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Abstract: Benefiting from the advantages of a high absorption coefficient, a long charge diffusion
length, excellent carrier mobility, and a tunable bandgap, three-dimensional (3D) metal halide
perovskites exhibit great potential for application in solar cells. However, 3D perovskite solar cells
(PSCs) often suffer from poor long-term stability against moisture, heat, and light. To address
this issue, reducing the dimension of perovskite and forming two-dimensional (2D) perovskites
can be effective in slowing down the oxidation of the perovskite film and significantly improving
device stability. In this study, 2D PSCs were designed with glass/FTO/TiO2/Dion–Jacobson (DJ)
perovskite/NiOx/Au structures, based on the solar cell simulation software SCAPS. The absorption
layers employed in the study included PeDAMA2Pb3I10, PeDAMA3Pb4I13, PeDAMA4Pb5I16, and
PeDAMA5Pb6I19. The influence of the conduction band offset (CBO) variation in the range of −0.5
to 0.5 eV on cell performance was explored through a numerical simulation. The simulation results
indicate that the open-circuit voltage and fill factor continue to increase, whereas the short-circuit
current density remains almost unchanged when the CBO increases from −0.5 eV to 0 eV. The devices
exhibit better performance when the value of the CBO is positive and within a small range. For DJ
PSCs, controlling the CBO within 0.1–0.4 eV is conducive to better cell performance.

Keywords: solar cell; two-dimensional perovskites; SCAPS; conduction band offset; performance

1. Introduction

As a research direction with great potential in the field of solar cells, the development
of perovskite solar cells (PSCs) has experienced rapid growth. The power conversion
efficiency (PCE) of PSCs has surged from only 3.8% in 2009 to an impressive 25.73% to
28.75% [1–4]. Three-dimensional (3D) metal halide perovskites demonstrate substantial
promise for solar cell applications owing to their high absorption coefficient, long charge
diffusion length, excellent carrier mobility, and tunable bandgap. However, the inherent
drawback of 3D PSCs lies in their inferior long-term stability against moisture, heat, and
light, limiting their commercial potential. Various strategies, including doping, component
engineering, interfacial modification, the use of novel electron and hole transport materials,
and encapsulation have been used to enhance the stability of PSCs. Recent studies suggest
that reducing the dimension of perovskite and forming 2D perovskites by introducing
hydrophobic organic cations [5–7] can effectively mitigate the oxidation of the perovskite
film, significantly improving device stability. Dion–Jacobson (DJ) perovskite, characterized
by a distinct stacked structure, is a common form of 2D perovskite. In DJ perovskites,
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neighboring inorganic slabs are bridged by diammonium spacers without van der Waals
gaps [8]. DJ perovskite PSCs exhibit superior optoelectronic characteristics and enhanced
durability [9,10]. Despite these advantages, DJ PSCs face challenges related to serious non-
radiative recombination in the bulk [11] and interface, resulting in poor carrier extraction
and collection compared to 3D PSCs. Consequently, DJ PSCs still exhibit lower PCEs than
their 3D counterparts.

To enhance the performance of DJ perovskite PSCs, numerous strategies have been
proposed to optimize film quality, including compositional engineering [11], solvent en-
gineering [12], additive addition [13], and an annealing process [14]. In 2019, Zheng et al.
achieved PCEs of 14.16% and 16.38% by employing 1.3-propanediammonium (PDA) and
1.4-butanediammonium (BDA) to construct DJ PSCs, respectively. Their experimental
results demonstrated that by controlling the thickness of the quantum well barrier, they
could obtain DJ phase perovskites with better orientation and a more uniform distribution,
thereby boosting the performance of DJ PSCs [15]. In 2021, Chen and colleagues fabri-
cated DJ PSCs with a gradient energy band alignment in 2021 by coating FABr onto the
perovskite films, resulting in an increase in the PCE from 13.78% to 16.75% [16]. Chen et al.
also utilized a novel annealing process, combining pre-annealing and merged annealing,
to modify the interface at the perovskite and charge-transporting layer, promoting charge
transport [17]. To suppress surface defect density, Zhang et al. proposed a secondary anti-
solvent strategy for DJ perovskite films which proved effective in preparing highly efficient
DJ PSCs [18]. Mohammed et al. demonstrated through a numerical simulation that DJ PSCs
with pentamethylenediamine spacers were promising for photovoltaic applications [19].
They optimized different parameters to improve solar cell performance and achieved a
PCE of 21.17% [20]. In 2023, Zhai and coworkers proposed that charge recombination could
be suppressed, interfacial charge accumulation restricted, and charge transport promoted
by introducing an interlayer of polyaspartic acid at the interface of a hole-transporting
layer (HTL) and a perovskite layer. With this optimization strategy, the PCE of a DJ PSC
increased from 15.03% to 17.34% [21].

Many reported studies have confirmed that the characteristics of the interface between
the perovskite layer and carrier transport layers have a direct impact on cell performance.
The conduction band offset (CBO) between the perovskite layer and the electron transport
layer (ETL) is an important feature of the interface. Therefore, there is a correlation between
the CBO and cell performance. A suitable ETL should exhibit proper band alignment
with the perovskite layer, ensuring that the transport of electrons is promoted while holes
are hindered [22–24]. In order to achieve good band alignment between the perovskite
layer and ETL, researchers have proposed many methods for interface engineering [25,26],
such as doping the ETL with other elements to reach the optimal band alignment with the
perovskite layer [22,23], adjusting the band structure via gradient doping [27], inserting a
buffer layer between the perovskite layer and the ETL [28], or adjusting the electron affinity
of the ETL to achieve proper band matching [29].

DJ PSCs were fabricated by incorporating bulky organic ammonium spacer pen-
tamethylenediamine (PeDA) into DJ perovskite films with four different layer numbers:
3, 4, 5, and 6. These layer numbers correspond to PeDAMA2Pb3I10, PeDAMA3Pb4I13,
PeDAMA4Pb5I16, and PeDAMA5Pb6I19, respectively. In this study, DJ PSCs, including
PeDA-DAMA2Pb3I10-based PSCs, PeDAMA3Pb4I13-based PSCs, PeDAMA4Pb5I16-based
PSCs, and PeDAMA5Pb6I19-based PSCs, were constructed and simulated using a one-
dimensional (1D) solar cell simulation program, SCAPS. The focus of this simulation was
on assessing the impact of the conduction band offset (CBO) between the DJ perovskite
layer and the electron transport layer (ETL). To understand the operation mechanism of
the devices, the relationship between the CBO in the range of −0.5 eV to 0.5 eV and the
performance of the DJ PSCs was analyzed. The evaluation indicators included the open-
circuit voltage (Voc), short-circuit current density (Jsc), fill factor (FF), PCE, recombination
current, and recombination rate. The numerical simulation results presented in this article
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offer significant guidance for the development and manufacturing of highly efficient DJ
PSCs and provide a solid foundation for future advancements in solar energy technology.

2. Methods and Materials
2.1. Numerical Research Method

Studying PSCs through a numerical simulation can mitigate the influence of unre-
lated external factors and help researchers analyze the internal physical mechanisms of
PSCs. This approach promotes the development of PSCs in experimental preparation.
Therefore, in this study, a 1D numerical simulation software, SCAPS, developed by Pro-
fessor Burgelman of Gent University in Belgium [30], was adopted as the research tool.
SCAPS is widely used for numerical simulations of solar cells. Based on the fundamental
equations of semiconductor device physics, including the Poisson equation, hole conti-
nuity equations, and electron continuity equations (Equations (1)–(3)) [31,32], SCAPS can
calculate the current density–voltage characteristics (J-V), spectral response, capacitance–
frequency characteristics (C-F), capacitance–voltage characteristics (C-V) band structures,
carrier concentration, and spectral response under specific boundary conditions and has
been extensively employed in numerical analyses of perovskite solar cells [3,4,33]. Specific
operating parameters such as bias voltage, frequency, and temperature are set in SCAPS
before running the simulation model.

− ∂

∂x

(
ε(x)

∂V
∂x

)
= q

[
p(x)n(x) + N+

D (x)− N−
A (x) + pt(x)− nt(x)

]
(1)

∂p

∂t
=

1
q

∂Jp

∂x
+ Gp − Rp (2)

∂n

∂t
=

1
q

∂Jn

∂x
+ Gn − Rn (3)

In the equations above, q represents the electronic charge, ε is the dielectric constant,
V stands for the potential, and p(x) and n(x) denote the concentrations of free holes and elec-
trons, respectively. Additionally, N+

D and N−
A are the donor and acceptor densities, while

pt(x) and nt(x) represent the concentrations of hole traps and electron traps, respectively.
Jn and Jp correspond to the current density of electrons and the current density of holes,
respectively, and Gn and Gp signify the generation rates of electrons and holes. Rn and Rp
represent the recombination rates of electrons and holes, respectively. A previous study
also presented advanced experimental tools for characterizing PSC performance [34].

2.2. Model Structure and Material Parameters

Using SCAPS, we designed an N-I-P PSC with the structure glass/FTO/ETL/DJ
perovskite/HTL/Au, as shown in Figure 1a. In this figure, TiO2 and NiOX were employed
as the ETL and HTL, respectively. FTO served as the front contact, while Au acted as the
metal back electrode. The DJ perovskite, encompassing PeDAMA2Pb3I10, PeDAMA3Pb4I13,
PeDAMA4Pb5I16, and PeDAMA5Pb6I19, functioned as the active layer. Figure 1b depicts
the energy levels of different materials. Excitons are generated when perovskite materials
absorb photons with energies exceeding their bandgaps. Subsequently, the excitons migrate
to the interface between the perovskite layers and the carrier transport layers, forming free
electrons and free holes. These free electrons and free holes then traverse the ETL and HTL,
respectively, and are ultimately collected by the corresponding electrodes.

The material parameter settings for constructing the initial models [14,18,25,26] and
the interface parameters of the NiOx/DJ perovskite and DJ perovskite/TiO2 [19,27] were
derived from authoritative studies to ensure the reliability of the simulation reference
data sources. In Figure 2, J-V characteristic curves are presented for devices under the
conditions of dark and light. Figure 2a–d correspond to PeDAMA2Pb3I10, PeDAMA3Pb4I13,
PeDAMA4Pb5I16, and PeDAMA5Pb6I19, respectively. The diode rectification character-
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istics in all four initial models indicate the reliability of the structural design. Figure 3a
demonstrates an improvement in the J-V characteristic curve when transitioning from
PeDAMA2Pb3I10 to PeDAMA5Pb6I19. Figure 3b explains this phenomenon. Among the
four types of perovskite materials, the bandgap order from large to small is PeDAMA2Pb3I10
> PeDAMA3Pb4I13 > PeDAMA4Pb5I16 > PeDAMA5Pb6I19. Consequently, the absorption
of photons gradually improves from PeDAMA2Pb3I10 to PeDAMA5Pb6I19, indicating that
PeDAMA5Pb6I19 and PeDAMA2Pb3I10 have the best and worst absorption of photons,
respectively. Hence, PeDAMA5Pb6I19-based solar cells have the optimal quantum effi-
ciency (QE), while PeDAMA2Pb3I10-based solar cells have the lowest QE. In general, all
initial models exhibit good photon absorption below 780 nm, confirming their reliability.
Therefore, the following section will explore the impact of the interface band offset between
the ETL (TiO2) and the perovskite layer on the cell performance based on these models.
Table 1 listed the basic parameters of the initial model while Table 2 displays key interface
parameter settings.
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Figure 1. Initial model and its energy band structure: (a) initial model structure; (b) energy band
structure diagram.

Table 1. Basic parameters of the initial model.

Parameter NiOx PeDAMA2Pb3I10 PeDAMA3Pb4I13 PeDAMA4Pb5I16 PeDAMA5Pb6I19 TiO2

Thickness/nm 100 800 800 800 800 50
Band gap/eV 3.5 1.83 1.76 1.65 1.6 3.2

Electron affinity/eV 1.8 3.15 3.28 3.64 3.98 3.9
Dielectric permittivity 10.7 25 25 25 25 9

Electron mobility/cm2/V.s 12 1.4 1.4 1.4 1.4 20
Hole mobility/cm2/V.s 2.8 0.3 0.3 0.3 0.3 10

Acceptor concentration/cm−3 3.0 × 1018 0 0 0 0 0
Donor concentration/cm−3 0 0 0 0 0 1.0 × 10−16

CB effective density of states/cm−3 2.8 × 1019 7.5 × 1017 7.5 × 1017 7.5 × 1017 7.5 × 1017 1.0 × 1021

VB effective density of states/cm−3 1.0 × 1018 1.8 × 1018 1.8 × 1018 1.8 × 1018 1.8 × 1018 2.0 × 1020

Defect type Neutral Neutral Neutral Neutral Neutral Neutral
Capture cross-section for electrons/cm2 1.0 × 10−15 1.0 × 10−15 1.0 × 10−15 1.0 × 10−15 1.0 × 10−15 1.0 × 10−15

Capture cross-section for holes/cm2 1.0 × 10−15 1.0 × 10−15 1.0 × 10−15 1.0 × 10−15 1.0 × 10−15 1.0 × 10−15

Total defect density/cm−3 1.0 × 10−15 2.5 × 10−14 2.5 × 10−14 2.5 × 10−14 2.5 × 10−14 1.0 × 10−16
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Table 2. Interface parameter settings.

Parameter NiOx/DJ Perovskite DJ Perovskite/TiO2

Type of Defect Neutral Neutral
Cross-Section for Electron Capture/cm2 1.0 × 10−15 1.0 × 10−15

Cross-Section for Hole Capture/cm2 1.0 × 10−15 1.0 × 10−15

Distribution of Energies single single
Reference for Energy Level of Defect Above the highest Ev Above the highest Ev
Energy with Respect to Reference/eV 0.6 0.6

Total Density of Defects/cm−3 1.0 × 1010 1.0 × 1010
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3. Results and Discussion

Figure 4 illustrates a schematic of the barrier structure at the interface between the
perovskite layer and the ETL. The CBO, which stands for conduction band offset, quantifies
the misalignment between the conduction band of the perovskite and the ETL. The CBO
value is calculated by subtracting the conduction band level of the perovskite from that of
the ETL. The magnitude of the CBO is closely related to the interface barrier. The CBO is
negative when the conduction band level of the ETL is lower than that of the perovskite,
and it is positive when the conduction band level of the ETL is higher. As depicted in
Figure 4a, a negative CBO results in an energy cliff at the interface between the perovskite
layer and the ETL. Conversely, in Figure 4b, a positive CBO leads to the formation of an
energy spike at the same interface. The structural difference between a cliff and a spike is
significant. An energy cliff does not impede the movement of photo-generated electrons,
while an energy spike acts as an obstacle. Consequently, the energy required for a photo-
generated electron to traverse these different barriers varies, leading to variations in the
accumulation and interface recombination of carriers.
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negative; (b) CBO is positive.

The CBO has a significant impact on interface recombination which is both theoretically
supported [35–37] and experimentally demonstrated [38–40]. To analyze the relationship
between the CBO and the performance of the DJ PSCs in this study, we maintained the
CBO within the range of −0.5 to 0.5 eV. The simulation work adopted the control variable
method. To control the value of the CBO, the electron affinity of the ETL was altered, while
the other parameters of the materials listed in Table 1 remained unchanged. Figures 5 and 6
display the simulation results. Figure 5 illustrates the trends in the cell output parameters
(Voc, Jsc, FF, and PCE) with different CBO values, while the corresponding J-V characteristic
curves are presented in Figure 6.

In Figure 5, when CBO values are negative, the Voc, FF, and PCE consistently increase
from −0.5 eV to 0 eV, while the Jsc remains relatively unchanged. Conversely, positive CBO
values in the range of 0.1–0.4 eV show less significant differences in output parameters
which are larger than those observed in the negative range. However, with a further
increase in the CBO, the cell performance rapidly declines. Similar trends are observed
in Figure 6, in which J-V characteristic curves steadily increase as the CBO changes from
−0.5 eV to 0 eV, almost overlapping and improving from 0.1–0.4 eV but exhibiting a severe
S-shape when the CBO reaches 0.5 eV.

When the CBO is less than 0 eV, a cliff forms at the interface between the ETL and
the perovskite. Conversely, when the CBO is positive, a spike forms, as depicted in
Figures 7 and 8, demonstrating a high degree of consistency between simulation results and
theory. The activation energy for carrier recombination (Ea) assesses carrier recombination
at the interface between the perovskite and the ETL. For positive CBO values, the Ea equals
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the band gap of the perovskite. In contrast, for a negative CBO, the Ea is defined by the
difference between the band gap of the perovskite and the absolute value of the CBO.
Consequently, negative CBO values increase the likelihood of interface recombination.
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based model.
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Figure 7. Interface band structures of DJ PSCs with negative CBOs: (a) PeDAMA2Pb3I10, (b) PeDAMA3 

Pb4I13, (c) PeDAMA4Pb5I16, and (d) PeDAMA5Pb6I19. 

0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

E
n

er
g

y
 (

eV
)

Depth from surface (μm)

 0.1 eV

 0.2 eV

 0.3 eV

 0.4 eV

 0.5 eV

PeDAMA2Pb3I10
TiO2

e-

(a)

spike

 

0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

E
n
er

g
y

 (
eV

)

Depth from surface (μm)

 0.1 eV

 0.2 eV

 0.3 eV

 0.4 eV

 0.5 eV

PeDAMA3Pb4I13
TiO2

e-

(b)

spike

0 2 4 6 8 10

 

0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

E
n

er
g

y
 (

eV
)

Depth from surface (μm)

 0.1 eV

 0.2 eV

 0.3 eV

 0.4 eV

 0.5 eV

PeDAMA4Pb5I16
TiO2

e-

(c)

spike

 

0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

E
n

er
g

y
 (

eV
)

Depth from surface (μm)

 0.1 eV

 0.2 eV

 0.3 eV

 0.4 eV

 0.5 eV

PeDAMA5Pb6I19
TiO2

e-

(d)

spike

 

Figure 7. Interface band structures of DJ PSCs with negative CBOs: (a) PeDAMA2Pb3I10, (b) PeDAMA3

Pb4I13, (c) PeDAMA4Pb5I16, and (d) PeDAMA5Pb6I19.
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Figure 8. Interface band structures of DJ PSCs with positive CBOs: (a) PeDAMA2Pb3I10, (b) PeDAMA3

Pb4I13, (c) PeDAMA4Pb5I16, and (d) PeDAMA5Pb6I19.
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The formation of an energy cliff occurs as the CBO increases from −0.5 eV to 0 eV. This
energy cliff, while not impending the movement of photo-generated electrons, results in
a nearly unchanged Jsc. However, the activation energy Ea is smaller than the band gap
of the perovskite, indicating that interface recombination predominantly influences the
recombination mechanism [41–43]. Research has generally proven that Voc is closely tied
to carrier recombination. Low carrier recombination has a positive effect on promoting
Voc. The Ea measures the difficulty of carrier recombination. Carriers are more likely
to recombine when the Ea is smaller. Therefore, it can be inferred that the Ea directly
influences Voc. As the CBO gradually increases from −0.5 eV to 0 eV, the Ea also increases,
leading to a gradual reduction in the likelihood of carrier recombination. Consequently,
the Voc shows a continuous increase. Both Figures 9 and 10 confirm that interface carrier
recombination decreases gradually with an increase in the CBO from −0.5 eV to 0 eV. The
decrease in carrier recombination signifies a reduction in the internal consumption of the
device, contributing to a gradual increase in the FF. The concurrent increases in the Voc and
FF further promote an overall rise in the PCE.
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Figure 9. Interface recombination current at the perovskite /ETL interface when the CBO is negative. 
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Figure 9. Interface recombination current at the perovskite/ETL interface when the CBO is negative.
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Figure 10. Total recombination at the perovskite/ETL interface when the CBO is negative.
(a) PeDAMA2Pb3I10, (b) PeDAMA3Pb4I13, (c) PeDAMA4Pb5I16, and (d) PeDAMA5Pb6I19.

When the CBO ranges from 0.1 eV to 0.4 eV, an energy spike is formed. At this
point, the Ea remains constant and is equal to the band gap of the perovskite, resulting in
minimal differences in interface carrier recombination. Figure 11 illustrates that when the
CBO is within this range, the fluctuation of the interface recombination current is weak,
indicating insignificant changes in interface carrier recombination. Consequently, the Voc
and FF almost remain unchanged. It has been demonstrated that a spike within this small
range has a limited effect on the motion of photo-generated electrons [31]. As a result,
Jsc experiences little change. The negligible variations in the Voc, Jsc, and FF translate to
insignificant changes in the PCE. However, if the CBO further increases to 0.5 eV, it may
induce a double-diode-like curvature, leading to a rapid decrease in the FF. Consequently,
the PCE experiences a significant decrease.
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Figure 11. Interface recombination current at the perovskite/ETL interface with a positive CBO.

The cells perform better when the CBO is in the range of 0.1–0.4 eV than when the
CBO is negative. A positive CBO leads to the formation of an energy spike, which acts as a
barrier and impedes the transport and collection of photo-generated electrons. However,
research has shown that a spike within a small range has less effect on the motion of
photo-generated electrons but a greater impact on the carrier recombination rate [31]. In
other words, PSCs may achieve better performance when an energy spike forms at the
interface between the perovskite and the ETL. Therefore, the Ea has a stronger impact when
a spike is formed, and the cell performance improves when the CBO is positive and there is
a spike within a small range. Figures 5 and 6 demonstrate that controlling the CBO within
0.1–0.4 eV is beneficial for the better performance of DJ PSCs.
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4. Conclusions

The effects of the CBOs of DJ PSCs were analyzed using the 1D solar cell simulator
SCAPS. The CBO is negative when the ETL has a lower conduction band level than the
DJ perovskite and vice versa. An energy cliff is formed at the interface between the DJ
perovskite and ETL when the CBO is negative, and an energy spike is generated when
the CBO is positive. When the CBO is negative and a cliff is formed, the movement of
electrons is not suppressed, so Jsc remains almost unchanged. However, the Ea gradually
increases with an increase in the CBO, reducing the interface carrier recombination, leading
to continuous increases with increases in the Voc and FF. Thus, the PCE is improved. When
the CBO is positive and a spike is generated, the Ea is equal to the band gap of the DJ
perovskite, so the Voc and FF remain almost unchanged. It has been proven that the Ea
has a more significant impact on cell performance when the CBO is relatively small, and
simulation results indicate that when the CBO is 0.1–0.4 eV, the performances of DJ PSCs
improve. These numerical simulation results should provide important guidelines for
designing efficient DJ PSCs.
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