advantages of easy assembling,
fast imaging, and low cost. Therefore, many studies have been made on its application
to image reconstruction for room temperature fluids, such as in fluidized beds [10,11],
water/oil flows [12], gas/oil flows [13–16], and other multi-phase conditions [17,18].

There are few published experimental studies about ECT applied to the cryogenic
two-phase flow. The difficulties come from the fact that the dielectric permittivity ratio of
the cryogenic liquid to its vapor is usually an order of magnitude smaller than those of
the room temperature fluid pair, such as water/air (77.747/1.0005), while the LN2/VN2
(1.4337/1.0021) is much lower [19]. Therefore, the micro-capacitance acquisition circuit is
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required to have a higher sensitivity and anti-noise interference ability. In our previous
studies, the potential feasibility of cryogenic ECT was evaluated [20] by conducting a
substitutive ambient temperature experiment based on the pair of materials with a dielectric
constant ratio close to that of cryogenic fluids. In addition, the reconstruction algorithm was
especially improved to reconstruct the two-phase images for better quality. The potential
application of electrical capacitance volume tomography (ECVT) to cryogenic cases was also
evaluated by us, using numerical experiments [21], in which the essential roles of the shifted
plane and the axial guard electrode play in ECVT were verified. Recently, Hunt et al. [22]
conducted a pioneering cryogenic experiment to measure the density of the LN2-VN2 flow
based on the eight-electrode ECT system. The ECT sensor in their alternative experiment
can provide images of non-conducting inclusions in the flow, representing gas bubbles
at room temperature. Although the final LN2-VN2 phase distribution reconstruction
image was not obtained, their work was still constructive and provided evidence for the
application of ECT in cryogenic fluids. Sun et al. [23] conducted a real-time cross-sectional
holdup imaging experiment of high-pressure gas–liquid carbon dioxide (CO2) flow using
the ECT method. The accuracy of real-time measurement based on the ECT system was
acceptable; it was calculated by three widely used algorithms and evaluated with the
images captured at the sight window. The convenience of the Calderon algorithm for the
CO2 two-phase image reconstruction was also summarized. Tian et al. [24] compared the
performance of deep neural network (DNN) modification to the classical linear algorithms
(DNN-EC) and the DNN directly for image reconstruction (DNN-C). The generalization
ability of these methods was validated in the numerical experiment, and the feasibility
of these models for the cryogenic application was evaluated by a cryogenic experiment.
The results showed that the DNN-C is a better solution than the DNN-EC, based on error
capacitance. Gao [25] introduced the transformer technique to the U-net convolutional
neural network (CNN). The trained CNN was applied to the numerical experiment and
achieved excellent and stable results. The model was also used to reconstruct the LN2-VN2
flow in the cryogenic experiment, with clear and accurate images.

The image reconstruction of ECT is a typical underdetermined inverse problem [26]
The phase information in the thousands of grid cells of the computational domain is calcu-
lated based on a very finite number of measured capacitance values—for example, eight
for the eight-electrode ECT. Therefore, the reconstruction algorithm theoretically plays
a crucial role in tomography, especially for cryogenic fluids that have a much smaller
dielectric constant ratio of liquid to vapor. At present, there are several algorithms widely
applied in the ECT image reconstruction developed for room-temperature fluids, including
the linear back projection (LBP) [27], the Landweber iteration [28], and the total variation
L1-norm regularization (TV L1-norm) [29] algorithms. Many efforts have also been made
to improve the algorithms’ efficiencies. Xie et al. [27] demonstrated the significantly in-
creased imaging speed of the back projection algorithm in determining the oil concentration.
Yang et al. [28] proposed a new image inversion algorithm based on the modified Landwe-
ber iteration algorithm by applying a regularization, which showed a faster convergence
speed and enhanced immunity to noise. Liu et al. [30] optimized the iterative step length
of the Landweber algorithm based on minimizing the norm of the capacitance error vec-
tor. Soleimani and Lionheart [29] employed regularization techniques to overcome the
ill-posedness, which proved the advantage of the TV regularization algorithm over the
image reconstruction of different inclusions. To enhance the performance of the recon-
struction image, Wang et al. [31] proposed an adaptive cell refinement approach based
on the TV method to preserve the edge. Li and Yang [19] proposed a nonlinear iteration
algorithm, in which the sensitivity matrix was updated rather than fixed in the iterative
process. The results indicated that the relative capacitance residual and the image error
decrease more quickly than in the fixed sensitivity matrix cases. Guo et al. [11] developed
a machine-learning method by avoiding the postprocessing steps, which increased the
imaging speed. The training samples were collected in different flow patterns through
high-throughput experiments. Xie et al. [20] proposed an approach of the least squares
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support vector regression (LSSVR) coupled linear algorithm, reducing the error by 68%, at
most, via fitting the correlation between the capacitance vector and the linearization error.

In this paper, the least square support vector regression (LSSVR) method was applied
to improve the performance of the Landweber algorithm by introducing the sensitivity
linear error matrix, which was realized by fitting the relationship between the normal-
ized capacitance vector and the nonlinear error using the training samples. The image
reconstruction results, based on the new algorithm together with the LBP algorithm and
the original Landweber algorithm, were presented and compared with the experimental
observations. A room-temperature experiment with a fluid pair having an electrical di-
electric ratio of about 5 was first performed, which indicated the potential of the LSSVR
modifying algorithm applied to the small electrical dielectric ratio cases. Then, a visual
cryogenic experiment of LN2-VN2 two-phase flow was carried out to further evaluate the
reconstructed images of the three algorithms for the eight-electrode ECT. By comparing
the cryogenic imaging results of the proposed algorithm with the LBP algorithm and the
original Landweber algorithm, it was proved that the proposed algorithm can improve the
imaging performance.

2. ECT Cryogenic Experimental System

The ECT system for cryogenic flow primarily consists of the eight-electrode sensor,
the micro-capacitance acquisition circuit, and the image reconstruction computer with the
capacitance tomography algorithm. Figures 1 and 2, respectively, show the scheme and
real layout of the ECT cryogenic experiment system. Figure 3 provides the detailed test
structure, as well as the cross-section of the sensor.
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Figure 1. Scheme of cryogenic ECT experiment system.

The sensor primarily comprises the experimental pipe and the eight electrodes uni-
formly attached to the external surface of the pipe in the circumferential direction. Each
electrode has a length of 120 mm parallel to the central axis of the experimental pipe, a
circumferential angle of 36◦, and a thickness of 0.15 mm; thus, the covering ratio of the
electrodes is 80%. The experimental pipe is made of quartz glass with a relative dielectric
permittivity of 3.8. It has an outer diameter of 102 mm and a thickness of 2 mm. There
is an inlet tube connected for adding the LN2 and another tube for releasing the VN2.
Two additional axial shield rings are placed at both ends of the electrodes. Around the
electrodes, there exists an electromagnetic shield to avoid the interference of the environ-
mental magnetic field. Both the external and axial shields can reduce the parasitic effect.
The material of all the electrodes and shields is copper. The whole cryogenic sensor is
placed in a square chamber made of acrylic boards, as shown in Figure 2. The chamber is
filled with static nitrogen to replace the original wet air to avoid frosting on the surface
of the cryogenic pipe. The nitrogen also serves to reduce the heat leak due to the smaller
thermal conductivity compared with the wet air. The design greatly simplifies the facility
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structure which should be in the complex vacuum insulation, while keeping it visual and
maintaining an acceptable heat-leakage rate.
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Figure 3. Cryogenic ECT sensor: overall structure of test section (a) and the cross-section (b).

The micro-capacitance acquisition circuit collects the capacitance values between
electrodes and transmits them to the computer. It has a signal-to-noise ratio of 60 dB
and a measurement accuracy of 0.1 fF. The available total effective capacitance number M
from the eight electrodes is C2

8 = 28. The reconstruction computer processes the acquired
capacitance data based on the different imaging algorithms and presents the final phase
distribution images.

First, the experimental tube was filled with LN2 and VN2 successively to calibrate
the sensor. The stratified flows with different liquid levels were obtained when the LN2
slowly evaporated in the pipe, which was filled with LN2 at the beginning. The phase
interface can be considered as the steady state because the change of liquid level caused by
the evaporation is slow enough. The real phase distributions were recorded by a camera and
the capacitance values between different electrodes were collected by the acquisition circuit.

3. Image Reconstruction Approach
3.1. Forward Problem of ECT

In our previous research, the forward and inverse problem of ECT was illustrated [19],
and a brief introduction is presented here. Ignoring the electrode and shield shell, the
imaging domain and tube wall are modeled, as shown in Figure 4a. In the calculation, the
number N of grid cells in the computational domain is 1836, as shown in Figure 4b.
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Because of the characteristics of both the non-polar insulators of LN2-VN2 and the
experimental pipe, there is no electronic conduction between the outer environment and
the test section. The governing equation of the potential in the computational domain can
be obtained as in [32]:

∇·[ε(x, y)∇u(x, y)] = 0 (1)

ε(x, y) and u(x, y) represent the dielectric permittivity and potential distribution inside the
computational domain, respectively.

The boundary conditions are applied according to the actual use process: when
electrode i is excited with the voltage Ui, the potential at electrode i is Ui. Meanwhile,
when electrode j is grounded, the potential electrode j is 0. Thus, Dirichlet and Neumann
boundary conditions are obtained. The total boundary conditions can be written as

u|Γi = Ui
u|Γj = 0 (i 6= j)

→
n ·∇u|∂Ω\Γ = 0

(
Γ =

8
∑

i=1
Γi

) (2)

In Equation (2), i and j represent the number of electrodes. Γ represents the positions where
electrodes exist. Ω represents the computational domain. ∂Ω represents the boundary of
the computational domain. ∂Ω\Γ represents the boundary of the computational domain
which is not covered by the electrodes, and

→
n is the unit normal vector outside, toward the

wall of the pipe.
When the dielectric permittivity distribution is known, Equation (1) coupled with

Equation (2) has a unique solution. This calculation process is the solution to a forward
problem [33]. The introduction of

∫
Ω∇·

(
uiε∇uj

)
dΩ will simplify the formula derivation.∫

Ω
∇·
(
uiε∇uj

)
dΩ =

∮
∂Ω

[(
uiε∇uj

)
·n
]
dl = −UiQi (3)

where ui and uj are the potential distribution in the computational domain when the i and j
electrodes are excited by Ui and Uj voltage, respectively, and the other electrodes maintain
0 potential. Qi is the induced charge on electrode i caused by electrode j.

On the other hand, when combined with Equation (1),∫
Ω
∇·
(
uiε∇uj

)
dΩ =

∫
Ω

[
∇uiε∇uj + ui∇·

(
ε∇uj

)]
dΩ =

∫
Ω

ε∇ui∇ujdΩ (4)

Combining Equation (3) with Equation (4), the calculation formula of the mutual
capacitance of every electrode pair can be calculated as

Ci,j = Cj,i =
Qi

Uj
= −

∫
Ω ε(x, y)∇ui∇ujdΩ

UiUj
(5)
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3.2. Calculation of Sensitivity Field

The purpose of solving the ECT inverse problem is to find a method to calculate the
distribution of dielectric permittivity in the computational domain after measuring the
capacitance values of measuring electrode pairs.

For the cryogenic fluid medium, the difference between the liquid and gas dielectric
permittivity is relatively small, as shown in Table 1. The slope of the capacitance-dielectric
distribution function at the gas phase reference state can be considered to represent the
sensitivity [34]. This method can reduce the computational load compared with the con-
ventional ones [27,35], which is widely used in the analysis of capacitive tomography
sensors with a liquid–gas dielectric ratio larger than 2.0 in the room-temperature fluid
pair [26,34,36].

Table 1. Relative permittivity of different fluids at 1 atm [19,37].

Fluid Pair Relative Dielectric Permittivity

Water/Air (at 300 K) 77.747/1.0005
Liquid/Vapor nitrogen (at 78 K) 1.4337/1.0021
Liquid/Vapor oxygen (at 90 K) 1.4877/1.0016

Liquid/Vapor methane (at 112 K) 1.6299/1.0020

The computational domain is discretized and the mutual capacitance can be calculated as

Ci,j =
(
Ci,j
)

0 +

(
∂Ci,j

∂ε

)T

(ε− ε0) + O
[
(ε− ε0)

2
]

(6)

where ε is the dielectric permittivity in each grid cell and ε0 represents the dielectric
permittivity when all grid cells in the domain are in the gas phase.

(
Ci,j
)

0 represents the
capacitance between the measurement electrodes i and j when the measurement area is all

in the gas phase. O
[
(ε− ε0)

2
]

represents the second and higher-order terms.
∂Ci,j
∂ε is the

sensitivity of each grid cell corresponding to the measurement electrodes, which is defined as

Si,j =

(
∂Ci,j

∂ε

)T

(7)

Si,j represents the rate of change of the capacitance value Ci,j to the permittivity of
each grid cell. Since there are 28 effective and independent capacitance values, there are
28 independent sensitive fields. The calculation result of the sensitivity field for LN2-VN2
cases is shown in Figure 5. The full 28 sensitivities can be determined from the presented
four cases by the relative position of the electrode pair. Since the electrodes of the sensor
are centrally symmetric, the 28 sensitive fields can be regarded as a transformation of these
four sensitivity fields obtained by rotating 45, 90, 135, or 180 degrees around the center of
the measurement area.

It can be found that the sensitivity field in the measurement area is extremely uneven,
and the sensitivity reaches the peak at the edge of the electrode. However, from the center
of the electrode to the center of the measurement area, the sensitivity changes little and the
absolute size is also small.
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3.3. The Inverse Problem of ECT

The multi-electrode ECT obtains the dielectric permittivity distribution as well as phase
distribution from the measured capacitance data. However, the number N of required
phase information in each grid cell is orders of magnitude larger than the number M of
measured independent capacitance values. The algorithms of information reconstruction
can find a reasonable solution to an underdetermined inverse problem and the different
reconstruction algorithms will generate different calculation models.

3.3.1. Linear Back-Projection (LBP) Algorithm

The normalized relationship of measuring capacitance, sensitive field, and dielectric
constant is established [27] as

ŜE = λ (8)

Ŝ is an M×N normalized sensitivity matrix. E is an N× 1 normalized dielectric permittivity
distribution vector which is the acquired result of the inverse problem. The result of the
inverse problem is E ∈ [0, 1], reflecting the dielectric permittivity of each grid cell relative
to the permittivity of the gas phase in the form of gray values. λ is an M× 1 normalized
measured capacitance vector.

E = P
{

ŜT
λ
[
diag

(
ŜTI
)]−1

}
(9)

where I = (1 1 · · · 1)T. P(·) represents the projection operator. The projection operation is
carried out on the results [38,39] as the normalization.

Equation (9) is called the projected LBP algorithm, which is the LBP algorithm method
applied to this experiment. LBP is applied to the earliest and most widely used ECT
inversion algorithm, with the fastest computing speed among all the algorithms. Because
there are no iteration steps, the accuracy of the inversion result of the income is relatively
low. The result of the LBP algorithm is commonly used for coarse imaging and the iterative
initial value of the iterative algorithm.
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3.3.2. Landweber Iterative Algorithm

The Landweber iterative algorithm [26] is developed based on the steepest descent
method. Consider an unconstrained optimization problem,

min J(E) =
1
2

∥∥λ− ŜE
∥∥2

2
(10)

Thus, a projected iterative expression can be obtained in the direction of the inverse
gradient:

Ek+1 = P
[
Ek + αkŜT(

λ− ŜEk
)]

(11)

where αk is the optimal iteration step size of step k [30].
Equation (11) is the Landweber iteration method applied to this experiment. The

Landweber iteration with the best iteration step length can achieve a faster convergence
rate with higher accuracy of inversion results compared with the ones of the LBP algorithm.

3.3.3. Landweber Coupled LSSVR Algorithm

According to Equation (6), the sensitivity matrix in Equation (7) is a simplified linear
model that ignores the higher-order nonlinear information of the electric field. The LSSVR
method can fit the relationship between the nonlinear information vector and the measured
capacitance vector, based on the provided training set of real phase distribution and the
capacitance vector calculated in the forward problem.

The LSSVR maps the low-dimensional sample space into a high-dimensional feature
space. Then, the relationship between inputs and outputs is simply fitted through a
linear regression equation in a regression hyperplane. Compared with the general support
vector regression, the LSSVR solves a linear system of equations by reforming the inequality
constraints into minimizing the sum of residual squares. The process of obtaining sensitivity
error based on LSSVR is as follows.

The nonlinear error vector is first calculated in each training sample pair.

Ytrain = ŜEtrain − λtrain (12)

Here, Etrain = (E1, E2, . . . , En) is an N× n training set matrix of real phase distribution
and n is the number of training samples in the training set. λtrain = (λ1, λ2, . . . , λn) is an
M× n training set matrix of the normalized capacitance values calculated in the forward
problem corresponding to each training sample of real phase distribution.
Ytrain = (Y1, Y2, . . . , Yn) is an M× n nonlinear error matrix calculated by the input phase
distribution matrix and capacitance matrix. For the new input of measured capacitance
vector E, the nonlinear error vector Y can be obtained using the LSSVR fitting equation:

Y(λ) =
n

∑
i=1

aiK(λ, λi) + b (13)

where b is an M× 1 linear offset vector, ai is an M× 1 coefficient vector to map every
training sample into the fitting hyperplane, and K(·, ·) is the kernel function to map the
sample point into the high-dimensional feature space. A mixture kernel function [40] is
applied to the LSSVR in this paper, which consists of the Gaussian radial basis function
(RBF) kernel function and the polynomial kernel function.

K
(
λi, λj

)
= ρ[exp (−

∥∥λi − λj
∥∥2

2
2σ2 )] + (1− ρ)

(
λT

i ·λj + 1
)p

(14)

where ρ ∈ (0, 1), σ > 0, p ≥ 1.
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The offset vector and the coefficient vector can be obtained by solving the following
equation: (

0 IT

I G + diag
(
c−1I

))(bT

aT

)
=

(
0

YT
train

)
(15)

Gi,j = K
(
λi, λj

)
, a = (a1, a2, . . . , an).

According to Equations (13) and (14), Equation (11) can be modified as

Ek+1 = P
{

Ek + αkŜT[
(λ + Y)− ŜEk

]}
(16)

Equation (16) is the iteration equation of the Landweber coupled LSSVR algorithm.
The parameters set for the algorithms are presented in Table 2.

Table 2. Parameter setting of Landweber algorithm and Landweber coupled LSSVR algorithm.

Parameter Value

Landweber Iteration number 5

Landweber coupled LSSVR

Iteration number 5
ρ 0.9
σ 0.1
p 2

4. Experiment and Analysis
4.1. The Tentative Experiments

A tentative experiment at the ambient temperature is first conducted to evaluate the
reconstruction results of ECT with the above-mentioned algorithms. Figure 6 provides a
photo of the ECT system developed by the authors, including the eight-electrode sensor, the
electrical capacitance acquisition circuit, and the software with the developed algorithms.
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Figure 6. ECT experimental setup with the room-temperature working medium.

Four particulate materials with the relative dielectric permittivity ratio with air close to
the LN2-VN2 pair are chosen as the working fluids, as listed in Table 3. The eight-electrode
sensor here is a quartz glass tube with an outer diameter of 60 mm and a thickness of 2 mm.
Each electrode attached to the pipe has a length of 90 mm and a circumferential coverage
rate of 80%.
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Table 3. The relative permittivity of materials for the alterative experiment at 300 K.

Fluid Pair Relative Dielectric Permittivity

Polypropylene/Air 1.6201/1.0005
Mung bean/Air 5.5728/1.0005

Millet/Air 5.2995/1.0005
Rice/Air 6.035/1.0005

The stratified distributions with different holdups are reconstructed by the ECT with
the LBP algorithm, the Landweber algorithm, and the Landweber coupled LSSVR algorithm.
The real and inversed images of the polypropylene, mung bean, millet, and rice particles are
shown in Figure 7, where the red part represents the alternative particles and the remaining
blue part represents the air. The left column is the sectional view of the real distribution, and
the second column is the real distribution mapped to the computational domain according
to the real distribution for further data analysis. The other three columns are the inversed
distributions based on the LBP, Landweber, and Landweber coupled LSSVR algorithm,
respectively.
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The void fraction (VF), the image error (IE), and the correlation coefficient (CC) are
used to quantitatively evaluate the algorithms, which reflect the difference between the
reconstruction results and the real images [26], and the calculated results are shown in
Tables 4–6.

IE =
‖E− Ereal‖2

2

‖Ereal‖2
2

(17)

CC =
∑N

i=1
[
E(i)− E

][
Ereal(i)− Ereal

]√
∑N

i=1
[
E(i)− E

]2[Ereal(i)− Ereal
]2 (18)

E is an N × 1 normalized dielectric permittivity distribution vector of reconstruction
results. Ereal is the normalized dielectric permittivity distribution vector of the real dis-
tribution. E and Ereal are the average values of E and Ereal, respectively. IE is the ratio
of the modulus of the error vector between the inversion result and the real distribution
represented by the vector and the modulus of the real distribution vector. It can not only
represent the accuracy of the relative proportion of the inversion result but also the co-
incidence between the inversion result and the real distribution. The smaller the image
error, the better the inversion result. CC represents the degree of coincidence between the
inversion results and the relative positions of the real distribution. The closer the correlation
coefficient is to 1, the higher the accuracy of the inversion results will be.
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Table 4. VF errors of three algorithms in the alternative experiment.

VF Error (%)

LBP Landweber Landweber
Coupled LSSVR

Case 1a 4.815 11.278 10.885
Case 2a 3.576 2.821 0.485

Case 1b 15.459 4.703 8.078
Case 2b 11.509 8.652 8.961
Case 3b 0.013 4.442 3.635

Case 1c 35.277 32.297 13.843
Case 2c 3.272 4.127 1.506
Case 3c 1.891 5.464 0.695

Case 1d 11.746 8.868 8.571
Case 2d 4.802 8.570 5.822

Table 5. CCs of three algorithms in alternative experiment.

CC

LBP Landweber Landweber
Coupled LSSVR

Case 1a 0.898 0.895 0.901
Case 2a 0.803 0.759 0.835

Case 1b 0.768 0.724 0.873
Case 2b 0.917 0.904 0.888
Case 3b 0.884 0.835 0.872

Case 1c 0.901 0.890 0.808
Case 2c 0.914 0.883 0.896
Case 3c 0.868 0.772 0.827

Case 1d 0.902 0.887 0.893
Case 2d 0.882 0.879 0.895

Table 6. IEs of three algorithms in the alternative experiment.

IE (%)

LBP Landweber Landweber
Coupled LSSVR

Case 1a 26.681 26.813 24.225
Case 2a 50.139 56.888 42.269

Case 1b 25.406 28.744 14.998
Case 2b 23.552 24.839 26.365
Case 3b 35.202 42.097 42.785

Case 1c 14.219 14.436 22.205
Case 2c 24.774 26.699 26.810
Case 3c 42.244 55.445 46.828

Case 1d 34.418 35.540 28.145
Case 2d 60.383 57.993 34.736

From the imaging results of the tentative experiments, the particle–air interfaces can
be distinguished in most cases. The Landweber coupled LSSVR algorithm can reduce
the error of Landweber algorithms in most cases, especially in Case 1b, where the LSSVR
method improves the CC by 9.95% and decreases the IE and VF error by 14.619% and
2.336%, respectively. All the CCs of the Landweber coupled LSSVR algorithm exceed 0.82.
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At the same time, the interface is clearer, with fewer artifacts compared to those of the LBP
and Landweber algorithms. The Landweber coupled LSSVR algorithm reaches the lowest
IE of 34.736, which reduces 23.257% of the IE compared with the Landweber algorithm, and
the highest CC of 0.895 in Case 2d. The tentative experiment results show that the three
ECT algorithms are convenient to inverse the distribution of the fluid with relatively small
dielectric relative permittivity, compared with the water/air flow (77.747/1.0005), and the
LSSVR method can diminish the error of the Landweber algorithm to a certain extent.

4.2. Cryogenic Experiments

In the cryogenic experiments, there is no frosting outside the experimental pipe, due
to the protection of the nitrogen vaporous in the chamber, while the outside surface of the
chamber will cause frosting for a long time, which does not affect the sight after the frost is
manually cleaned. The evaporation of LN2 inside the pipe is not intense and the LN2 level
can be kept stable and observed without intensive boiling; therefore, the reconstruction
images can reflect the real distribution of cryogenic flow.

The image reconstruction results of the LN2-VN2 two-phase flow based on the ECT
experimental facility are shown in Figure 8, where the red part represents the liquid phase
and the remaining part represents the gas phase. The left column shows the real images of
the experimental pipe with LN2 inside. An extra black line is added to the figure to clarify
the position of the liquid level. The second column shows the real distribution mapped to
the computational domain according to the liquid level measurement. The other columns
in the figure provide the image reconstruction results based on the LBP, Landweber, and
Landweber coupled LSSVR algorithm, respectively.
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The LSSVR hyperplane is trained by 4000 2D simulation samples the parameter
selections of which are listed in Table 2. In the simulation sample generation processes, the
relative dielectric permittivities of the high-permittivity phase and the low-permittivity
phase are set to 1.4 and 1.0, respectively, and the relative dielectric permittivity of the pipe
wall is set to 3.8.

By comparing the reconstruction images with the real phase distribution, the phase
interface, which indeed reflects the real LN2 level in the pipe, can be captured in all the
reconstructed images. The results indicate that the ECT system can image the cryogenic
capacitance data with considerable accuracy, and the three reconstruction algorithms all
can reconstruct the phase distribution.
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In the reconstruction images, the artifact appears at the position of the No.1 electrode
(see Figure 3) in Case 2 and Case 3. The artifact refers to the liquid-phase inclusion at the
edge of the measurement area where no liquid phase exists in the real phase distribution.
For the artifact, another kind of error, known as distortion, appears at the phase interface,
blurring the boundary of the two phases and distorting the shape of the boundary line.
Compared with the other two algorithms, the distortion of the projected LBP algorithm
at the gas–liquid interface is the largest. The real interface can be approximately inferred
from the image and the results of the projected LBP algorithm.

The projected Landweber iteration algorithm, the result of which shows the largest
artifact at the wall of the measurement area in the cases mentioned above, achieves a more
accurate result at the phase boundary in Case 1. However, while the distortions at the
phase interface are partly reduced, the boundary line is distorted, especially in Case 3,
causing the disturbance while clarifying the flow form, compared with the projected LBP
algorithm.

Based on the results of the general Landweber algorithm, the Landweber coupled
LSSVR algorithm strengthens the advantage of Landweber and decreases the distortion
effect at the phase boundary. In terms of quantitative parameters, the results of CCs, IEs,
and VF errors for the three algorithms are presented in Table 7. The Landweber coupled
LSSVR algorithms obtain the best performance among these three algorithms with all the
CCs beyond 0.88, especially in Case 1, where the artifacts of reconstructions are shown to
be the smallest, the error of the void fraction of the Landweber coupled LSSVR algorithm
fits the real distribution with a VF difference of 1.201%, while the VF error reaches 6.212%
of the LBP algorithm and 4.508% of general Landweber algorithm. The CC of the modified
algorithm reaches the highest of 0.975 in this case. As the artifacts appear in Case 2 and
Case 3, the goodness of fit by LBP and Landweber becomes poorer in either VF, CC, or IE.
Although the LSSVR method cannot eliminate the impact of artifacts, it makes up for the
lack of imaging quality of the Landweber algorithm by clearing the boundary of different
phases, and it has achieved good results in quantitative data. In Case 2, the VF error
decreased by 5.777% compared with the Landweber algorithm and 11.082% with the LBP
algorithm. This phenomenon can be observed in the result of the tentative experiment in
Case 3c, where the CC increased from 0.772 to 0.827. Additionally, the LSSVR method can
improve the void fraction measurement by optimizing the influence of the distortion of the
phase interface which is shown in the results of Case 1c. The phase interface is severely
distorted into a curve in this case, while the LSSVR method successfully reduces the VF
error so that the void fraction information is more accurate at the expense of the reduction
of the CC and image quality.

Table 7. VF errors, CCs, and IEs of cryogenic experiment cases for different algorithms.

LBP Landweber Landweber Coupled
LSSVR

VF error (%)
Case 1 12.831 9.979 8.478
Case 2 26.047 15.215 14.883
Case 3 22.967 21.447 21.549

CC
Case 1 0.940 0.963 0.975
Case 2 0.793 0.929 0.935
Case 3 0.874 0.889 0.889

IE (%)
Case 1 12.831 9.979 8.478
Case 2 26.047 15.215 14.883
Case 3 22.967 21.447 21.549

The causes of the distortion at the edge of the gas–liquid phase are the nonlinear error
of the algorithm and the slight evaporation of the LN2, which only fuzzes the boundary
between the gas and liquid phases and is not capable of changing the geometric shape of
the dividing line.
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Based on these preliminary experiments, it is reasonable to believe that the Landweber
coupled LSSVR can be applied to the detection of other cryogenic working fluids with
higher saturation temperatures, such as liquid oxygen and liquefied natural gas (LNG),
with improved performance compared with the counterpart.

5. Conclusions

In this paper, electronic capacitance tomography was applied to measure the phase
distribution of four alternative working fluids at room temperature and LN2-VN2 flow.
The alternative experiment showed the potential of applying the projected LBP algorithm,
the projected Landweber iteration algorithm, and the projected Landweber iteration cou-
pled LSSVR algorithm to the inversion imaging of the two-phase flow with a relative
dielectric permittivity ratio close to 1.6. In the cryogenic experiment, the interface of the
different LN2 levels of the stratified flow was detected and imaged. The Landweber cou-
pled LSSVR algorithm presented the best performance on image reconstruction, which
reached the smallest VF error of 0.554% and highest CC of 0.975. While the projected LBP
algorithm achieved a relatively fuzzy image and acceptable image reconstruction quality,
the Landweber iteration algorithm reached the highest accuracy in VF, with an error of
4.509%, although it produced distortion at the interface and the edge of the computational
domain. The LSSVR method can improve the performance of the Landweber algorithm.
Strengthening the advantage of the Landweber algorithm, the modified algorithm presents
a clearer phase interphase. However, it cannot eliminate the artifacts at the boundary of
the computational region—considering that it inherited from the Landweber algorithm the
artifacts brought by the Landweber algorithm, such artifacts are inevitable. The reason is
that the LSSVR coupled algorithm is a fusion-driven method—its modification is based
on the error capacitance. The error capacitance is obtained from the calculation result
from the linear algorithm, and the reconstructed distribution vector’s dimensionality is
reduced by the sensitivity matrix. This downsampling process has lost some information;
thus, as an additional correction, the modification results will not deviate too far from the
original algorithm. However, the error capacitance term is optimized by LSSVR based
on the trained samples, and the improvement can be observed, which is reflected by the
quality evaluation from CCs, IEs, and VF errors.

The reconstruction experiment verified that the Landweber coupled LSSVR algorithm
is a promising algorithm employed for ECT phase distribution detection for cryogenic
two-phase flow.
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Nomenclature

a Linear offset vector of LSSVR Ŝ Normalized sensitive field matrix

b Coefficient vector of LSSVR Ŝi,j
Normalized sensitive field between the
measuring electrode i and j

C Capacitance value U Excitation voltage
E Normalized vector of dielectric permittivity distribution Y Residual error of normalized capacitance
K(., .) Kernal function

Greek symbol
M Total number of effective capacitance values
N Total number of grid cells α Iteration step size
→
n Unit normal vector at the wall Γ Electrode position
u Electric potential distribution ε Dielectric permittivity distribution
P(.) Projection operation λ Normalized measured capacitance vector
Q Quantity of electric charge Ω Computational domain

Si,j Sensitive field between the measuring electrode i and j ∂Ω\Γ Boundary of the computational domain
which is not covered by the electrode area
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