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Abstract: Inverse Uncertainty Quantification (IUQ) has gained increasing attention in the field of
nuclear engineering, especially nuclear thermal-hydraulics (TH), where it serves as an important
tool for quantifying the uncertainties in the physical model parameters (PMPs) while making the
model predictions consistent with the experimental data. In this paper, we present an extension to an
existing Bayesian inference-based IUQ methodology by employing a hierarchical Bayesian model and
variational inference (VI), and apply this novel framework to a real-world nuclear TH scenario. The
proposed approach leverages a hierarchical model to encapsulate group-level behaviors inherent to
the PMPs, thereby mitigating existing challenges posed by the high variability of PMPs under diverse
experimental conditions and the potential overfitting issues due to unknown model discrepancies
or outliers. To accommodate computational scalability and efficiency, we utilize VI to enable the
framework to be used in applications with a large number of variables or datasets. The efficacy of the
proposed method is evaluated against a previous study where a No-U-Turn-Sampler was used in a
Bayesian hierarchical model. We illustrate the performance comparisons of the proposed framework
through a synthetic data example and an applied case in nuclear TH. Our findings reveal that the
presented approach not only delivers accurate and efficient IUQ without the need for manual tuning,
but also offers a promising way for scaling to larger, more complex nuclear TH experimental datasets.

Keywords: inverse uncertainty quantification; hierarchical Bayesian; variational inference; nuclear
thermal-hydraulics

1. Introduction

Computer simulations play an essential role in nuclear reactor safety analysis, de-
sign, and licensing. While these simulations can model real physical phenomena, they
are approximations with inherent uncertainties from various sources. Quantifying these
uncertainties is an important step in the simulation model validation process because
the assessment of model accuracy requires a reliable measure of uncertainty for model
predictions. Uncertainty quantification (UQ) is the process of quantifying the uncertainties
in the model outcomes (Quantities-of-Interest, or QoIs) by propagating the uncertainties
from the input parameters through the computer model. In the nuclear energy community,
UQ holds a particularly pivotal role, compared to other field, as it aids in minimizing over-
conservatism in systems with potentially severe consequences. Key activities in nuclear
power plant development, such as nuclear reactor design, safety analysis, and licensing,
all rely on computer codes whose credibility has been established through a rigorous
verification, validation and uncertainty quantification (VVUQ) process.

Inverse Uncertainty Quantification (IUQ) is the process of inversely quantifying the
input uncertainties based on experimental data. IUQ seeks statistical descriptions of the
uncertain input parameters that are consistent with the experimental data [1]. The uncer-
tainty information of the input parameters can thus be used for further VVUQ tasks. IUQ
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has emerged as a particularly prominent segment of UQ in recent years, which can be
attributed to the increasing requirements from using computer codes for nuclear reactor
simulations, as well as the continuous expansion in computational power, coupled with
advancements in machine learning and sophisticated statistical methodologies.

A comprehensive framework for computer model calibration under the Bayesian
formulation was initially introduced by Kennedy and O’Hagan [2]. Subsequently, this
methodology has been adapted for use in various domains. While the technique offers
a broad framework for implementing Bayesian calibration in computational models, it
requires customization for specific fields. Because the method is dependent on the available
measurement data and the parameter space, which are very different across different do-
mains. IUQ is a natural extension to Bayesian calibration because instead of calibrating the
input parameters with a point estimate, it primarily focuses on the distribution information
of input parameters. In the nuclear TH field, IUQ has primarily focused on the parametric
uncertainty from closure relations in TH codes.

Parametric uncertainty can come from the empirical equations used in two-fluid
models or other fluid dynamics models, like equations of state and constitutive equations
(also known as closure laws). These model parameters are not always known precisely.
For large-scale modeling, two-phase transport phenomena are usually described with a
multi-fluid continuum formulation and a system of mass, momentum, and energy con-
servation equations derived for each phase. On smaller scales, complex interactions like
forces between phases, evaporation at walls, and others, are typically approximated using
various empirical or semi-empirical closure models. The precision and reliability of model
predictions largely depend on how well these closure models are calibrated, a process that
is traditionally carried out step-by-step. Initially, empirical or semi-empirical submodels
undergo calibration and validation using separate-effect test (SET) data, after which the
entire model is validated against integral-effect test (IET) data [3]. SETs, commonly exe-
cuted at a scale smaller than real reactors, primarily concentrate on specific experimental
QoIs, minimizing the interference with other phenomena [4]. After thorough analysis of
these tests, thermal-hydraulic experts determine the closure relationships. During this
procedure, closure models are developed to minimize added computational load. However,
these models might possess considerable uncertainties from knowledge gaps, scalability
concerns, and oversimplifications.

In recent years, many IUQ methodologies have been developed in the nuclear com-
munity and several international projects have also been performed. For example, (1) the
PREMIUM (Post-BEMUSE Reflood Models Input Uncertainty Methods) [5] benchmark,
which focused on core reflood problems to quantify and validate input uncertainties in
system TH models, (2) the SAPIUM (Systematic APproach for Input Uncertainty quantifi-
cation Methodology) [6] project that aimed to develop a systematic approach for input UQ
methodology in nuclear TH codes, and (3) the ATRIUM (Application Tests for Realization of
Inverse Uncertainty quantification and validation Methodologies in thermal-hydraulics) [7]
project that was initiated in 2022 to perform practical IUQ exercises of a demonstration
of the SAPIUM approach. Wu et al. [1] conducted a comprehensive survey where twelve
IUQ methods for nuclear TH applications are reviewed, compared, and evaluated. More
recently, Liu et al. [8] developed a SAM-ML framework for calibration of closure laws in
the SAM system code. A nonlinear extension of the CIRCE method was introduced in [4],
employing Bayesian inference for IUQ in closure relations of TH codes. This was further
expanded to account for multiple experimental groups in [9]. Furthermore, Xie et al. [10]
combined IUQ and quantitative validation via Bayesian hypothesis testing to improve
the predictive capability of computer simulations. Besides the applications in nuclear
energy, the Bayesian approach for IUQ has also been applied to many other fields such
as biotechnology [11], geophysics [12], additive manufacturing [13], computational fluid
dynamics [14,15], etc.

Many recent advancements in IUQ are attributed to the rapid evolution of ML/AI
technologies. These technologies have not only enhanced the accuracy and reliability of
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simulation models across diverse industries but have also proven effective in addressing
numerous complex challenges [16]. They have been successfully applied in various fields
such as healthcare [17–19], agriculture [20], transportation [21–23], clinical studies [24,25],
medical imaging [26,27], civil engineering [28], industrial engineering [29,30], etc. The ef-
fectiveness of ML/AI methodologies in these domains demonstrates their versatility and
offers valuable insights for our IUQ research in the nuclear energy sector.

In the field of Bayesian IUQ studies for nuclear TH, the research focus has primarily
been on using single-level Bayesian inference to investigate the posterior distributions of
parameters. These approaches have the advantage of being applicable with relatively small
datasets. Nevertheless, the posterior distributions derived from these calculations are typi-
cally specific to the chosen experimental scenarios. They may change if different datasets
are used. In practice, researchers may be more interested in inferring the population distri-
bution of the parameters given complete experimental datasets. The hierarchical Bayesian
models can help in applications where observations are organized into distinct groups.
In many nuclear TH applications, the physical model parameters (PMPs) may differ across
groups, caused by the group effect introduced by experimental data. For example, many
PMPs use different constitutive equations at different experimental conditions (boundary
conditions, geometries, flow regimes, etc.). These different constitutive equations impose
“group” characteristics—the PMPs within a group show similar behaviors because their
constitutive equations are be derived from similar separate-effect test (SET), while the PMPs
at very different experimental conditions and constitutive equations are likely to have dif-
ferent level of uncertainty and accuracy. Within each group, the “individual” characteristics
of PMPs are due to the parametric uncertainties and measurement error in deriving each
constitutive equations. Thus, employing single-level Bayesian inference may introduce
errors by ignoring the group-level characteristics in the input parameters. Hierarchical
models allow for the creation and identification of “hyperparameters” to make sure that
both “group” characteristics and “individual” characteristics of PMPs are considered.

The idea of the hierarchical Bayesian model is not new but has not been extensively
explored in the nuclear energy community. The CIRCE method [4] employed a hierarchical
structure for a nuclear TH application, where a two-level structure is used and each
group consists of a single data point. Robertson et al. [31] used a similar structure to aid
the calibration of a fuel performance model. However, the power and flexibility of the
hierarchical Bayesian model is not fully explored. Wang et al. [32,33] proposed a flexible
hierarchical Bayesian model where data observations can be grouped according to their
experimental boundary conditions, and conducted a comprehensive comparison between
the hierarchical model and the non-hierarchical model. The hierarchical model structure
is demonstrated to be less prone to overfitting caused by model discrepancies or outliers,
and has the potential to be used for larger sets of experimental data [32].

However, a practical challenge in the hierarchical Bayesian model is the computation
cost. As the number of groups increases, the number of parameters to be quantified also
increases. Established Markov Chain Monte Carlo (MCMC) methods scale poorly with
data size and parameter space, and become prohibitive when the dimension of parameters
is very high. The variational inference (VI) method, also called variational Bayesian,
provides a more scalable alternative to MCMC sampling and has been widely used in many
applications such as Bayesian neural networks [34], where a large number of parameters
need to be estimated. In the field of nuclear engineering, a variational Bayesian Monte
Carlo (VBMC) method has been utilized for the IUQ of a doped UO2 fission gas release
model [35]. The results showed that VBMC has similar accuracy and superior efficiency
compared to traditional MCMC sampling methods.

In this paper, we propose to use VI in the hierarchical Bayesian model to improve
the scalability of the Bayesian IUQ framework for nuclear TH applications. We will
firstly describe the essential steps in the IUQ framework, then introduce the hierarchical
Bayesian model, VI, and explain how they are integrated in the Bayesian IUQ framework.
The framework is then applied to a demonstrative example using manufactured data,
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and later a real-world application using the PMPs in a nuclear TH simulation code and
BFBT (BWR Full-size Fine-mesh Bundle Test) benchmark experimental data [36]. Both
examples involve more than 300 parameters and VI is used for parameter estimation in the
hierarchical model. The resulting posterior distributions of PMPs are compared with the
results from No-U-Turn sampler (NUTS) sampling methods, and the efficiency benefit using
VI is demonstrated. The proposed method shows a promising framework for reducing the
IUQ computation burden and scaling IUQ to large datasets.

2. Materials and Methods
2.1. Bayesian IUQ Framework Overview

IUQ is described as the method to inversely quantify the input uncertainty distribu-
tions, based on experimental data. It aims to find statistical descriptions of the uncertain
input parameters that are consistent with the experimental data. Bayesian IUQ techniques
leverage Bayes’ rule for updating existing knowledge following the observation data [37].
Initial understandings of the uncertainties in the PMPs are captured as prior distributions.
These priors are subsequently updated to form posterior distributions through a systematic
comparison between the model predictions and experimental data. The obtained posterior
distributions of PMPs will be useful for future forward UQ and model validation studies,
as well as improving the understandings of the underlying physical models.

The key elements of the IUQ framework are illustrated in Figure 1. In this framework,
x represents control parameters like boundary and initial conditions, while θ in this work
denotes the PMPs used in the closure models for TH simulation codes whose uncertainties
are the target of IUQ. These TH codes, such as TRACE, encompass a set of six conservation
equations that are completed using additional closure models Mi(x, θ, yM). The simulation
code’s output, denoted by yM, can be integrated with the experimental data yE using
Bayes’ rule. This integration yields a joint posterior probability density distribution for the
selected PMPs.

Figure 1. Key Elements of the IUQ framework [32].

Following the seminal work of Bayesian calibration for computer codes [2], we repre-
sent the relationship between the computer code outputs yM(x, θ) and the experimental
data yE(x) in the following equation:

yE(x) = yM(x, θ) + δ(x) + ε, (1)

where ε is the experiment measurement error that is usually assumed to be i.i.d Gaussian
distributions N (0, σ2

exp). It is important to recognize that this assumption might not
always be true in practice, particularly in time-dependent problems [38]. δ(x) is the
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model discrepancy term, which is caused by incomplete or inaccurate physical models or
assumptions employed within the model.

Based on the model updating equation above and the assumption of ε, the posterior
PDF of the PMPs can be formulated using the Bayes’ rule:

p(θ|yE, yM) ∝
1√
|Σt|

exp
[
− 1

2
[yE − yM − δ]TΣ−1

t [yE − yM − δ]

]
· p(θ). (2)

The covariance matrix Σt is defined as:

Σt = Σexp + Σδ + Σcode, (3)

where Σexp denotes the experimental uncertainty, Σδ represents the model uncertainty,
and Σcode represents the code uncertainty, which may arise when surrogate models are
used to substitute the full physical models. The prior distribution of input parameters p(θ)
can be considered as a non-informative uniform distribution within a defined range.

Determining the model discrepancy δ can be challenging. In situations where the
model discrepancy is minimal, it is reasonable to simply ignore the δ term. However,
ignoring the model discrepancy when it is present can lead to the overfitting of PMPs.
This means that the IUQ process will prefer a θ distribution that best matches the selected
measurement data with the model simulation, instead of converging towards the “true”
value. To address this challenge, the modular Bayesian approach was formulated, offering
a solution to the issue of model discrepancy within the IUQ Framework ([39,40]).

Given the fundamental principles of IUQ, the essential steps to calculate the PMP
posteriors for nuclear TH codes in the Bayesian IUQ framework are ([41–43]):

1. Problem Definition. Identify the problem being studied and choose relevant experi-
mental data and simulation codes. In this work, we utilize the BFBT (BWR Full-size
Fine-mesh Bundle Test) benchmark data [36] and build the corresponding models
using TRACE. Details of the experimental data and the simulation codes will be
introduced in the following session.

2. Sensitivity Analysis. In this step, we aim to identify the key and influential input
parameters. For the chosen TH codes, these input parameters are typically multipliers
for the coefficients in closure equations, such as single-phase/two-phase heat transfer
coefficients, interfacial drag coefficients, etc. This identification can be accomplished
through two successive SA steps. Initially, a relatively straightforward perturbation
method is applied to all parameters to identify those that are active in the model.
Following this, a more precise SA method, known as Sobol indices, is employed
to determine the influential parameters within a constrained variable space. In the
field of nuclear TH, a variety of SA techniques have been effectively employed.
These include Subset Simulation, Line Sampling [44], Sobol indices [45,46], Pearson
correlation coefficient, elementary effects method [47], adjoint method [48] etc.

3. Surrogate Model. Surrogate models are approximations of the input/output relation
of the original computer model. They are developed using a limited set of full
model simulations (known as the training set) combined with a learning algorithm.
Typical MCMC sampling algorithms takes at least thousands of samples, thus if the
simulation codes are computationally expensive, it would be impossible to to conduct
the computation efficiently. In this scenario, we can use a surrogate model, also
referred to as emulators or metamodels, to replace the computationally prohibitive
simulation code. Many learning algorithms are available and have been successfully
applied to TH applications, such as, Polynomial Regression (PR) [43], Gaussian
Process (GP) [41,49], Artificial Neural Networks [50–52], etc.

4. Hierarchical Bayesian Model. Once the problem is clearly defined and the uncertain
inputs are identified, a hierarchical Bayesian model is formulated accordingly. The hi-
erarchical structure should be defined based on the group effects in the experimental
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data. This step also involves establishing the likelihood function and formulating the
posterior distributions.

5. Posterior Exploration. In this step, inference algorithms such as MCMC and VI are
employed compute the approximate posterior distributions of the parameters.

6. Posterior Predictive Check (PPC). PPC is the process of comparing the observed
experimental data to the posterior predictions of the model. The core concept is
that if the posterior parameter distributions are good approximations of the “true”
underlying distributions, then the predicted data from the model should actually
“look like” real observed data. If the patterns in the predicted data do not mirror the
patterns in the observed data, then we are motivated to invent models that can produce
the QoIs [53]. PPC provides a great way to confirm the the obtained posteriors.

7. Forward UQ (FUQ). In applications where we are interested in the uncertainty ranges
of QoIs, the derived posterior distributions are propagated through the simulation
model. This FUQ process is expected to produce more accurate model prediction
uncertainties by using the PMP uncertainties quantified from IUQ.

2.2. TRACE PMPs and BFBT Benchmark Data

The international OECD/NRC BFBT benchmark [36] was established to encourage
advancement in the sub-channel analysis of two-phase flow in rod bundles, a key aspect in
the nuclear reactor safety evaluation. The BFBT program captures important metrics such
as single and two-phase pressure losses, void fraction, and critical power. This benchmark
has gained widespread acceptance and is frequently employed for the validation of diverse
computational methodologies in the field of nuclear reactor safety analysis [43,54,55].

In this research, our primary focus is on utilizing the void fraction (VF) measurements
of the BFBT benchmark as our experimental dataset. The experiment facility for the
experimental data used in the study is shown in Figure 2. These VF measurements are the
key QoIs predicted by the TRACE simulation model. VF data are captured at four distinct
locations along the test facility, using X-ray densitometers and X-ray CT scanners. These
measurements are designated as ‘Void Fraction 1’ through ‘Void Fraction 4’, corresponding
to positions from the lower to the upper regions of the test facility. Experiments with
varying boundary conditions (flow rate, inlet temperature, pressure, and power) were
conducted and the corresponding VFs were measured. The specifics of the experiments
are not in the scope of this study and will not be reiterated here. For further details on the
BFBT benchmark, readers can refer to the work in [36].

Figure 2. Experimental facility for void fraction measurement in the BFBT benchmark [36].
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TRACE [56] is a nuclear TH simulation code designed for high-accuracy reactor simu-
lations. In this study, a TRACE model has been developed to align with the experimental
geometry and boundary conditions described in the BFBT benchmark. The input parame-
ters of the TRACE model include the geometry specifications and boundary conditions,
as well as PMPs. The QoIs are the VF predictions at the corresponding locations. A
comparative analysis of the simulated and experimentally measured VF is presented in
Figure 3. We can see that the TRACE model predictions exhibit a good agreement with the
experimental data, with no major model discrepancy observed.

0.0 0.2 0.4 0.6 0.8 1.0
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Figure 3. Comparison of TRACE-predicted and experimentally-measured void fractions, assembly 4
in the BFBT benchmark.

In this study, we leverage TRACE’s feature that allows the adjustment of 36 PMPs
via multiplicative factors. These factors serve as the PMPs in our research. As previously
noted, these PMPs are developed for closure laws based on empirical studies, and they may
entail significant uncertainties. Consequently, our study aims to quantify the distribution
of these PMPs using the BFBT experimental data.

2.3. Hierarchical Bayesian Model

In previous Bayesian calibration settings in the field of nuclear TH, researchers have
typically assumed that the observations are mutually independent, allowing the joint likeli-
hood function to be conveniently formulated as the product of each individual likelihood.
However, in many situations, especially in nuclear TH codes, such independence may not
hold. Wang et al. [32] used a hierarchical Bayesian model to address specific limitations
inherent in the single-level Bayesian model, namely the high variability of PMPs under
different experimental conditions and the presence of unaccounted-for model discrepancies
or outliers, which could lead to overfitting issues. In their study, the hierarchical model
is compared with a non-hierarchical model in a TH application and it was demonstrated
that the hierarchical model can help make the model more robust against outliers and
avoid overfitting. Theoretically, the non-hierarchical model estimates a global variable with
equal contributions from each data point, potentially amplifying the outlier impact, while
the hierarchical model accommodates calibration parameter variability, thereby offering
consistent results given sufficient data. Thus, the hierarchical model has the potential to
be applied to larger sets of experimental data. In the current study, we will provide an
overview of this hierarchical Bayesian model structure and subsequently extend it to more
efficient and scalable applications.
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Consider a simple hierarchical model example illustrated in Figure 4. In this graph
example, there are N observations (y1, y2, . . . yN), shared parameter b with prior distribu-
tion p(b), and M group-specific parameter θ. The shared parameter b is assumed to be the
same for all observations, while the group-specific parameter θ can be different among M
groups. θ is influenced by its distribution parameters Σθ, which have a prior distribution
denoted as p(Σθ). Σθ represents the collection of parameters that defines the distributions
of θ, for example, if the M group-specific parameters θ are assumed to be from a normal
distribution, then Σθ includes two variables: mean and standard deviation. There can be
more than one shared parameter so we use a vector b to represent the shared parameters in
this example.

Figure 4. Diagram of a hierarchical model.

Figure 4 can also be described as the following generative process:

1. Draw global variables b ∼ p(b) and Σθ ∼ p(Σθ).
2. Draw group-specific variables θi according to p(θi|Σθ), i = 1, 2, . . . M.
3. Draw observed data point yi ∼ p(yi|θ, b), i = 1, 2, . . . N.

The joint probability of all the hidden and observed variables, as listed in Figure 4, is

P(y1:N , θ1:M, Σθ, b) = P(b) · P(Σθ) · P(y1:N |θ1:M, b) · P(θ1:M|Σθ). (4)

The posterior distribution of all the variables to be estimated can be described as:

P(Σθ, b, θ1:M|y1:N) =
P(y1:N |θ1:M, Σθ, b)P(θ1:M, Σθ, b)∫

Σθ,b,θ1:M
P(y1:N , θ1:M, Σθ, b)

. (5)

In many applications, our main objective is to gain insights about b and Σθ, rather than
the individual group-specific parameters θ1:M. However, θ1:M also needs to be estimated in
order to estimate Σθ. Therefore, after acquiring the joint posterior distributions, we must
marginalize over the θi parameters.

The likelihood function can be expressed as:

L(y1:N |Σθ , b) =
∫

θ1:M

P(y1:N |b, θ1:M)P(θ1:M|Σθ) dθ (6)

and the marginalized joint posterior distribution is

P(Σθ, b|y1:N) ∝
∫

θ1:M

P(y1:N |b, θ1:M)P(θ1:M|Σθ) · P(b)P(Σθ) dθ. (7)

This is based on the fact that the prior distribution can be decomposed as P(Σθ, b, θ1:M)
= P(θ1:M|Σθ) · P(Σθ, b) according to the hierarchical structure.
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In many cases, the posterior distribution is in an intractable form, which cannot be an-
alytically solved because of the integral term in the denominator in Equation (5). Therefore,
we need to use approximate inference methods to compute the posterior distribution. Two
predominant methods for achieving this aim are VI and MCMC. VI generally offers a faster
computing speed and focuses on optimizing a well-defined objective, while MCMC has
the advantages of being non-parametric and asymptotically exact. In past work within the
domain of nuclear TH, MCMC has primarily been employed within the IUQ framework
for exploring the posterior distributions. One reason for this preference is that experimen-
tal data in nuclear TH are both limited and costly to acquire. Thus, the computational
expense of MCMC is justified by its ability to generate highly accurate posterior samples
given the limited amount experimental data. However, as hierarchical IUQ frameworks
expand to incorporate an increasing number of datasets and applications, which leads
to an increasing number of parameters, the need for computational efficiency becomes a
crucial consideration.

2.4. Markov Chain Monte Carlo

MCMC methods are based on the idea of generating samples that follow a probability
density that is proportional to the posterior distribution without knowing the normalizing
constant. The approach is based on the fact that the shape of the posterior distribution
remains unaffected by its normalization in Equation (5), eliminating the need for explicit
integration during sampling. Many MCMC sampling algorithms have been developed.
Early versions of these algorithms employed a strategy of randomly traversing the pa-
rameter space using a proposal distribution, creating samples that are either accepted or
rejected based on a particular acceptance criterion, thus forming a Markov chain. This
process eventually generates a collection of samples approximating the desired distribution.
Modern advancements, such as NUTS [57], aim to mitigate issues like random walking
and slow convergence attributed to the proposal distribution. As a result, fewer samples
are discarded, shorter chains are formed, and faster sampling is achieved. Many MCMC
algorithms have been employed in the IUQ framework for the posterior sampling of nu-
clear TH related applications. For example, the Adaptive Metropolis–Hasting algorithm
has been used for the single-level Bayesian model calibration of nuclear TH codes [42],
Gibbs sampling has been used in CIRCE methods for similar input UQ applications [4,58].
Recently, the NUTS sampling method was used to sample the posteriors from a hierarchical
Bayesian model for the PMPs in nuclear TH simulation codes [32].

2.5. Variational Inference

When a large amount of datasets are available, a hierarchical model typically involves
hundreds of parameters to be estimated due to complex hierarchical structures or a large
number of groups. VI provides an efficient way to quantify the posterior distributions
without sampling the exact posterior distribution. The idea behind VI is to first propose a
family of densities and then to find the member of that family that is close to the target [59].
The closeness is measured by Kullback–Leibler (KL) divergence. In this way, VI turns a
sampling problem into an optimization problem.

We start with a simple example to illustrate the basic idea of VI. Assume θ is the latent
variable to be estimated and y is the observation. We can assume them to be scalars without
loss of generality. First, we select a family of distributions over the latent variables with
its own set of variational parameters ν, i.e., q(θ|ν). Then, we determine the settings of the
parameters that make our approximation q as close as possible to the posterior distribution.
Afterwards, we can treat q with its fitted parameters to be the posterior.

The KL divergence is a widely used measurement of the closeness of two distributions
and the KL divergence between two distributions p and q is defined as:

DKL(q||p) =
∫

θ
q(θ) log

( q(θ)
p(θ|y)

)
= Eq

[
log

q(θ)
p(θ|y)

]
. (8)
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Now, the inference problem becomes the following optimization problem:

q∗(θ) = argmin
q(θ)

DKL(q(θ)||p(θ|y)). (9)

However, this objective function is intractable because it requires the calculation of
posterior distribution p(θ|y), in Equation (8). Instead of directly calculating this objective
function, we seek a good approximation. From Equation (8), we can further derive:

DKL(q(θ)||p(θ|y)) = E
[

log q(θ)
]
−E

[
log p(θ, y)

]
+E

[
log p(y)

]
. (10)

Since log p(y) is not dependent on θ, the expectation value E
[

log p(y)
]
= log p(y).

We define the evidence lower bound (ELBO) as:

ELBO(q) = E
[

log p(θ, y)
]
−E

[
log q(θ)

]
. (11)

Comparing Equation (10) with Equation (11), we can see that ELBO is the negative
KL divergence plus log p(y), which is a constant with respect to q(θ). Thus, maximizing
ELBO is equivalent to minimizing the KL divergence. If the latent variables are mutually
independent and each governed by a distinct factor in the variational density, the joined
distributions of θ1:M can be described as:

q(θ1:M) =
M

∏
i=1

qi(θi). (12)

Traditionally, it is usually required to develop a custom optimization solution from
here, which includes choosing a variational family suited to the model, calculating the
relevant objective function, taking derivatives, and running a gradient-based or coordinate-
ascent optimization. We can use gradient-based or coordinate ascent inference to iteratively
optimize each variational distribution while holding the others fixed. This method is
usually referred to as mean field VI. In this paper, we leverage the Automatic Differentiation
Variational Inference (ADVI) algorithm [60] implemented in PYMC [61] for inferring the
posterior distributions. ADVI offers a recipe for automating the computations involved
in VI and provides researchers with a no-manual-tuning method to conduct VI for many
models at scale. The general idea of ADVI is to initially transform the inference problem
into a common space automatically, and then address the variational optimization. Solving
the problem in this common space solves VI for all models in a large class [60].

When comparing VI with MCMC, there are generally two key differences to consider:
dataset size and structure of the posterior distribution. VI relies on optimization techniques,
so that it can take advantage of methods such as stochastic optimization or distributed
optimization. This feature makes VI particularly well-suited for handling large datasets and
scenarios that require rapid model exploration. MCMC is better suited for smaller datasets
or situations in which one is willing to incur higher computational costs to obtain more
precise, theoretically accurate samples. On the other hand, the structure of the posterior
distribution is another factor to consider. For many mixture models, Gibbs sampling might
be a powerful tool, while for some mixture models, VI may perform better than MCMC
even on smaller datasets [62]. Until now, there has been no general conclusion on the
relative accuracy of VI and MCMC, and it largely depends on the specific tasks [59]. It
should also be noted that the mean field ADVI assumes that the variational posterior
distribution is Gaussian without correlation of parameters. In applications where the
correlation assumption does not hold, we may use the full-rank Gaussian variational
approximation [63] with additional computation cost.
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3. Results
3.1. Synthetic Data Example
3.1.1. Problem Definition

The synthetic data example is designed to mirror the application of the system TH
code with BFBT void fraction data, which we will explore in later sections. Suppose we
have three parameters to estimate [θ1, θ2, θ3], and we know that observations y are from a
quadratic function (X is determined):

y = θ1X2 + θ2X + θ3I +N (0, σ2
e ).

In real-world applications, we can consider [θ1, θ2, θ3] to be the PMPs, and the quadratic
function to be a more complex simulation models. Our goal now is to estimate the posterior
distribution of [θ1, θ2, θ3] given the function form, experimental observations y, and control
variables X. We generate N = 300 groups of data and let each group contain M = 6
data points. The true values of [θ1, θ2, θ3] have slight variability among different groups,
and they are generated from the normal distributions defined below:

θ1 ∼ N (10, 3)

θ2 ∼ N (2, 1.5)

θ3 ∼ N (−5, 2).

To account for the variation in latent parameters [θ1, θ2, θ3] among different groups,
a Bayesian hierarchical model is utilized to tackle this concern. Since we know that they are
generated from normal distributions, we can define their corresponding hyper-parameters
using mean and standard deviation of the normal distribution: µθ1 , σθ1 , µθ2 , σθ2 , µθ3 , σθ3 .
A visual representation of the model structure is presented in Figure 5.

Figure 5. Synthetic data example diagram.

3.1.2. Results and Discussions

Following the hierarchical structure defined above, the generative process is as follows:

1. Draw samples of global variables, (µθ1 , σθ1 , µθ2 , σθ2 , µθ3 , σθ3), from their prior distribu-
tions. We use wide uniform distributions as priors to reflect our ignorance of knowledge.

2. For i = 1, 2, 3 and n = 1, 2, . . . N, draw samples of group-specific parameters
θn

i ∼ N (µθi , σθi ).

In this structure, Bayesian inference needs to estimate an extensive set of 307
(300 + 6 + 1 = 307) parameters. Traditional random sampling-based MCMC algorithms
are impractical for managing this level of complexity. There are more advanced algorithms
to deal with this situation. While Gibbs sampling could offer a solution, as it is relatively
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easy to derive all the conditional distributions in this context, this approach may not be
feasible for more complex problems or for scalability across multiple models or datasets be-
cause it requires us to analytically derive all the conditional distributions for each problem,
making it hard to scale. There are several advanced algorithms that require minimal hand-
tuning for conducting Bayesian inference, making them suited for large-scale applications.
In this work, we use two such algorithms that require minimal hand-tuning—NUTS and
ADVI. They are both implemented in the PYMC [61] package and can be easily integrated
with other applications.

For the NUTS sampler, we draw 6000 samples in total and use the first 1000 as tuning
samples. The number of samples is based on the convergence of the MCMC chain, which
can be confirmed by the mixture of trace plot and by checking if multiple parallel runs
yield the same result. For ADVI, we can track the ELBO during the optimization steps
to see if the algorithm has converged. In ADVI, the loss function is the negative of ELBO
and it is plotted in Figure 6. We can see it is converged after 100,000 steps. It should be
noted that the negative ELBO in ADVI is not normalized so the absolute value cannot be
compared across models.

0 20000 40000 60000 80000 100000 120000
Number of fitting steps

10000

20000

30000

40000

50000

60000

Negative ELBO Track

Figure 6. Negative ELBO track for the synthetic data example.

After the posterior samples are obtained from both algorithms, we can compare their
posterior distributions. We are mainly interested in the hyper-parameters (µθ1 , σθ1 , µθ2 , σθ2 ,
µθ3 , σθ3) and their posteriors are displayed in the Kernel Density Estimate (KDE) plot in
Figure 7. From the results we can see that both algorithms are capable of accurately esti-
mating the true values of the parameters in this example. In many real-world applications,
the true values are not known, so we need to conduct further PPC to confirm the obtained
distributions, but it is not necessary in this synthetic data example.

Computing time is another important factor to compare. As summarized in Table 1,
ADVI demonstrates a significant speed advantage by accomplishing 120,000 fitting steps
in 12 s. In contrast, the NUTS algorithm requires more time and it takes 50 s to generate
6000 samples. The computations were performed on an identical hardware configuration,
specifically on a single core of an Apple M1 Pro chip, utilizing the software package PYMC
5.9.2. It should be noted that both steps here correspond to the total number of calls to the
computation model. In this toy example, it is the quadratic function. In the TH application
later, this correspond to the number of calls to the surrogate model. Theoretically, ADVI
offers an additional layer of scalability due to its amenability to parallelization—owing
to its nature as an optimization algorithm. Conversely, the NUTS algorithm inherently
requires sequential generation, which restricts its parallelization capabilities. Furthermore,
ADVI can further utilize mini-batch optimization techniques to expedite computations,
particularly when dealing with extensive datasets including tens of thousands of data points.
This offers a potentially advantage in scenarios demanding rapid scaling to large datasets.
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Figure 7. KDE plots of the posterior distributions sampled by NUTS and ADVI algorithms and
comparison with true values.

Table 1. Computing time comparison of ADVI and NUTS methods for the synthetic data example.

ADVI NUTS

Number of fitting/sampling steps required 120,000 6000
Computational time 12 s 50 s

3.2. Nuclear Thermal-Hydraulics Application
3.2.1. Problem Definition

In Section 2.2, we have introduced the background for the BFBT benchmark and the
TRACE simulation model. In this study, we will use the PMPs in TRACE as uncertain
inputs, and our primary goal is to estimate the posterior distribution of the PMPs given the
experimental data in BFBT benchmark, as derived in Equation (2). In TRACE, a total of
36 PMPs, including variables like liquid-to-interface transition heat transfer coefficients,
wall drag coefficients, and interfacial drag coefficients, are available for adjustment. How-
ever, not all of these parameters are necessarily pertinent to the current modeling task, thus
a sensitivity analysis is used to screen out non-important parameters. This can significantly
reduce the number of parameters in the subsequent studies and thus reduce the computa-
tional cost. Four parameters are selected out of thirty-six, given their dominant impacts
on the model QoIs, and they are listed in Table 2. More details on the parameter selection
procedure will be given in the following section.

Table 2. List of 4 selected PMPs in TRACE.

Parameter Definition

P1008 Single phase liquid to wall heat transfer coefficient
P1012 Subcooled boiling heat transfer coefficient
P1022 Wall drag coefficient
P1028 Interfacial drag (bubbly/slug Rod Bundle–Bestion) coefficient
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The dataset used for IUQ consists of 86 experimental groups. Each group represents
a set of steady-state measurements obtained from the test facility and includes four VF
measurements at different elevations of the test assembly. Given that these experimental
groups were conducted under varying boundary conditions (e.g., heat flux, temperature,
pressure), it is reasonable to hypothesize that PMPs within the same group exhibit similar
behavior, while they may diverge under different conditions. Accordingly, a hierarchical
Bayesian framework is employed to model this structure, as shown in Figure 8.

Figure 8. Hierarchical Bayesian model of the TRACE/BFBT application.

The PMPs (denoted as P1008, P1012, P1022, P1028) could be different among M = 86 groups,
so we assume each of them is from a common normal distribution governed by its hyper-
parameters (i.e., the mean and standard deviation of the normal distribution). For example,
for P1008:

P1008 ∼ N (µP1008 , σ2
P1008

).

This approach accommodates variations of PMP from one experiment to another,
which can be caused by potential errors, discrepancies, or different physical conditions.
Some experimental data may have relatively large discrepancy due to unknown or unac-
counted factors, and they may have more significant influence on the likelihood function
than other “good” data points, thus making the posterior distribution results sensitive to
them. These data points may also be considered as “outliers”. By using this hierarchical
framework, we can concentrate on modeling the distribution of PMPs in a way that makes
it robust to outliers. If proper prior information is added to µ and σ, we can conduct
Bayesian inference and obtain their posterior distribution.

We employ wide uniform priors for the selected parameters to reflect our limited prior
knowledge. To ensure the robustness of our posterior estimates, an iterative re-sampling
methodology is utilized, as elaborated in previous works [32,33]. This procedure verifies
that the specified prior range is sufficiently broad to encompass the posterior distribution,
mitigating the influence of prior range selection on posterior outcomes. The priors of all
the hyper-parameters, following Figure 8, are shown in Table 3.

Additionally, we introduce σt, defined in Equation (3), as a term representing the total
variance. Given the lack of explicit knowledge about all the components that contribute to
this term, σt is treated as an uncertain input parameter that requires estimation. In cases
where all the components of σt are known, such as when GP is used as the surrogate model
and code uncertainty becomes available, we may directly incorporate it without the need
for further estimation.

Table 3. Prior distributions of the hyper-parameters in the hierarchical model.

Parameters Distributions Dist. Parameter 1 Dist. Parameter 2

µP1008 , µP1012 , µP1022 , µP1028 Uniform a = 0 b = 3
σP1008 , σP1012 , σP1022 , σP1028 Uniform a = 0 b = 1

σt Normal µ = 0 σ = 1
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3.2.2. Sensitivity Analysis and Surrogate Model

Having gathered all the requisite elements to execute Bayesian inference for estimating
the posterior distribution as described in Equation (2), there remain several obstacles
specific to nuclear TH applications within the IUQ framework. One such challenge is
the potentially high number of input parameters. As previously discussed, it is crucial
to employ SA methods to identify the most influential parameters, thereby streamlining
subsequent computational efforts. Another impediment lies in the computational intensity
of the TRACE simulation code. Each TRACE simulation may require several minutes or
more to complete. Given that Bayesian inference necessitates tens of thousands of samples,
the direct utilization of TRACE becomes infeasible due to the excessive computation time.
Additionally, VI calls for derivatives of the model output with respect to the input; this is
also a new requirement that TRACE cannot readily fulfill. To circumvent this issue, we
employ machine learning-based regression models to serve as surrogate models for the
TRACE code. In this section, we will briefly introduce the SA methods and surrogate
models used in this work.

In the initial stage of parameter selection, a simple perturbation approach is deployed.
Each parameter is individually perturbed within the range of (0, 5), while all other parame-
ters remain fixed. We employ 50 uniform samples within this range to evaluate the impact
of each parameter on the simulated void fraction data. The output variance attributable to
each parameter is then computed. Our findings reveal that the majority of the variances are
either zero or negligibly close to it. From this preliminary examination, eight parameters
boasting variances greater than 10−3 are singled out for further investigation.

However, the quantitative impact of these parameters on the QoIs varies significantly.
Carrying out Bayesian inference on all these parameters could lead to computational
redundancy. To address this, the Sobol indices method is subsequently invoked for a
more detailed screening. The Sobol indices method provides a straightforward measure of
sensitivity in arbitrarily complex computational models [64]. Essentially, it is a variance-
based approach that decomposes the output variance into individual and interactive
contributions from each input variable, a technique known as ANOVA (ANalysis Of
VAriance). For the computation of Sobol indices, we adhere to the sampling-based strategy
outlined by Saltelli et al. [64] and utilize the Sensitivity Analysis Library in Python [65].
Given its widespread successful application in various UQ contexts [45,55,66] in the field,
the specifics of the Sobol indices will not be reiterated here. As a result of this refined
screening process, a subset of four parameters emerges as having a dominant influence
on the model’s QoIs. These are therefore selected as the uncertain inputs for subsequent
analyses in the IUQ framework.

Given the inputs and the model QoIs, we can build a regression model that will serve as
a surrogate for the computationally intensive TRACE simulation code. The surrogate model
aims to accurately approximate the TRACE simulations on the given input–output domain,
while significantly reducing the computational cost. For the surrogate model, techniques
such as polynomial chaos expansions, polynomial regression, Gaussian processes, and
neural networks are commonly employed, depending on the specific nature of the task.
These techniques are trained on a dataset generated from a carefully designed set of TRACE
simulations to ensure that the surrogate model captures the input–output relationships
inherent in the original TRACE model. The trained surrogate model is then validated using
separate sets of data to confirm its predictive accuracy. Once validated, the surrogate model
can be integrated into the Bayesian inference framework, thereby enabling efficient and
scalable IUQ analyses.

In this work, we employ a polynomial regression (PR) model because it was discov-
ered that the output void fractions exhibit a relatively simple relation to the input PMPs
in the prior ranges. The PR model with a degree of d for two variables x1, x2 has the
following form:

ŷ(w, x) = w0 + w1x1 + w2x2 + w3x1x2 + w4x2
1 + w5x2

2 + . . . + wnxd
1 + wn+1xd

2 . (13)
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Another major reason for employing the PR-based surrogate model is due to its
compatibility with the NUTS sampling algorithm, which requires gradient information.
As a parametric regression model, it is relatively straightforward to compute the gradient at
any specified location. While GPs and neural networks could also be appropriate choices for
surrogate modeling for NUTS sampling, the PR model offers a balance between sufficient
accuracy and computational simplicity for our current problem setting.

To validate the performance and suitability of the PR model, we conduct a convergence
study focusing on the accuracy of the surrogate model on a separate validation dataset.
This study can help determine the minimum number of samples required to construct an
accurate surrogate model. Latin Hypercube Sampling (LHS) is used to sample from the
input domain. The Mean Absolute Error (MAE) and Coefficient of determination (R2) on
an additional 25 validation data points is shown in Figure 9. The graph indicates that the
out-of-sample error rates stabilize when the sample count exceeds 100. The observed MAE
falls within a range of 1% to 1.25%, which is deemed acceptable for the present study. This
is because the reported experimental measurement error for the void fraction is absolute
3%; thus, a relative error of 1% is well below this value. Additionally, the R2 indicates that
the surrogate models offer a reliable approximation of the original TRACE simulation code
when the sample size surpasses 100. As a result, we used 100 LHS samples to construct our
surrogate models for subsequent studies.
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Figure 9. Surrogate model performance on validation dataset.

3.2.3. Results

Now that we have constructed accurate surrogate models, we can use the hierarchical
structure defined in Figure 8 to infer the posterior distributions. We apply both NUTS and
ADVI methods and compare the generated posterior distributions as well as the computing
efficiency. For the NUTS algorithm, a total of 100,000 samples were generated, with the
initial 20,000 serving as tuning samples and excluded from the final posterior samples.
Convergence of the Markov chains was assessed through the inspection of trace plots and
by confirming that multiple parallel runs yielded consistent outcomes. In the case of ADVI,
we performed 300,000 fitting steps, and convergence was confirmed by tracking the ELBO.
The negative ELBO track for this application closely resembles that presented in Figure 6
and, therefore, will not be repeated here.

Figure 10 shows the posteriors of hyper-parameters (µP1008 , σP1008 , µP1012 , σP1012 , µP1022 ,
σP1022 , µP1028 , σP1028 ) generated by KDE plots. These are the mean values and standard devia-
tions of the normal distributions that generate the PMPs. While both methods yield similar
results for certain parameters, noticeable discrepancies exist for some others. Specifically,
the posteriors for P1008 and P1028 (µP1008 , µP1028 , σP1008 , σP1028 ) show similar modes, but ADVI
generates a smaller variance of the posterior distributions. For parameters P1012 and P1022,
their standard deviation posteriors (σP1012 , σP1022 ) are vastly different, and their mean posteri-
ors (µP1012 , µP1022 ) are generally similar, but P1022 shows slightly more divergence. The total
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variance term σt has a relatively better agreement between the two approaches, as shown
in Figure 11.
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Figure 10. Comparison of the hyper-parameters’ posterior distributions by NUTS and ADVI methods.
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Figure 11. Comparison of the posterior distributions of total variance σt by NUTS and ADVI methods.

One critical difference between the NUTS and ADVI methods lies in their treatment of
variable correlations. ADVI employs mean field VI, which assumes independence between
all the variables and uses Gaussian distribution as the variational approximations. Thus, its
posteriors always look Gaussian. NUTS, in contrast, accounts for the correlations among
latent parameters during the sampling stage. Using the NUTS algorithm, we observed
correlations between the pairs (µP1008 , µP1012) and (µP1022 , µP1028), and their correlations can
be visualized in Figure 12 using bivariate KDE plots. Previous studies also affirm these
correlations among the PMPs in TRACE, which can be rationalized based on their physical
meanings [41]. For example, P1008 is the single phase liquid to the wall heat transfer
coefficient and P1012 is the subcooled boiling heat transfer coefficient; they both positively
influence the QoI (void fraction) as the heat transfer coefficient increases. It should be
noted that the full-rank ADVI method can account for correlations among variables by
using a multivariate Gaussian distribution as the variational approximation. However, it
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comes at a computational cost and can be prohibitively slow for large data [62]. Comparing
and evaluating full-rank ADVI in IUQ applications can be an interesting direction for
future research.
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Figure 12. Correlations between two pairs of hyper-parameters, (µP1008 , µP1012 ) and (µP1022 , µP1028 ),
using bivariate KDE plots.

Due to the difference in dealing with correlations, the results obtained by ADVI and
NUTS show divergent behaviors on certain parameters. However, in the IUQ framework,
our primary focus is on the distributions of the PMPs rather than their hyper-parameters,
because these PMP distributions are essential for FUQ analysis. To this end, posterior
samples of PMPs are generated using their corresponding hyper-parameter posterior
samples. Figure 13 compares these posteriors and reveals generally similar behaviors for
the PMPs from both NUTS and ADVI methods. Some differences are noted, particularly
for the parameter P1022, but the results align well overall. The posteriors of the PMPs are
fitted using normal distribution and are summarized in Table 4.

While it is generally challenging to justify one set of results as “better” without
knowing the true values, we can use PPC as a confirmation strategy. PPC provides the
comparison between the updated model (using the posteriors of PMPs) and the original
model (using the default PMP values), against the observed data. From this process we
can see whether the updated model performs better than the original model, in terms of
reducing the discrepancy between the model predictions and experimental observations.

We can conduct the PPC and FUQ in the same step. We firstly generate 1000 samples
from the posteriors reported in Table 4 and use them as the input of the simulation models.
We can then compute the simulation results and summarize their means and standard
deviations. The results for void fraction measurement location 4 is presented in Figure 14.
The figure includes 86 experimental cases, indexed on the x-axis from 0 to 85. The y-axis
shows the observed VF minus the predicted VF, indicating the discrepancy between the
experimental data and the simulation model.

Table 4. Fitted distributions from the posteriors of PMPs.

Parameters NUTS ADVI

P1008 µ = 1.63 σ = 0.66 µ = 1.34 σ = 0.49
P1012 µ = 1.32 σ = 0.18 µ = 1.45 σ = 0.21
P1022 µ = 0.89 σ = 0.12 µ = 0.89 σ = 0.33
P1028 µ = 1.26 σ = 0.15 µ = 1.32 σ = 0.22
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Figure 13. Comparison of the PMPs’ posterior distributions by ADVI and NUTS methods.
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Figure 14. Comparison of simulation results among (1) original model; (2) updated model using
posteriors obtained by ADVI; and (3) updated model using posteriors obtained by NUTS. The error
bars represent the 2.5–97.5 percentile of the model QoIs obtained from the FUQ step, using the
posterior distributions of the PMPs that have been quantified during IUQ.

From this analysis, we can draw two main conclusions. First, the updated models
using different algorithms yield very similar predictions, even though slightly different
posterior distributions via the ADVI and NUTS methods are obtained. This concordance
could potentially be attributed to underlying interactions between parameters, and NUTS
and ADVI treat them differently. Second, the updated models exhibit lesser discrepancies
compared to the original TRACE model, indicating that the Bayesian IUQ has improved
the agreement between model/data. The 2.5–97.5 percentiles do not provide sufficient
empirical coverage for the simulation data; this is partially due to the existence of other
types of uncertainty, such as boundary conditions and geometry. The FUQ results here
only account for the parametric uncertainty caused by the selected PMPs. For the sake of
brevity, results for the other three measurement locations are not presented here since they
yield similar conclusions.
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Finally, we compare the computing efficiency between the two inference algorithms.
Similar to the synthetic data example, Table 5 shows the computing times associated with
the two algorithms. ADVI shows significant faster computing speed and is able to achieve
converged results within 1 min, while it takes about 23 min for NUTS algorithm to achieve
a converged MCMC chain. This efficiency gain positions ADVI as an attractive option for
similar IUQ studies, particularly when computational resources are constrained or when
we want to quickly extend the framework to multiple datasets and applications.

Table 5. Computing time comparison of ADVI and NUTS methods for TRACE BFBT application.

ADVI NUTS

Number of fitting/sampling steps required 300,000 100,000
Computational time 58 s 1520 s

4. Conclusions and Future Work

In this study, we have developed and demonstrated an extension to the existing
Bayesian IUQ framework that employs a hierarchical Bayesian model and VI to quantify
uncertainties of PMPs more efficiently than most of the previous studies using MCMC
sampling. The proposed approach offers a scalable, efficient, and accurate means to obtain
the posteriors of PMPs. We provided a comprehensive comparison between the proposed
method and a hierarchical model that utilizes NUTS sampling in a previous study [32].
Through a synthetic data experiment and a case study on IUQ of TRACE based on the
BFBT benchmark data, we demonstrated that our VI-based method delivers significant
computational advantages without sacrificing the quality of the posterior estimates. Sim-
ilarly to the NUTS algorithm, the VI-based method requires no manual tuning, thereby
extending its utility across diverse applications with minimal adjustments.

We note that, while VI and NUTS generated different posterior distributions for
certain hyper-parameters, their predictive performance, as determined by PPC and FUQ,
showed similar results. This suggests that the hierarchical Bayesian IUQ framework is
robust to the choice of the inference algorithms. The difference could be attributed to
the correlations between the parameters, because ADVI assumes that all parameters are
independent during the optimization process. This can potentially limit the applicability
of ADVI in scenarios where capturing such correlations is desired. But in applications
where we are mainly interested in the final distributions of PMPs, such simplification is
acceptable. The correlations also lead to the “identifiability” issue in IUQ, which remains
an active research area.

For future research, the framework can be extended to incorporate more sophisticated
surrogate models for more complex problems, such as those with strong non-linearity.
Additionally, the currently example does not consider model discrepancy, while model
discrepancy can play an important role in IUQ [1]. Exploring the potential benefits of the
hierarchical model when model discrepancy exists can also be an interesting area.
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Abbreviations
The following abbreviations are used in this manuscript:

ADVI Automatic Differentiation Variational Inference
BFBT BWR Full-size Fine-mesh Bundle Test
ELBO Evidence Lower Bound
FUQ Forward Uncertainty Quantification
GP Gaussian Process
IET Integral-effect test
IUQ Inverse Uncertainty Quantification
KDE Kernel Density Estimate
LHS Latin Hypercube Sampling
MAE Mean Absolute Error
MCMC Markov Chain Monte Carlo
NUTS No-U-Turn-Sampler
PMP Physical Model Parameters
PPC Posterior Predictive Check
PR Polynomial Regression
QoI Quantity-of-Interest
SET Separate-Effect Test
TH Thermal-Hydraulics
UQ Uncertainty Quantification
VBMC Variational Bayesian Monte Carlo
VF Void Fraction
VI Variational Inference
VVUQ Verification, Validation, and Uncertainty Quantification

References
1. Wu, X.; Xie, Z.; Alsafadi, F.; Kozlowski, T. A comprehensive survey of inverse uncertainty quantification of physical model

parameters in nuclear system thermal–hydraulics codes. Nucl. Eng. Des. 2021, 384, 111460. [CrossRef]
2. Kennedy, M.C.; O’Hagan, A. Bayesian calibration of computer models. J. R. Stat. Soc. Ser. B Statistical Methodol. 2001, 63, 425–464.

[CrossRef]
3. Bui, A.; Williams, B.; Dinh, N. Advanced Calibration and Validation of a Mechanistic Model of Subcooled Boiling Two-Phase

Flow. In Proceedings of the International Congress on Advances in Nuclear Power Plants, Charlotte, NC, USA, 6–9 April 2014.
4. Damblin, G.; Gaillard, P. Bayesian inference and non-linear extensions of the CIRCE method for quantifying the uncertainty of

closure relationships integrated into thermal-hydraulic system codes. Nucl. Eng. Des. 2020, 359, 110391. [CrossRef]
5. Skorek, T.; de Crécy, A.; Kovtonyuk, A.; Petruzzi, A.; Mendizábal, R.; de Alfonso, E.; Reventós, F.; Freixa, J.; Sarrette, C.; Kyncl, M.;

et al. Quantification of the uncertainty of the physical models in the system thermal-hydraulic codes–PREMIUM benchmark.
Nucl. Eng. Des. 2019, 354, 110199. [CrossRef]

6. Baccou, J.; Zhang, J.; Fillion, P.; Damblin, G.; Petruzzi, A.; Mendizábal, R.; Reventós, F.; Skorek, T.; Couplet, M.; Iooss, B.;
et al. SAPIUM: A Generic Framework for a Practical and Transparent Quantification of Thermal-Hydraulic Code Model Input
Uncertainty. Nucl. Sci. Eng. 2020, 194, 721–736. [CrossRef]

7. Ghione, A.; Sargentini, L.; Damblin, G.; Fillion, P.; Baccou, J.; Sueur, R.; Iooss, B.; Petruzzi, A.; Zeng, K.; Zhang, J.; et al. Applying
the SAPIUM guideline for Input Uncertainty Quantification: The ATRIUM project. In Proceedings of the 20th International
Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-20), Washington, DC, USA, 20–25 August 2023.

8. Liu, Y.; Hu, R.; Zou, L.; Nunez, D. SAM-ML: Integrating data-driven closure with nuclear system code SAM for improved
modeling capability. Nucl. Eng. Des. 2022, 400, 112059. [CrossRef]

9. Damblin, G.; Bachoc, F.; Gazzo, S.; Sargentini, L.; Ghione, A. A generalization of the CIRCE method for quantifying input model
uncertainty in presence of several groups of experiments. arXiv 2023, arXiv:2306.02762.

10. Xie, Z.; Alsafadi, F.; Wu, X. Towards improving the predictive capability of computer simulations by integrating inverse Uncertainty
Quantification and quantitative validation with Bayesian hypothesis testing. Nucl. Eng. Des. 2021, 383, 111423. [CrossRef]

11. Helleckes, L.M.; Osthege, M.; Wiechert, W.; von Lieres, E.; Oldiges, M. Bayesian calibration, process modeling and uncertainty
quantification in biotechnology. PLoS Comput. Biol. 2022, 18, e1009223. [CrossRef]

12. Mosser, L.; Zabihi Naeini, E. A comprehensive study of calibration and uncertainty quantification for Bayesian convolutional
neural networks—An application to seismic data. Geophysics 2022, 87, IM157–IM176. [CrossRef]

13. Ye, J.; Mahmoudi, M.; Karayagiz, K.; Johnson, L.; Seede, R.; Karaman, I.; Arroyave, R.; Elwany, A. Bayesian calibration of multiple
coupled simulation models for metal additive manufacturing: A Bayesian network approach. ASCE-ASME J. Risk Uncertain. Eng.
Syst. Part B Mech. Eng. 2022, 8, 011111. [CrossRef]

http://doi.org/10.1016/j.nucengdes.2021.111460
http://dx.doi.org/10.1111/1467-9868.00294
http://dx.doi.org/10.1016/j.nucengdes.2019.110391
http://dx.doi.org/10.1016/j.nucengdes.2019.110199
http://dx.doi.org/10.1080/00295639.2020.1759310
http://dx.doi.org/10.1016/j.nucengdes.2022.112059
http://dx.doi.org/10.1016/j.nucengdes.2021.111423
http://dx.doi.org/10.1371/journal.pcbi.1009223
http://dx.doi.org/10.1190/geo2021-0318.1
http://dx.doi.org/10.1115/1.4052270


Energies 2023, 16, 7664 22 of 23

14. Bae, J.H.; Chang, K.; Lee, G.H.; Kim, B.C. Bayesian inference of cavitation model coefficients and uncertainty quantification of a
Venturi flow simulation. Energies 2022, 15, 4204. [CrossRef]

15. Zeng, F.; Zhang, W.; Li, J.; Zhang, T.; Yan, C. Adaptive model refinement approach for bayesian uncertainty quantification in
turbulence model. AIAA J. 2022, 60, 3502–3516. [CrossRef]

16. Wang, H.; Fu, T.; Du, Y.; Gao, W.; Huang, K.; Liu, Z.; Chandak, P.; Liu, S.; Van Katwyk, P.; Deac, A.; et al. Scientific discovery in
the age of artificial intelligence. Nature 2023, 620, 47–60. [CrossRef]

17. Dong, G.; Cai, L.; Datta, D.; Kumar, S.; Barnes, L.E.; Boukhechba, M. Influenza-like symptom recognition using mobile sensing and
graph neural networks. In Proceedings of the Conference on Health, Inference, and Learning, Virtual Event, USA, 8–10 April 2021;
pp. 291–300.

18. Dong, G.; Tang, M.; Cai, L.; Barnes, L.E.; Boukhechba, M. Semi-supervised graph instance transformer for mental health inference.
In Proceedings of the 2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA), Pasadena, CA,
USA, 13–16 December 2021; pp. 1221–1228.

19. Chen, S.; Kong, N.; Sun, X.; Meng, H.; Li, M. Claims data-driven modeling of hospital time-to-readmission risk with latent
heterogeneity. Health Care Manag. Sci. 2019, 22, 156–179. [CrossRef]

20. Wu, J.; Tao, R.; Zhao, P.; Martin, N.F.; Hovakimyan, N. Optimizing nitrogen management with deep reinforcement learning and
crop simulations. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA,
USA, 18–24 June 2022; pp. 1712–1720.

21. Ma, C.; Peng, Y.; Wu, L.; Guo, X.; Wang, X.; Kong, X. Application of machine learning techniques to predict the occurrence of
distraction-affected crashes with phone-use data. Transp. Res. Rec. 2022, 2676, 692–705. [CrossRef]

22. Meng, Y.; Wu, L.; Ma, C.; Guo, X.; Wang, X. A comparative analysis of intersection hotspot identification: Fixed vs. varying
dispersion parameters in negative binomial models. J. Transp. Saf. Secur. 2022, 14, 305–322. [CrossRef]

23. Li, Z.; Kong, X.; Zhang, Y. Exploring factors associated with crossing assertiveness of pedestrians at unsignalized intersections.
Transp. Res. Rec. 2023, 2677, 182–198. [CrossRef]

24. Xue, B.; Li, D.; Lu, C.; King, C.R.; Wildes, T.; Avidan, M.S.; Kannampallil, T.; Abraham, J. Use of machine learning to develop and
evaluate models using preoperative and intraoperative data to identify risks of postoperative complications. JAMA Netw. Open
2021, 4, e212240. [CrossRef]

25. Xue, B.; Jiao, Y.; Kannampallil, T.; Fritz, B.; King, C.; Abraham, J.; Avidan, M.; Lu, C. Perioperative predictions with interpretable
latent representation. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
Washington, DC, USA, 14–18 August 2022; pp. 4268–4278.

26. Hu, J.; Xu, Y.; Tang, Z. DAN-PD: Domain adaptive network with parallel decoder for polyp segmentation. Comput. Med Imaging
Graph. 2022, 101, 102124. [CrossRef]

27. Li, Z.; Tang, Z.; Hu, J.; Wang, X.; Jia, D.; Zhang, Y. NST: A nuclei segmentation method based on transformer for gastrointestinal
cancer pathological images. Biomed. Signal Process. Control 2023, 84, 104785. [CrossRef]

28. Li, Z.; Wei, Z.; Zhang, Y.; Kong, X.; Ma, C. Applying an interpretable machine learning framework to study mobility inequity in
the recovery phase of COVID-19 pandemic. Travel Behav. Soc. 2023, 33, 100621. [CrossRef] [PubMed]

29. Chen, S.; Lu, L.; Xiang, Y.; Lu, Q.; Li, M. A data heterogeneity modeling and quantification approach for field pre-assessment of
chloride-induced corrosion in aging infrastructures. Reliab. Eng. Syst. Saf. 2018, 171, 123–135. [CrossRef]

30. Chen, S.; Wu, J.; Hovakimyan, N.; Yao, H. ReConTab: Regularized Contrastive Representation Learning for Tabular Data. arXiv
2023, arXiv:2310.18541.

31. Robertson, G.; Sjöstrand, H.; Andersson, P.; Hansson, J.; Blair, P. Treating model inadequacy in fuel performance model calibration
by parameter uncertainty inflation. Ann. Nucl. Energy 2022, 179, 109363. [CrossRef]

32. Wang, C.; Wu, X.; Kozlowski, T. Inverse Uncertainty Quantification by Hierarchical Bayesian Modeling and Application in
Nuclear System Thermal-Hydraulics Codes. arXiv 2023, arXiv:2305.16622.

33. Wang, C. A Hierarchical Bayesian Calibration Framework for Quantifying Input Uncertainties in Thermal-Hydraulics Simulation
Models. Ph.D. Thesis, University of Illinois at Urbana-Champaign, Champaign, IL, USA, 2020.

34. Kingma, D.P.; Salimans, T.; Welling, M. Variational dropout and the local reparameterization trick. arXiv 2015, arXiv:1506.02557.
35. Che, Y.; Wu, X.; Pastore, G.; Li, W.; Shirvan, K. Application of Kriging and Variational Bayesian Monte Carlo method for improved

prediction of doped UO2 fission gas release. Ann. Nucl. Energy 2021, 153, 108046. [CrossRef]
36. Neykov, B.; Aydogan, F.; Hochreiter, L.; Ivanov, K.; Utsuno, H.; Kasahara, F.; Sartori, E.; Martin, M. NUPEC BWR full-size

fine-mesh bundle test (BFBT) benchmark. OECD Pap. 2006, 6, 1–132. [CrossRef]
37. Gelman, A.; Carlin, J.B.; Stern, H.S.; Dunson, D.B.; Vehtari, A.; Rubin, D.B. Bayesian Data Analysis; CRC Press: Boca Raton, FL,

USA, 2013.
38. Wang, C.; Wu, X.; Kozlowski, T. Surrogate-based Bayesian Calibration of Thermal-Hydraulics Models based on PSBT Time-

dependent Benchmark Data. In Proceedings of the PANS Best Estimate Plus Uncertainty International Conference (BEPU-2018),
Real Collegio, Lucca, Italy, 13–19 May 2018.

39. Wang, C.; Wu, X.; Borowiec, K.; Kozlowski, T. Bayesian calibration and uncertainty quantification for TRACE based on PSBT
benchmark. Trans. Am. Nucl. Soc. 2018, 118, 419–422.

40. Liu, F.; Bayarri, M.; Berger, J. Modularization in Bayesian analysis, with emphasis on analysis of computer models. Bayesian Anal.
2009, 4, 119–150.

http://dx.doi.org/10.3390/en15124204
http://dx.doi.org/10.2514/1.J060889
http://dx.doi.org/10.1038/s41586-023-06221-2
http://dx.doi.org/10.1007/s10729-018-9431-0
http://dx.doi.org/10.1177/03611981211045371
http://dx.doi.org/10.1080/19439962.2020.1779421
http://dx.doi.org/10.1177/03611981221145140
http://dx.doi.org/10.1001/jamanetworkopen.2021.2240
http://dx.doi.org/10.1016/j.compmedimag.2022.102124
http://dx.doi.org/10.1016/j.bspc.2023.104785
http://dx.doi.org/10.1016/j.tbs.2023.100621
http://www.ncbi.nlm.nih.gov/pubmed/37389404
http://dx.doi.org/10.1016/j.ress.2017.11.013
http://dx.doi.org/10.1016/j.anucene.2022.109363
http://dx.doi.org/10.1016/j.anucene.2020.108046
http://dx.doi.org/10.1787/oecd_papers-v6-art28-en


Energies 2023, 16, 7664 23 of 23

41. Wang, C.; Wu, X.; Kozlowski, T. Gaussian Process–Based Inverse Uncertainty Quantification for TRACE Physical Model
Parameters Using Steady-State PSBT Benchmark. Nucl. Sci. Eng. 2019, 193, 100–114. [CrossRef]

42. Wang, C.; Wu, X.; Kozlowski, T. Surrogate-Based Inverse Uncertainty Quantification of TRACE Physical Model Parameters Using
Steady-State PSBT Void Fraction Data. In Proceedings of the 17th International Topical Meeting on Nuclear Reactor Thermal
Hydraulics (NURETH 17), Xi’an, China, 3–8 September 2017; pp. 3–8.

43. Wang, C.; Wu, X.; Kozlowski, T. Inverse Uncertainty Quantification by Hierarchical Bayesian Inference for TRACE Physical
Model Parameters based on BFBT benchmark. In Proceedings of the 18th International Topical Meeting on Nuclear Reactor
Thermal Hydraulics (NURETH-18), Portland, OR, USA, 18–23 August 2019.

44. Zio, E.; Pedroni, N. Monte Carlo simulation-based sensitivity analysis of the model of a thermal–hydraulic passive system. Reliab.
Eng. Syst. Saf. 2012, 107, 90–106. [CrossRef]

45. Wang, C.; Wu, X.; Kozlowski, T. Sensitivity and Uncertainty Analysis of TRACE Physical Model Parameters Based on PSBT
Benchmark Using Gaussian Process Emulator. In Proceedings of the 17th International Topical Meeting on Nuclear Reactor
Thermal Hydraulics (NURETH 17), Xi’an, China, 3–8 September 2017; pp. 3–8.

46. Perret, G.; Wicaksono, D.; Clifford, I.D.; Ferroukhi, H. Global Sensitivity Analysis and Bayesian Calibration on a Series of Reflood
Experiments with Varying Boundary Conditions. Nucl. Technol. 2022, 208, 711–722. [CrossRef]

47. Li, D.; Jiang, P.; Hu, C.; Yan, T. Comparison of local and global sensitivity analysis methods and application to thermal hydraulic
phenomena. Prog. Nucl. Energy 2023, 158, 104612. [CrossRef]

48. Cacuci, D.; Ionescu-Bujor, M. Adjoint sensitivity analysis of the RELAP5/MOD3. 2 two-fluid thermal-hydraulic code system—I:
Theory. Nucl. Sci. Eng. 2000, 136, 59–84. [CrossRef]

49. Khan, A.H.; Omar, S.; Mushtary, N.; Verma, R.; Kumar, D.; Alam, S. Digital Twin and Artificial Intelligence Incorporated With
Surrogate Modeling for Hybrid and Sustainable Energy Systems. arXiv 2022, arXiv:2210.00073.

50. Liu, Y.; Dinh, N.; Sato, Y.; Niceno, B. Data-driven modeling for boiling heat transfer: Using deep neural networks and high-fidelity
simulation results. Appl. Therm. Eng. 2018, 144, 305–320. [CrossRef]

51. Ayodeji, A.; Amidu, M.A.; Olatubosun, S.A.; Addad, Y.; Ahmed, H. Deep learning for safety assessment of nuclear power
reactors: Reliability, explainability, and research opportunities. Prog. Nucl. Energy 2022, 151, 104339. [CrossRef]

52. Zio, E.; Apostolakis, G.E.; Pedroni, N. Quantitative functional failure analysis of a thermal–hydraulic passive system by means of
bootstrapped Artificial Neural Networks. Ann. Nucl. Energy 2010, 37, 639–649. [CrossRef]

53. Kruschke, J. Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan, 2nd ed.; Academic: Burlinton, MA, USA, 2015.
54. Wu, X.; Wang, C.; Kozlowski, T. Kriging-based surrogate models for uncertainty quantification and sensitivity analysis. In

Proceedings of the MC-2017, International Conference on Mathematics Computational Methods Applied to Nuclear Science
Engineering, Jeju, Republic of Korea, 16–20 April 2017.

55. Wu, X.; Wang, C.; Kozlowski, T. Global sensitivity analysis of trace physical model parameters based on bfbt benchmark. In
Proceedings of the MC-2017, International Conference on Mathematics Computational Methods Applied to Nuclear Science
Engineering, Jeju, Republic of Korea, 16–20 April 2017.

56. NRC, US. TRACE V5. 0 Theory Manual, Field Equations, Solution Methods and Physical Models; United States Nuclear Regulatory
Commission: Rockville, MD, USA, 2008.

57. Hoffman, M.D.; Gelman, A. The No-U-Turn sampler: Adaptively setting path lengths in Hamiltonian Monte Carlo. J. Mach.
Learn. Res. 2014, 15, 1593–1623.

58. Cocci, R.; Damblin, G.; Ghione, A.; Sargentini, L.; Lucor, D. Extension of the CIRCE methodology to improve the Inverse
Uncertainty Quantification of several combined thermal-hydraulic models. Nucl. Eng. Des. 2022, 398, 111974. [CrossRef]

59. Blei, D.M.; Kucukelbir, A.; McAuliffe, J.D. Variational inference: A review for statisticians. J. Am. Stat. Assoc. 2017, 112, 859–877.
[CrossRef]

60. Kucukelbir, A.; Tran, D.; Ranganath, R.; Gelman, A.; Blei, D.M. Automatic differentiation variational inference. J. Mach. Learn.
Res. 2017, 18, 1–45.

61. Salvatier, J.; Wiecki, T.V.; Fonnesbeck, C. Probabilistic programming in Python using PyMC3. PeerJ Comput. Sci. 2016, 2, e55.
[CrossRef]

62. Kucukelbir, A.; Ranganath, R.; Gelman, A.; Blei, D. Automatic variational inference in Stan. In Proceedings of the Advances in
Neural Information Processing Systems, Montreal, QC, Canada, 7–12 December 2015; pp. 568–576.

63. Challis, E.; Barber, D. Gaussian Kullback-Leibler Approximate Inference. J. Mach. Learn. Res. 2013, 14, 2239–2286.
64. Saltelli, A.; Annoni, P.; Azzini, I.; Campolongo, F.; Ratto, M.; Tarantola, S. Variance based sensitivity analysis of model output.

Design and estimator for the total sensitivity index. Comput. Phys. Commun. 2010, 181, 259–270. [CrossRef]
65. Iwanaga, T.; Usher, W.; Herman, J. Toward SALib 2.0: Advancing the accessibility and interpretability of global sensitivity

analyses. Socio-Environ. Syst. Model. 2022, 4, 18155. [CrossRef]
66. Aly, Z.; Casagranda, A.; Pastore, G.; Brown, N.R. Variance-based sensitivity analysis applied to the hydrogen migration and

redistribution model in Bison. Part II: Uncertainty quantification and optimization. J. Nucl. Mater. 2019, 523, 478–489. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1080/00295639.2018.1499279
http://dx.doi.org/10.1016/j.ress.2011.08.006
http://dx.doi.org/10.1080/00295450.2021.1936879
http://dx.doi.org/10.1016/j.pnucene.2023.104612
http://dx.doi.org/10.13182/NSE136-59
http://dx.doi.org/10.1016/j.applthermaleng.2018.08.041
http://dx.doi.org/10.1016/j.pnucene.2022.104339
http://dx.doi.org/10.1016/j.anucene.2010.02.012
http://dx.doi.org/10.1016/j.nucengdes.2022.111974
http://dx.doi.org/10.1080/01621459.2017.1285773
http://dx.doi.org/10.7717/peerj-cs.55
http://dx.doi.org/10.1016/j.cpc.2009.09.018
http://dx.doi.org/10.18174/sesmo.18155
http://dx.doi.org/10.1016/j.jnucmat.2019.06.023

	Introduction
	Materials and Methods
	Bayesian IUQ Framework Overview
	TRACE PMPs and BFBT Benchmark Data
	Hierarchical Bayesian Model
	Markov Chain Monte Carlo
	Variational Inference

	Results
	Synthetic Data Example
	Problem Definition
	Results and Discussions

	Nuclear Thermal-Hydraulics Application
	Problem Definition
	Sensitivity Analysis and Surrogate Model
	Results


	Conclusions and Future Work
	References

