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Abstract: Fossil fuel is a non-renewable fuel, and with the development of modern industry and
agriculture, the storage capacity of fossil fuels is constantly decreasing. In this study, a systematic
study and analysis were conducted on the combustion characteristics, engine performance, and
exhaust emission characteristics of castor biodiesel–diesel blends and pure diesel fuel in different
proportions at different speeds of a single-cylinder four-stroke diesel engine under constant load.
The castor biodiesel required for the experiment is generated through an ester exchange reaction
and mixed with diesel in proportion to produce biodiesel–diesel blends. The experimental results
show that as an oxygenated fuel with a higher cetane number, the CO, HC, and smoke emissions
of diesel and B80 blend fuel at 1800 rpm were reduced by 16.9%, 31.6%, and 68%, respectively.
On the contrary, the NOx and CO2 emissions increased by 17.3% and 34.6% compared to diesel at
1800 rpm. In addition, due to its high viscosity and low calorific value, the brake thermal efficiency
and brake-specific fuel consumption of the biodiesel–diesel blends are slightly lower than those of
diesel, but the biodiesel–diesel blends exhibit lower exhaust gas temperatures. Comparing B80 and
diesel fuel at 1800 rpm, the BSFC of diesel at 1800 rpm is 3.12 kg/W·h, whereas for B80 blended fuel,
it increases to 4.2 kg/W·h, and BTE decreases from 25.39% to 21.33%. On the contrary, B60 blended
fuel exhibits a lower exhaust emission temperature, displaying 452 ◦C at 1800 rpm. Based on the
experimental results, it can be concluded that castor biodiesel is a very promising clean alternative
fuel with low waste emissions and good engine performance.

Keywords: biofuel; diesel engines; engine performance; exhaust emissions; castor plant

1. Introduction

Diesel engines are widely used in transportation, industry, agriculture, and navigation
due to their high power, high thermal efficiency, good durability and service life, and low
fire risk [1,2]. Diesel is the main fuel for diesel engines and is a non-renewable fossil fuel
that requires a long period of evolution. With the continuous development of modern
industrial and agricultural civilization, the storage of fossil fuels has sharply decreased, and
diesel prices are also constantly rising. In addition, diesel engines generate a large amount
of exhaust emissions during use, causing significant damage to the ecological environment.
In order to improve environmental issues worldwide, various countries have taken various
measures separately. The European Commission has passed a series of agreements hoping
to reduce greenhouse gas emissions by more than 55% by 2023 compared to 1990. China
has implemented the “Green Great Wall Plan”, reducing and closing factories with high
pollution, and implementing the latest vehicle usage system to improve the protection
and restoration capabilities of the ecosystem. The Environmental Protection Agency of the
United States has enacted the Clean Air Act to limit air pollution and designated the Clean
Water Act to protect water sources. Japan’s “Sustainable Energy Development Strategy”
aims to increase the utilization rate of renewable energy to 22–24% by 2040. Various issues
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have sparked strong interest among scholars around the world in alternative fuels for diesel
engines, hoping to find a renewable alternative fuel that is beneficial to the environment.

Biodiesel is a clean and renewable green fuel that is sustainable, renewable, biodegrad-
able, and environmentally friendly. It can be obtained from plants, animal fats, and waste
edible oils [3]. Compared with diesel, biodiesel has an oxygen content of around 9–12%,
which can effectively reduce the exhaust emission temperature and CO, HC, smoke, and
other exhaust emissions [2,4,5]. Polycyclic aromatic hydrocarbon emissions (PAH) are
hazardous due to their toxicity, and biodiesel does not contain aromatic compounds, which
can reduce the emission of toxic gases [6]. In addition, the cetane number of biodiesels
is generally higher than that of diesel, and a high cetane number will reduce the ignition
delay of the engine, thereby enabling more complete combustion of fuel in the engine,
improving combustion efficiency, reducing fuel waste, improving engine fuel economy,
and reducing exhaust gases and harmful emissions caused by incomplete combustion.

So far, biofuels have become one of the most important development directions
for alternative fuels for automobiles, and technological and industrial upgrading and
transformation are brewing. Figure 1 illustrates the changes in the raw materials required
for the production of biodiesel fuel. Initially, biodiesel was produced from edible food crops,
with extremely high production costs and a high demand for water, fertilizers, and land area.
With the deepening of research, the use of non-edible lignocellulose, food crop waste, urban
catering waste, and algae as the main production of biofuels has become dominant [7]. Non-
edible crops and food waste do not conflict with food resources and reduce environmental
pollution issues. As shown in Figure 2, castor is a perennial herbaceous plant. The castor
plant oil produced by its seeds has a slight pungent odor, a light-yellow color, and is
not easily volatile. It is often used as a laxative in medicine. Castor bean seeds contain
a substance called ricin, which affects the synthesis of proteins in the human body and
is a non-edible oil crop [8]. In addition, castor bean has particularly excellent drought
resistance, which can rapidly grow and reproduce in arid areas while also playing a green
role in the natural environment. Compared to other oil crops, castor bean seeds have the
advantages of high yield, high oil content (about 40–60%), and low production costs, which
have good economic benefits [9].
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The research results of many scholars have shown that the use of biodiesel–diesel
blends effectively reduces the emissions of some harmful gases. Akash Deep et al. [11]
reported that the CO and HC emissions of B10 and B20 castor biodiesel–diesel blends were
lower than other experimental fuels, and the lowest exhaust emission temperature under
B20 blends reflects the conversion of maximum heat energy into useful work. For NOx
emissions, there is not much difference among all experimental fuels, which is attributed
to the fact that the peak temperature in the cylinder of all experimental fuels is almost
the same. Prasert Aengchuan et al. [12] found that the mixture of castor biodiesel and
ethanol can optimize the fuel performance of ethanol–diesel, thereby not being limited by
diesel fuel usage regulations. With the combustion of castor oil blended fuel, the HC and
CO emissions of castor biodiesel–diesel blends slightly increase, but the NOx emissions
show a decreasing trend. Compared with diesel, the smoke emissions have not changed
much. Roopesh Kanwar Gaur et al. [13] studied the exhaust emissions of waste edible oil
biodiesel mixed with diesel in diesel engines. Biodiesel, due to its high oxygen content,
increased CO2 and NOx emissions compared to diesel, but significantly reduced emissions
of incomplete combustion products such as CO, HC, and PM. Hafiz Muhammad Bilal
Ameer et al. [14] compared the engine performance and exhaust emissions of several
different types of biodiesel with diesel. Among them, the combustion performance curve
of the B20 Jatropha biodiesel–diesel blend was the closest to that of diesel. Compared with
the other biodiesel–diesel blends, the B20 Jatropha biodiesel–diesel blend also showed
the highest thermal performance. Selvakumar Ramalingam et al. [15] investigated the
performance and emissions of Moringa biodiesel–carbon black-water emulsion of diesel
blends in a conventional diesel engine. Research has shown that this hybrid fuel has the
same performance, combustion, and emission characteristics as traditional diesel, which
helps to control air pollution while ensuring engine power and economy.

The castor plant has many advantages mentioned above, but it has not been widely
used in commerce. This article believes that its easy survival, high oil content, and inedibil-
ity can be used as a good raw material for producing biodiesel. In addition, using castor
oil to produce biodiesel is carbon neutral, and castor plants can absorb carbon dioxide
during their growth process, improving the greenhouse effect. This study investigated the
performance and exhaust emission characteristics of a single-cylinder four-stroke diesel
engine using different castor biodiesel–diesel blends and diesel alone. The experiment
was conducted at 75% constant load and different rotational speeds (1200 rpm, 1400 rpm,
1600 rpm, and 1800 rpm) to determine the optimal ratio of castor biodiesel to diesel, evalu-
ate its feasibility as a substitute for diesel, and its potential environmental and economic
advantages. I hope this study can provide strong support for reducing fossil fuel de-
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pendence, improving air quality, reducing greenhouse gas emissions, and promoting the
achievement of sustainable development goals.

2. Materials and Methods
2.1. Experimental Equipment

This experiment was completed under constant load and different rotational speeds
(1200 ppm, 1400 ppm, 1600 ppm, and 1800 ppm). The four-stroke single-cylinder water-
cooled agricultural diesel engine used in the experiment is shown in Figure 3, with a
rated output power of 7.4 kW. The power output under constant load conditions in the
experiment was measured using an eddy current dynamometer. The distribution diagram
of the experimental device and the detailed specifications of the engine are detailed in
Figure 4 and Table 1, respectively.
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Figure 4. Experimental setup. (1) Single-cylinder water-cooled diesel engine; (2) torque measurement;
(3) Eddy current dynamometer; (4) load cell for torque; (5) gas emission analyzer; (6) smoke analyzer;
(7) propeller shaft; (8) injector; (9) exhaust pipe; (10) air intake; (11) RPM sensor; (12) RPM display;
(13) fuel weight display; (14) fuel tank; (15) load cell for fuel weight.
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Table 1. Engine specification.

Parameters Description

Engine Type Horizontal, 4-stroke

Manufacture Daedong Ltd., Daegu City, Republic of Korea

Engine Cooling Water Cooled

Rated Power Output (kW) 7.4

Injection Pressure (kg cm−2) 200

Number of Cylinders 1

Displacement (cc) 673

Compression Ratio 21

Bore (mm) 95

Stroke Length (mm) 95

The combustion gas is analyzed and measured using the CGA-4500 gas analyzer
(Jastec Ltd. in Seongnam, Republic of Korea) shown in Figure 5. The exhaust gas analyzer
sucks the gas into the condenser through a gas sampling probe and then filters out the gas
particles through a particle filter before entering the gas analyzer sensing chamber. The
final result is displayed on the display screen. The BS-8000 smoke meter (Auto Company
Ltd., Seoul, Republic of Korea) (Figure 6) is used to detect engine smoke emissions. The
working principle is similar to that of the CGA-4500 gas analyzer, and the exhaust emission
temperature is measured using a K-type thermocouple with a measurement range of
0–1200 ◦C.

Energies 2023, 16, x FOR PEER REVIEW 5 of 16 
 

 

Table 1. Engine specification. 

Parameters Description 

Engine Type Horizontal, 4-stroke 

Manufacture Daedong Ltd., Daegu City, Republic of Korea 

Engine Cooling Water Cooled 

Rated Power Output (kW) 7.4 

Injection Pressure (kg cm−2) 200 

Number of Cylinders 1 

Displacement (cc) 673 

Compression Ratio 21 

Bore (mm) 95 

Stroke Length (mm) 95 

The combustion gas is analyzed and measured using the CGA-4500 gas analyzer 

(Jastec Ltd. in Seongnam, Republic of Korea) shown in Figure 5. The exhaust gas analyzer 

sucks the gas into the condenser through a gas sampling probe and then filters out the gas 

particles through a particle filter before entering the gas analyzer sensing chamber. The 

final result is displayed on the display screen. The BS-8000 smoke meter (Auto Company 

Ltd., Seoul, Republic of Korea) (Figure 6) is used to detect engine smoke emissions. The 

working principle is similar to that of the CGA-4500 gas analyzer, and the exhaust 

emission temperature is measured using a K-type thermocouple with a measurement 

range of 0–1200 °C. 

 

Figure 5. CGA-4500 gas analyzer. 

During the experiment, first start the engine and set the load and speed to 75% and 

1200 rpm, respectively. After the engine runs smoothly, obtain readings from the 

experimental equipment, and then adjust the engine speed to 1400 rpm, 1600 rpm, and 

1800 rpm in sequence. After each adjustment, wait for the engine to run smoothly before 

collecting data. Each speed is collected four times, with an interval of two minutes 

between each collection. Finally, the average value of the results is taken. After the 

experiment of fuel is completed, completely pour out the fuel in the fuel tank and then 

pour in new experimental fuel. After replacing the fuel, start the engine and run for a 

certain period of time to ensure that the last experimental fuel in the engine is completely 

depleted. 

Figure 5. CGA-4500 gas analyzer.

Energies 2023, 16, x FOR PEER REVIEW 6 of 16 
 

 

 

Figure 6. Smoke opacity meter (Model: BS-8000). 

2.2. Error Analysis and Uncertainty 

During the experimental process, errors and uncertainties in the experimental results 

caused by factors such as experimental environment, excessive operation, data collection, 

and experimental conditions are inevitable and can have adverse effects on the 

experimental results. The error and uncertainty analysis of the gas analyzer and K-type 

thermocouple used in the experiment is shown in Table 2. In order to eliminate these 

errors, mathematical and statistical methods were used in the collection and calculation 

of experimental data. 

Table 2. Measurement and error range of experimental equipment. 

Exhaust Emission Accuracy and Uncertainties Resolution Range 

CO2 ±0.1% % 0.0–20.0 

CO ±0.01% % 0.00–10.00 

O2 ±0.1% % 0.00–25.00 

HC ±1 ppm ppm 0–10,000 

NOx ±1 ppm ppm 0–5000 

Thermocouple (K-Type) ±0.1 °C °C 0–1200 

Smoke ±0.05% % 0–100 

2.3. Biodiesel Production 

Ester exchange reaction is the most commonly used method for producing biodiesel 

at present. Its principle is to react with free fatty acids (FFA), oil, or fats through methanol 

under the action of a catalyst, thereby generating fatty acid methyl esters (FAME). 

Potassium hydroxide (KOH) and sodium hydroxide (NaOH) are widely used in ester 

exchange reactions due to their high catalytic activity, short reaction time, and high raw 

material conversion rate. The production process of castor biodiesel is as follows: 

(1) As shown in Figure 7, first, use a magnetic stirrer to stir 125 mL of methanol and 2.5 

g of potassium hydroxide until they are completely mixed. To reduce the viscosity of 

vegetable oil, heat 500 mL of castor plant oil to above 30 °C. 

(2) Pour the methanol potassium hydroxide mixture into castor plant oil while stirring, 

and place it on a magnetic stirrer. Stir evenly at a constant speed of 700 rpm, maintain 

the reaction temperature at 55 °C–60 °C, and continue the reaction for 2 h. 

(3) After the reaction, the mixture is left to stand in a separating funnel for more than 12 

h. The mixture is divided into two layers, with methyl ester at the top. 

(4) After removing the glycerol mixture at the bottom, wash the methyl ester 4–5 times 

with hot water above 90 °C to remove impurities. Then, heat the washed biodiesel to 

above 100 °C and maintain it for 20 min until the excess water evaporates completely. 

Figure 6. Smoke opacity meter (Model: BS-8000).



Energies 2023, 16, 7665 6 of 16

During the experiment, first start the engine and set the load and speed to 75%
and 1200 rpm, respectively. After the engine runs smoothly, obtain readings from the
experimental equipment, and then adjust the engine speed to 1400 rpm, 1600 rpm, and
1800 rpm in sequence. After each adjustment, wait for the engine to run smoothly before
collecting data. Each speed is collected four times, with an interval of two minutes between
each collection. Finally, the average value of the results is taken. After the experiment
of fuel is completed, completely pour out the fuel in the fuel tank and then pour in new
experimental fuel. After replacing the fuel, start the engine and run for a certain period of
time to ensure that the last experimental fuel in the engine is completely depleted.

2.2. Error Analysis and Uncertainty

During the experimental process, errors and uncertainties in the experimental results
caused by factors such as experimental environment, excessive operation, data collection,
and experimental conditions are inevitable and can have adverse effects on the experimental
results. The error and uncertainty analysis of the gas analyzer and K-type thermocouple
used in the experiment is shown in Table 2. In order to eliminate these errors, mathematical
and statistical methods were used in the collection and calculation of experimental data.

Table 2. Measurement and error range of experimental equipment.

Exhaust Emission Accuracy and Uncertainties Resolution Range

CO2 ±0.1% % 0.0–20.0

CO ±0.01% % 0.00–10.00

O2 ±0.1% % 0.00–25.00

HC ±1 ppm ppm 0–10,000

NOx ±1 ppm ppm 0–5000

Thermocouple (K-Type) ±0.1 ◦C ◦C 0–1200

Smoke ±0.05% % 0–100

2.3. Biodiesel Production

Ester exchange reaction is the most commonly used method for producing biodiesel
at present. Its principle is to react with free fatty acids (FFA), oil, or fats through methanol
under the action of a catalyst, thereby generating fatty acid methyl esters (FAME). Potassium
hydroxide (KOH) and sodium hydroxide (NaOH) are widely used in ester exchange
reactions due to their high catalytic activity, short reaction time, and high raw material
conversion rate. The production process of castor biodiesel is as follows:

(1) As shown in Figure 7, first, use a magnetic stirrer to stir 125 mL of methanol and 2.5 g
of potassium hydroxide until they are completely mixed. To reduce the viscosity of
vegetable oil, heat 500 mL of castor plant oil to above 30 ◦C.

(2) Pour the methanol potassium hydroxide mixture into castor plant oil while stirring,
and place it on a magnetic stirrer. Stir evenly at a constant speed of 700 rpm, maintain
the reaction temperature at 55 ◦C–60 ◦C, and continue the reaction for 2 h.

(3) After the reaction, the mixture is left to stand in a separating funnel for more than
12 h. The mixture is divided into two layers, with methyl ester at the top.

(4) After removing the glycerol mixture at the bottom, wash the methyl ester 4–5 times
with hot water above 90 ◦C to remove impurities. Then, heat the washed biodiesel to
above 100 ◦C and maintain it for 20 min until the excess water evaporates completely.
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2.4. Castor Biodiesel Characteristic

Table 3 provides a detailed list of the physical and chemical properties of diesel fuel
and four blend fuels used in this experiment. By analyzing the chart information, it can
be seen that the characteristics of the blends are relatively similar to diesel fuel and fully
comply with the ATS standards shown in Table 4.

Table 3. Properties of diesel and castor seed biodiesel.

Property Standard
(ASTM)

Castor
Biodiesel B20 B40 B60 B80 Diesel

Density (kg/m3) 800–880 896 831 843 851 869 820

Cetane Number 48–65 62 50 53 56.5 59 48.7

Flash Point (◦C) >130 102 75 79 85 93 58

Kinematic
Viscosity (mm2/s) 1.9–6 7.35 3.34 4.61 5.42 5.94 2.87

Calorific Value
(MJ/kg) >35 38.156 44.121 43.855 41.564 40.152 45.512

Table 4. ASTM standards for fuel.

Test ASTM Limits ASTM Test

Cetane Number 40 min D613 [16]

Kinematic Viscosity (mm2/s) 1.9–4.1 D445 [16]

Density 15–35 ◦C D5002 [16]

Flash Point (◦C) 52 ◦C min D93 [16]

Pour Point (◦C) 4.4–5.5 ◦C D97 [16]

3. Results and Analysis
3.1. Hydrocarbon (HC)

Figure 8 is a schematic diagram of the relationship between HC and speed at 75% load.
From the graph, it can be seen that among all experimental fuels, the HC emissions of diesel
are much higher than those of biodiesel blends. At various speeds, the emissions are 70 ppm,
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66 ppm, 61 ppm, and 57 ppm, respectively. By increasing the percentage of biodiesel in
the blends, the oxygen content in the biodiesel–diesel blends can be increased, allowing
the fuel to burn more fully [17]. In addition, as the proportion of biodiesel increases, the
cetane number of the mixed fuel increases, which improves combustion efficiency while
reducing HC emissions [18]. It was also observed that as the engine speed increased, the
HC emissions of all experimental fuels showed a decreasing trend. This is because at high
speeds, the combustion process of the engine is more complete, and the fuel is burned more
fully, which can reduce the release of unburned hydrocarbons in the exhaust. In addition,
high-speed combustion is often accompanied by higher temperatures and pressures, which
help achieve better mixing and combustion in the combustion chamber. Compared with
the research results of other researchers, we found the same trend, that is, the HC emissions
of castor biodiesel blends are lower than that of diesel fuel [19,20], which further confirms
that biodiesel fuel has lower HC emissions.
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Figure 8. HC changes with fuel type and engine speed.

3.2. Carbon Dioxide (CO2)

It is evident from Figure 9 that the CO2 emissions of biodiesel–diesel blends are higher
than those of pure diesel fuel. The CO2 emissions of diesel fuel at four different speeds
are shown to be 1.4%, 1.5%, 2%, and 2.6%, respectively, which is the lowest among all
experimental fuels. As the proportion of biodiesel continues to increase, the oxygen content
of the blends increases. Oxygen is released during the combustion phase to promote
combustion, and excess oxygen atoms undergo oxidation reactions with carbon atoms [21],
resulting in an increase in CO2 emissions. B80 blend has the highest CO2 emissions
among all experimental fuels. As the engine speed increases, the engine produces a higher
combustion temperature, and carbon atoms in the fuel are more easily oxidized to form
CO2. The CO2 emissions of all experimental fuels show an increasing trend. In addition, as
the engine speed increases, the total amount of fuel entering the cylinder for combustion
also increases [22], which is another reason for the increase in CO2 emissions. Sadegh
Azizzadeh Hajlari et al. [23] also observed a similar trend when using castor biodiesel
blends, where CO2 emissions increased compared to diesel.
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Figure 9. CO2 changes with fuel type and engine speed.

3.3. Carbon Monoxide (CO)

Similar to the generation principle of HC, CO is a product of incomplete combustion.
As shown in Figure 10, among the five experimental fuels, pure diesel has the highest
CO emissions, with 1.11%, 0.89%, 0.78%, and 0.71% at each speed, respectively. As the
proportion of biodiesel in the blends continues to increase, CO emissions show a downward
trend. Among them, B80 mixed fuel has the lowest CO emissions, with 0.89% and 0.72%
at different speeds, respectively, as well as 0.64% and 0.59%. This phenomenon is due to
the presence of oxygen in biodiesel, which effectively promotes combustion to a certain
extent, increases combustion temperature, increases the oxidation rate of carbon atoms,
increases CO2 emissions, and decreases CO emissions [24]. In addition, in diesel engines,
the cetane number is an important parameter that can improve combustion. As a high
cetane number fuel, the use of biodiesel reduces incomplete combustion rate [25]. When
the engine speed increases, the combustion temperature and pressure increase, which
promotes the oxidation reaction and continuously reduces CO emissions. Compared with
other researchers’ experimental results, it was found that when castor biodiesel was mixed
with diesel, CO emissions were significantly reduced. They explained that the improved
fuel atomization effect at higher temperatures reduced the occurrence of localized fuel-rich
areas [11]. The results of this article confirm this result and emphasize the role of castor
biodiesel blends in reducing CO emissions.
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3.4. Nitrogen Oxide Compound (Nox)

Figure 11 is a schematic diagram of the changes in the speed of five different exper-
imental fuels. It can be clearly seen from the figure that the NOx emissions of diesel are
the lowest among all experimental fuels. The NOx emissions of biodiesel–diesel blends
are higher than those of diesel and increase with its specific gravity. On the one hand, the
cetane number of biodiesel–diesel blends is higher than that of diesel, which has better
self-ignition performance. The blends burn earlier in the injection and compression stages,
the ignition delay time decreases, and on the other hand, the oxygen and nitrogen atoms
in biodiesel undergo chemical reactions to form nitrogen oxides, resulting in an increase
in NOx emissions [26]. As the speed increases, the combustion process becomes faster
and more intense. This will cause an increase in the temperature inside the combustion
chamber, as each combustion process takes a shorter time but releases more concentrated
energy. A higher combustion temperature will promote the faster reaction of nitrogen and
oxygen atoms in the air, generating more NOx. Comparing our results with other experi-
mental results, A. Velmurugan et al. [27] also found a similar trend. In their experiment,
the NOx emissions of biodiesel were also higher than those of diesel, but after adding
nitrogen, the NOx emissions decreased because nitrogen, as an inert gas, would lower the
combustion temperature.
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Figure 11. NOx changes with fuel type and engine speed.

3.5. Smoke

Smoke is a harmful gas produced during incomplete combustion, and the engine’s
operating status can be judged by its emission [28]. Figure 12 depicts the variation in
smoke emissions with engine speed for different fuels. Among them, pure diesel fuel
has the highest smoke emissions. On the contrary, the B80 biodiesel blend has the lowest
emissions. Compared with diesel fuel, smoke emissions when using the B80 biodiesel
blend are effectively reduced by more than 50%, which can be explained by the biological
diesel with lower carbon and sulfur content, no aromatic compounds, and higher oxygen
content. These characteristics enable better combustion of blends added with biodiesel,
thereby reducing smoke emissions [29]. From the observation results, it can be seen that
smoke emissions show a significant decreasing trend with an increase in engine speed.
Higher combustion temperatures at high speeds promote a more complete combustion
process, thereby reducing the formation of unburned carbon particles. This is considered
a major reason for the reduction in smoke emissions. Compared with previous research
results [30–32], it was found that the use of biodiesel blends significantly reduced smoke
emissions, which is similar to our experimental results. These conclusions also suggest
that the higher the oxygen content in the fuel, the lower the smoke emissions, as oxygen
accelerates the oxidation of soot.
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Figure 12. Smoke changes with fuel type and engine speed.

3.6. Brake Thermal Efficiency (BTE)

The average BTE of biodiesel–diesel blends and diesel fuel is shown in Figure 13. It is
observed that diesel fuel has the highest BTE. At the same speed, the BTE of biodiesel–diesel
blends is generally lower compared to diesel. Moreover, as the content of biodiesel in the
blends increases, the BTE shows a lower result. This may be due to the high density and
viscosity of biodiesel, as well as the low calorific value [33,34]. This can lead to poor mixture
generation and fuel atomization, resulting in incomplete combustion of the fuel in the
combustion chamber, increasing fuel consumption while reducing combustion efficiency.
All experimental fuels have the highest BTE at 1200 rpm, with diesel fuel, B20 blends, B40
blends, B60 blends, and B80 blends accounting for 33.73%, 31.31%, 29.35%, 27.24%, and
26.07%, respectively. When the engine speed increases, the BTE shows a decreasing trend.
This may be because at high engine speeds, the mixing effect of air and fuel decreases and
the atomization effect is poor [35], the combustion process is unstable, the efficiency of
converting energy generated during fuel combustion into useful work decreases, and the
BTE decreases. Comparing their research results, Youssef A. Attai et al. [36] found the same
phenomenon when studying the emissions of castor biodiesel, that is, the addition of castor
biodiesel to diesel fuel results in a decrease in BTE.
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3.7. Brake Specific Fuel Consumption (BSFC)

The BSFC of B20, B40, B60, and B80 blends and diesel fuel at the same speed are
shown in Figure 14. The experiment found that the B80 blend has the highest BSFC, and
shows better BSFC with a decrease in biodiesel content. Compared with the B80 blend,
diesel fuel has the lowest BSFC, reducing by 31.7%, 30.7%, 30%, and 25.7% at the same
speed, respectively. This can be attributed to the lower calorific value of biodiesel–diesel
blends compared to diesel fuel, which requires more fuel consumption to obtain the same
power as diesel [37]. When the engine speed increases, the BTE of the engine decreases
because the combustion time is shortened and incomplete, which can cause fuel waste
and correspondingly increase the BSFC. Compared with the research results of other
scholars [38], when using castor biodiesel blend fuel, there is a varying degree of increase in
fuel consumption compared to diesel, which is consistent with the conclusion of this article.

Energies 2023, 16, x FOR PEER REVIEW 12 of 16 
 

 

 

Figure 13. BTE changes with fuel type and engine speed. 

3.7. Brake Specific Fuel Consumption (BSFC) 

The BSFC of B20, B40, B60, and B80 blends and diesel fuel at the same speed are 

shown in Figure 14. The experiment found that the B80 blend has the highest BSFC, and 

shows better BSFC with a decrease in biodiesel content. Compared with the B80 blend, 

diesel fuel has the lowest BSFC, reducing by 31.7%, 30.7%, 30%, and 25.7% at the same 

speed, respectively. This can be attributed to the lower calorific value of biodiesel–diesel 

blends compared to diesel fuel, which requires more fuel consumption to obtain the same 

power as diesel [37]. When the engine speed increases, the BTE of the engine decreases 

because the combustion time is shortened and incomplete, which can cause fuel waste and 

correspondingly increase the BSFC. Compared with the research results of other scholars 

[38], when using castor biodiesel blend fuel, there is a varying degree of increase in fuel 

consumption compared to diesel, which is consistent with the conclusion of this article. 

 

Figure 14. BSFC changes with fuel type and engine speed. 

3.8. Exhaust Gas Temperature (EGT) 

The exhaust gas temperature in a diesel engine reflects the heat released during the 

final stage of combustion, which is influenced by various parameters, including heat 

release rate, post-combustion effect, and combustion duration. When the temperature of 

the exhaust gas increases, it means that more heat is taken away by the exhaust gas, which 

20

22

24

26

28

30

32

34

36

1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0

B
T

E
 (

%
)

SPEED (RPM)

Diesel B20 B40 B60 B80

1.5

2

2.5

3

3.5

4

4.5

5

1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0

B
S

F
C

 (
K

G
/K

W
·H

)

SPEED (RPM)

Diesel B20 B40 B60 B80

Figure 14. BSFC changes with fuel type and engine speed.

3.8. Exhaust Gas Temperature (EGT)

The exhaust gas temperature in a diesel engine reflects the heat released during the
final stage of combustion, which is influenced by various parameters, including heat
release rate, post-combustion effect, and combustion duration. When the temperature of
the exhaust gas increases, it means that more heat is taken away by the exhaust gas, which
actually represents an increase in the heat loss of the engine [39]. Figure 15 is a schematic
diagram of the changes in all test fuels and engine speeds. At all engine speeds, diesel
fuel has the highest exhaust emission temperature, while the B80 blend has the lowest
exhaust emission temperature. At 1200 rpm, 1400 rpm, 1600 rpm, and 1800 rpm, this
performance is 401 ◦C, 415 ◦C, 432 ◦C, and 456 ◦C. The cetane number of biodiesel fuel
is higher than that of diesel, making ignition easier and ignition delay time shorter [40].
This means that fuel can be burned earlier, and the fuel can be fully mixed during the
combustion process, improving combustion efficiency and fuel economy and reducing
exhaust emission temperature. When the engine speed increases, the engine consumes more
fuel while gaining more power, resulting in an increase in exhaust emission temperature.
Compared with previous experimental results, Ali M.A. Attia et al. [30] also found that
diesel fuel had the highest EGT, while biodiesel blends had a lower EGT, further confirming
the results of this experiment.
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4. Conclusions

In order to improve the shortage of fossil fuels and air pollution, and search for
new clean alternative fuels, this study used castor plant oil as raw material to produce
castor biodiesel using the ester exchange method. The physical and chemical properties
of castor biodiesel were measured, which met ATSM standards. In order to measure the
engine characteristics and emissions of castor biodiesel blends, experimental studies were
conducted on a single-cylinder four-stroke engine at constant load (75%) and different
engine speeds (1200 rpm, 1400 rpm, 1600 rpm, and 1800 rpm). The results are as follows.

Compared with diesel, the emissions of harmful gases such as CO, HC, and smoke
generated during incomplete combustion of castor biodiesel blends are significantly re-
duced. Comparing the CO, HC, and smoke emissions of diesel and B80 blended fuel at
1800 rpm, the emissions were reduced by 16.9%, 31.6%, and 68%, respectively. On the
contrary, due to the presence of oxygen in biodiesel and its release promoting combustion
and oxidation reactions, the NOx and CO2 emissions of B80 blended fuel increased by
17.3% and 34.6%, respectively, compared to diesel at 1800 rpm. For BSFC and BTE, as
the proportion of biodiesel mixed with fuel increases, the BSFC of diesel at 1800 rpm is
3.12 kg/W·h, whereas for B80 mixed fuel, it increases to 4.2 kg/W·h, and BTE decreases
from 25.39% to 21.33%. Due to the high cetane number, the ignition delay is shortened,
the fuel combustion efficiency is improved, and the exhaust emission temperature is lower
than that of diesel.

As the speed increases, HC, CO, and smoke emissions decrease due to the higher
combustion temperature at higher speeds. As the rotational speed increases, the fuel
consumption increases, the BSFC and exhaust emission temperature increase, and the
engine BTE decreases. During this process, the oxidation reaction becomes faster, and NOx
and CO2 emissions increase.

Castor biodiesel, as a renewable energy source, can be mixed with diesel for use in
existing diesel engines, which can to some extent reduce exhaust emissions. However,
NOx and CO2 emissions have increased compared to diesel, whereas BTE and BSFC
performance has decreased. In future research, the addition of catalysts such as nano
additives to biodiesel blends will be considered to improve these issues by changing the
combustion rate, combustion area, and atomization effect. In addition, castor biodiesel raw
materials are easy to obtain, survive, have high yield, high oil content, and have extremely
high economic benefits. When applied in commercial applications, it has low risks and is
an excellent clean alternative fuel.
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Nomenclature

RPM Revolutions Per Minute
PPM Parts Per Million
NaOH Sodium Hydroxide
KOH Potassium Hydroxide
BTE Brake Thermal Efficiency
BSFC Brake-Specific Fuel Consumption
EGT Exhaust Gas Temperature
NOx Nitrogen Oxide
CO Carbon Monoxide
HC Hydrocarbon
CO2 Carbon Dioxide
B20 20% Biodiesel + 80% Diesel
B40 40% Biodiesel + 60% Diesel
B60 60% Biodiesel + 40% Diesel
B80 80% Biodiesel + 20% Diesel
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