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Abstract: A transverse flux linear motor is a special type of linear motor with a high thrust force
density, and it has broad application prospects in the field of linear direct-drive systems. In the
process of oil production, the vibration of the linear motor poses a significant amount of harm to the
system due to its special slender structure. This paper focuses on the electromagnetic vibration of a
transverse flux permanent magnet linear submersible motor (TFPMLSM). Firstly, the no-load air gap
flux density is calculated based on the field modulation principle. Secondly, the radial electromagnetic
force (REF) of the TFPMLSM is calculated, and the finite element method (FEM) is used to analyze
the time-space and spectral characteristics of the REF. Then, the influence of secondary eccentricity
on the frequency spectrum of the REF is further concluded. Finally, the natural frequencies of each
vibration mode are calculated using the modal superposition method and the influence of the REF on
the motor vibration is obtained through magnetic-structural coupling analysis. The research results
found that the motor does not cause resonance at low speeds, and the fundamental frequency of REF
has the greatest impact on electromagnetic vibration.

Keywords: transverse flux permanent magnet linear motor; radial electromagnetic force; finite
element method; modal superposition method; electromagnetic vibration

1. Introduction

Linear motors are used in applications as varied as robotics [1,2], electrical power
generation [3,4], electromagnetic launchers [5–7] and transportation [8]. Linear motor-
drive systems can directly provide linear reciprocating force without mechanical gears and
rotary-to-linear conversion systems, which results in better dynamic performance, higher
efficiency and reliability.

Many different types of linear permanent magnet machines have been studied to
achieve a high thrust force. A transverse flux permanent magnet linear submersible motor
(TFPMLSM) is a kind of motor with a high thrust force density [9–11] and it is expected to
be applied to oil exploitation. In the process of oil production, the submersible linear motor
will produce a lot of vibrations when it works underground for a long time, resulting in the
failure of the submersible electric pump system, motor damage and other problems [12].

The electromagnetic vibration is one of the main sources of motor vibration. Many
previous researchers have studied the main causes of the electromagnetic vibration of
permanent magnet (PM) motors. The electromagnetic force was directly applied to a finite
element (FE) model of stator core as an excitation force [13,14]. This research revealed that
the main cause of electromagnetic vibration in PM synchronous motors is neither torque
ripple nor cogging torque but an electromagnetic force acting in a radial direction known
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as the radial electromagnetic force (REF). However, the above studies were based only on
a two-dimensional (2-D) finite element method (FEM), thereby limiting the accuracy and
specific details of vibration characteristics.

The three-dimensional (3-D) FEM with high precision had been used to allow for a
more accurate analysis of motor vibration. Ref. [15] proposed a 3-D entire FE model to
analyze the vibration characteristics of a brushless direct current motor for more accurate
results. Ref. [16] calculated the REF and vibration responses of permanent magnet-assisted
synchronous reluctance machines (PM-SynRMs) by establishing the combined 2-D electro-
magnetic model and 3-D structural model. This research found that the rotor slot harmonic
will produce extra REF which may cause serious vibration. The REF of switched reluctance
motor was studied in [17] by 3-D FEM to reveal the motor vibration characteristics and
reduce noise. The research found that the amplitude of noise and vibration will be inversely
proportional to the slope of the decreasing REF.

The detailed electromagnetic vibration characteristics of motors have been studied
by using the developed multi-physics model method combining various analytical and
numerical methods. The magnetic field and radial force density of a PM brush dc motor
were analyzed by using an analytical method and FEM to reveal the electromagnetic
vibration characteristics [18,19]. A multi-physics model to predict the vibration and noise
of a claw pole alternator is established in [20], the REF calculated by 3-D FEM is transferred
to the structural meshing using the mapping method and the vibration and noise are
calculated by using the modal superposition method (MSM) and boundary-element method
(BEM). Ref. [21] studied the effect of a pole-slot match on the vibration of PM synchronous
motors by using the electromagnetic field FEM and Maxwell stress tensor method. In order
to evaluate the effect of REF on the vibration, the equivalent magnetizing current method
was used in this study to calculate the local force.

Existing researchers mainly focused on the vibration of rotating motors, but only a
few papers were related to the vibration of transverse flux linear motors. The previous
study of transverse flux linear motors mainly focused on the electromagnetic and structure
optimization design [22–25], while there was seldom any study on the electromagnetic
vibration of TFPMLSM. Moreover, the above-mentioned studies did not consider the
impact of rotor eccentricity fault on motor vibration characteristics. Considering the special
slender structure and special working environment of a TFPMLSM, the mover is more
likely to experience eccentricity and the vibration is more severe than other types of motors.
Therefore, it is worth studying the electromagnetic force and vibration characteristics
of TFPMLSMs.

In this paper, the no-load air gap flux density is firstly calculated based on the field
modulation principle. Then, the REF is calculated using the Maxwell stress tensor method,
and FEM is used to analyze the time-space and spectral characteristics of REF. The in-
fluence of secondary eccentricity on electromagnetic force is further simulated. Finally,
the stator modes and electromagnetic vibration characteristics of TFPMLSM are analyzed
and summarized.

2. The Structure and Operating Principle of TFPMLSM
2.1. Structure of TFPMLSM
2.1.1. Primary Structure

The primary of TFPMLSM serves as the stator, as shown in Figure 1a. The primary
unit consists of an iron core, permanent magnets (PMs) and coils. The iron core is slotted
along the axial direction and the three-phase centralized winding which adopts a Y-shaped
connection is symmetrically distributed along the circumferential direction. The stator
core adopts a 12 salient pole-teeth structure to offset the unilateral magnetic pull force of
each phase, as shown in Figure 1b,c. Each lamination consists of six short teeth and six
long teeth, and laminations A and B are alternately laminated along the axial direction.
The radially magnetized PMs are attached to the surface of the short teeth and distributed
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alternately along the axial direction, which can reduce thrust fluctuations and improve the
reliability of the TFPMLSM.
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Figure 1. Primary structure of the transverse flux permanent magnet linear submersible motor
(TFPMLSM): (a) primary unit; (b) lamination A of primary iron core; (c) lamination B.

2.1.2. Secondary Structure

The secondary of the TFPMLSM, which serves as the mover, consists of a cylinder
shaft, PMs and secondary iron core, as shown in Figure 2, where τ represents the pole
distance. The secondary iron core can be formed by stacking two types of laminations in
Figure 2b,c along the axial direction. After laminations C and D are sequentially stacked
for a length of τ/3, they are rotated by 60◦ and sequentially stacked for another length of
τ/3. Then, the two laminations are rotated by 60◦and stacked again to form the secondary
iron core by following this rule.
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Figure 2. Secondary structure of TFPMLSM: (a) mover; (b) lamination C of secondary iron core;
(c) lamination D.

The vacant position on the secondary iron core is embedded with PMs to strengthen
the main magnetic flux, and the iron poles on the secondary unit are used to form a
magnetic circuit with the stator PMs. The axial length of the mover PM, which is the same
as that of mover iron pole, is defined as the pole distance τ, as shown in Figure 2a.

The alternating arrangement of iron poles and PMs in the axial direction forms a group
of movers. The three groups of mover iron poles are staggered along the axial direction
with length 2τ/3 to form a three-phase structure corresponding to the stator three-phase,
as shown in Figure 3. The overall distribution of the mover iron poles in the circumferential
direction is symmetrical, which can effectively reduce the cogging force.

2.1.3. Structure of Unit Motor

The 3-D model of the TFPMLSM studied in this paper is shown in Figure 4. Both
stator and mover adopt the dual consequent pole structure, and the sandwiched iron poles
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are magnetized with opposite polarity by the adjacent PMs. The values and marks of the
structural parameters of the TFPMLSM are shown in Table 1 and Figure 5, respectively.
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2.2. Working Principle of TFPMLSM

A TFPMLSM is a kind of variable reluctance motor and Figure 6 presents its axial flux
path. The iron poles between the PMs have the ability to modulate the flux path. When
the direction of the armature flux path is the same as the PM flux path, the upward flux is
strengthened and according to the minimum reluctance principle, the mover will move
forward under the action of electromagnetic force to provide the least reluctance path. The
PM flux will reach maximum value in a positive direction when the stator PMs and mover
iron poles are completely aligned, as shown in Figure 7a. By changing the direction of the
current in the winding, the armature flux is in the opposite direction of the PM flux and the
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mover continues to be pulled forward by electromagnetic force until the PM flux reaches its
maximum value in a negative direction, as shown in Figure 7b. The secondary will move
continuously by applying an alternating current to the winding.

Table 1. Structural parameters of the TFPMLSM.

Parameter Symbol Value Parameter Symbol Value

Outer radius of stator iron core/mm Rpo 52 Axial length of mover PM (Pole
distance)/mm τ 9

Stator slot height/mm hpt 10.8 Inner radius of mover iron core/mm Rsi 15
Axial length of stator PM/mm lpm 8 Stator PM height/mm hPM 3

Stator yoke height/mm hpy 5 Mover PM height/mm hst 3
Stator tooth width/mm wpt 7 Mover pole arc coefficient αst 0.8

Air gap/mm g 1 Stator slot width/mm wpo 3.5
Radius of mover cylinder/mm Rso 27.4
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3. Analysis of Radial Electromagnetic Force

Compared to numerical methods, analytical methods can save much computational
time. What is more, due to the fac that the REF is generated by the action of the air gap
magnetic field on the stator, calculating the air gap flux density by an analytical method is
the key to studying the electromagnetic characteristics of the TFPMLSM.

3.1. No-Load Air Gap Flux Density

In recent years, a new type of permanent magnet synchronous motor with high torque
density and low torque ripple based on the principle of field modulation has received
widespread attention. Many scholars have proposed various novel topologies and methods
for magnetic field analysis [26,27] and improvement of power factor [28], which gradually
developed a relatively complete field modulation theory.

The principle of field modulation is also applicable to transverse flux motors and it
is adopted to calculate the air gap flux density of TFPMLSM, which can directly analyze
the harmonic composition of the air gap flux density and reveal the influence of structural
parameters on the motor magnetic field. The following assumptions are made to simplify
the calculation:

• The core saturation is ignored;
• The eddy current losses and hysteresis losses are excluded;
• Magnetic field only changes in the radial direction.

Due to the consequent pole structure of the stator and mover, the TFPMLSM can be
decomposed into two sets of models for air gap flux density calculation: stator PMs and
mover iron poles, and mover PMs and stator iron poles. The overall air gap flux density can
be obtained by superposing the air gap flux density of two models. Figure 6 shows the PM
magneto motive force (MMF) and iron pole permeance distribution of stator and mover.

In Figure 8, Λt represents the permeance per unit area of the mover iron pole:

Λt =
1

hPM + g
(1)

The permeance per unit area between the iron poles can be expressed as:

Λs =
1

hPM + g + hst
(2)

The Fourier series form of the permeance waveform shown in Figure 8c is:

Λ(x, t) = Λ0 +
∞
∑

i=1
Λi cos[πi

τ (x− vt)]

Λ0 = µ0
τ (Λtlst + Λslsp) = µ0(

1
hpm+g + 1

hpm+g+hst
)

Λi =
2µ0
iπ (Λt −Λs) sin( iπlst

2τ ) = 2µ0
iπ ( 1

hpm+g −
1

hpm+δ+hst
) sin( iπ

2 )

(3)

where Λ0 is the DC component in the mover permeance, Λi is the harmonic coefficient of
each order of mover permeance and v is the moving speed of mover.

Similarly, the Fourier series form of the MMF of stator PMs shown in Figure 8e is:

Fpm(x) = F0 +
∞
∑

i=1
Fi cos(πi

τ x)

F0 =
Fmlpm

T =
Brhpm

2µ0

Fi =
2
T
∫ T

0 f (x) cos( 2πix
T )dx =

Brhpm
iπµ0

sin( iπ
2 )

(4)

where F0 is the DC component in the MMF of stator PMs. Fi is the harmonic coefficient
MMF of stator PMs.
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The MMF waveform of mover PMs and permeance waveform of stator iron poles are
exactly 180◦ different from the MMF of stator PMs and permeance of mover iron poles.
Therefore, the MMF of mover PMs can be expressed as:

Fsm(x, t) = F0
′ +

∞
∑

i=1
Fi
′ cos[π

τ (x− vt)]

F0
′ = Fm

′ lsm
T = Brhst

2µ0

Fi
′ = 2

T
∫ T

0 f (x) cos( 2πix
T )dx = Brhst

iπµ0
sin( iπ

2 )

(5)

where F0
′ is the DC component in the MMF of mover PMs. Fi

′ is the harmonic coefficient
of MMF of mover PMs.

Similarly, the stator permeance can be expressed as:

Λ(x)′ = Λ0
′ −

∞
∑

i=1
Λi
′ cos(πi

τ x)

Λ0
′ = µ0(

1
hst+g + 1

hpm+g+hst
)

Λi
′ = 2µ0

iπ (Λt
′ −Λs

′) sin( iπlpt
2τ ) = 2µ0

iπ ( 1
hst+g −

1
hpm+g+hst

) sin( iπ
2 )

(6)

where Λ0
′ is the DC component in the stator permeance. Λi

′ is the harmonic coefficient of
each order of stator permeance.
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The expression of the air gap flux density at no-load by ignoring the influence of
higher-order harmonics can be obtained as:

Bg(x, t) = Fpm(x)Λ(x, t) + Fsm(x, t)Λ′(x)
= F0Λ0 + F0

′Λ0
′ + (F1Λ0 − F0

′Λ1
′) cos πx

τ
+(F0Λ1 − F1

′Λ0
′) cos π

τ (x− vt) + (F1Λ1 + F1
′Λ1
′) cos πx

τ cos π
τ (x− vt)

(7)

3.2. Mathematical Analysis of Radial Electromagnetic Force

The REF which is the result of the air gap magnetic field acting on the stator core
is the main factor causing electromagnetic vibration. The air gap magnetic field is gen-
erated by the interaction of the permanent magnet MMF, armature MMF and iron core
permeance. The synthetic air gap flux density expression of the TFPMLSM is given by the
following equation:

Bg(x, t) = Fpm(x)Λ(x, t) + Fsm(x, t)Λ′(x) + Fw(x)[Λ(x, t) + Λ′(x)] (8)

where Fw(x) is the armature MMF.
The mover is the moving part and the mathematical expression of mover MMF is a

function of position (x) and time (t).
The electromagnetic force acting on the stator teeth is shown in Figure 9. According

to the Maxwell stress tensor method, the mathematical expressions of the REF at three
directions are as follows:
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The radial electromagnetic force (REF) is:

Fr(x, t) =
1

2µ0
[br

2(x, t)− bt
2(x, t)− bz

2(x, t)] (9)

The tangential electromagnetic force is:

Ft(x, t) =
1

µ0
br(x, t)bt(x, t) (10)

The axial electromagnetic force is:

Fz(x, t) =
1

µ0
bt(x, t)bz(x, t) (11)

where br(x,t), bt(x,t) and bz(x,t) are the radial, tangential and axial magnetic density compo-
nents of the air gap flux density, respectively.

The mover moving direction of a traditional longitudinal flux motor is coplanar with
the main flux and the axial air gap flux density is 0, as there is no axial movement of
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the mover. Ignoring tangential magnetic density, the radial electromagnetic force can be
simplified as

Fr(x, t) =
1

2µ0
br

2(x, t) (12)

It can be seen that the REF of a traditional longitudinal flux motor is only related to
the radial air gap flux density, while in contrast, transverse flux linear motors have axial
flux density components that cannot be ignored. Figure 10 shows the distribution of air gap
flux density under stator tooth II. It can be seen that the br is a relatively rectangular wave
while the bt is small and can be ignored. For bz, a large amplitude appears at 180◦ and the
axial component of the air gap flux density is non-ignorable. The simplified mathematical
expression for radial electromagnetic force is:

Fr(x, t) =
1

2µ0
[br

2(x, t)− bz
2(x, t)] (13)
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Figure 10. Air gap flux density distribution under tooth II.

According to the linear superposition principle, the air gap flux density can be divided
into armature flux density, stator PMs flux density and mover PMs flux density by ignoring
the influence of winding current harmonics:

br(x, t) = bwr_i(θ, t) + bpr_j(x, t) + bsr_k(x, t)
bz(x, t) = bwz_i(θ, t) + bpz_j(x, t) + bsz_k(x, t)

(14)

1. The armature flux density generated by the armature winding. The radial and axial
flux density of the armature can be expressed as:

bwr_i(θ, t) = ∑
i

Bwr_i cos(ipθ − 2π f t + · · · )

bwz_i(θ, t) = ∑
i

Bwz_i sin(ipθ − 2π f t + · · · ) (15)

where Bwr_i and Bwz_i represent the ith harmonic amplitude of the radial and axial air gap flux
density of the armature, respectively. p is pole pairs and f is current fundamental frequency.

2. The flux density generated by the interaction between the stator PMs and the mover
iron poles. The radial and axial air gap flux density of stator PMs can be expressed as:

bpr_j(x, t) = ∑
j

Bpr_j sin(jpx− 2jτ f t + · · · )

bpz_j(x, t) = ∑
j

Bpz_j cos(jpx− 2jτ f t + · · · ) (16)

where Bpr_j and Bpz_j represent the jth harmonic amplitude of the radial and axial air gap
flux density of the stator PMs, respectively.
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3. The flux density generated by the interaction between the mover PMs and the stator
iron poles. The radial and axial air gap flux density of mover PMs can be expressed as:

bsr_k(x, t) = ∑
k

Bsr_k cos(kpx− 2kτ f t + · · · )

bsz_k(x, t) = ∑
k

Bsz_k sin(kpx− 2kτ f t + · · · ) (17)

where Bsr_k and Bsz_k represent the kth harmonic amplitude of the radial and axial air gap
flux density of the mover PMs, respectively.

The armature flux density is generated by the coil in the circumferential direction
of the stator and is a function of θ. The flux density generated by PMs is related to the
mover moving direction and is a function of the axial motion distance x. The simplified
mathematical expression for REF is:

Fr = B0 + ∑
i

Bw cos(2ipθ − 4π f t) + ∑
j

Bps sin(2jpx− 4jτ f t + · · · )

+∑
i

∑
j

Bws sin[ipθ ± jpx− 2(π ± jτ) f t + · · ·]

+∑
i

∑
j

Bwp cos[ipθ ± jpx− 2(π ± jτ) f t + · · ·]
(18)

where p is the pole pairs and f is the fundamental frequency. The first term B0 is the sum of
the DC components generated jointly by the winding and PMs. The second and third items
are harmonics generated by the winding acting separately with the stator PMs and mover
PMs. The fourth item is the harmonic generated by the joint action of the winding with the
mover PMs and the fifth item is the harmonic generated by the joint action of the winding
with the stator PMs.

3.3. Analysis of Spatiotemporal and Spectral Characteristics of REF

As shown in Figure 11, the stator is divided into two sections along the axial direction
for finite element simulation because of the symmetry of electromagnetic force distribution.
Sections I and II are at 4.5 mm and −4.5 mm in the axial direction, respectively.
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necessary to analyze the REF of one section. 

Figure 11. Axial segmentation of the TFPMLSM.

The REF distribution and its FFT under no-load state are shown in Figure 12. It can be
seen that within an electrical cycle, the REF distribution of sections I and II are the same,
and they are staggered by one pole distance from each other in phase. Therefore, it is only
necessary to analyze the REF of one section.

It can be seen from Figure 12b,d that the amplitude of the DC component at (0, 0f) is
the largest, which is mainly produced by the superposition of br and bz. The DC component
has no effect on the vibration of the motor; however, other low-order and low-frequency
harmonics have a significant impact on the electromagnetic vibration.

The 10A sinusoidal alternating current is applied to the winding to investigate the effect
of armature flux density on the spectral characteristics of REF. The spatiotemporal distribution
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and FFT of REF in section I are shown in Figure 13. It can be seen that compared to the no-load
state, the armature flux density increases the (2, 1f), (−5, 2f), (7, 2f) and (−4, 1f) components
of REF, which are generated by the interaction between the armature flux density and PM
flux density.
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4. Influence of Mover Eccentricity on the Spectral Characteristics of REF

The TFPMLSM is composed of multiple motors connected in a series and has a slender
structure. The eccentricity may happen as the mover is in motion, which could affect the
electromagnetic performance and system stability of the motor. The influence of mover
eccentricity on the spectral characteristics of REF is analyzed in this part to provide a
theoretical basis for the operational reliability of TFPMLSM.

4.1. The Influence of Eccentricity on the Spectral Characteristics of Electromagnetic Forces

The TFPMLSM mainly experiences static eccentricity. As shown in Figure 14, the
geometric center of the mover axis is not coincident with the stator axis, but deviates by a
certain distance.
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Figure 14. Static eccentricity of mover.

The eccentricity can be defined as the deviation e to the air gap g. When the mover
is eccentric e along the positive X-axis direction, the air gap on the right side of the stator
decreases, and the distribution of air gap flux density changes, resulting in a significantly
unbalanced electromagnetic force. It manifests as an increase in the harmonics of the
electromagnetic force in the spectrum.

The space distribution of the REF along the circumference and its FFT under different
eccentricities are shown in Figure 15. Figure 15a shows that the REF is symmetrically
distributed within a mechanical cycle when there is no eccentricity. The higher the degree
of eccentricity, the greater the fluctuation amplitude of the REF. Figure 15b shows that
mover eccentricity not only increases the amplitude of the original order forces, but also
generates new order forces, which have a significant impact on the vibration noise of
the motor.
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Figure 16. Time distribution and harmonic of axial electromagnetic force versus eccentricity. (a) 
Time distribution of REF; (b) harmonic distribution. 

4.2. Analysis of Unbalanced Electromagnetic Force under Mover Eccentricity 
The magnetic pulling force of the entire stator can be obtained by stacking the REF 

on each tooth surface. Figure 17 shows the time distribution of REF under different eccen-
tricities in the no-load state. The DC component of combined REF is 0 when the mover is 
not eccentric and the REF increases with the increase in eccentricity.  
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Figure 15. Spatial distribution and harmonics of REF versus eccentricity. (a) Spatial distribution of
REF; (b) harmonic distribution.

Figure 16 shows the time distribution and FFT of REF under the stator iron pole. It
can be seen that the growth of eccentricity will increase the amplitude of REF.
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Figure 16. Time distribution and harmonic of axial electromagnetic force versus eccentricity. (a) Time
distribution of REF; (b) harmonic distribution.

4.2. Analysis of Unbalanced Electromagnetic Force under Mover Eccentricity

The magnetic pulling force of the entire stator can be obtained by stacking the REF
on each tooth surface. Figure 17 shows the time distribution of REF under different
eccentricities in the no-load state. The DC component of combined REF is 0 when the
mover is not eccentric and the REF increases with the increase in eccentricity.
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Figure 17. Time distribution of REF and its DC component versus eccentricity. (a) Time distribution
of REF; (b) influence of eccentricity on the DC component of REF.

Figure 18 presents the distribution of axial electromagnetic force (AEF) under different
eccentricities. It can be seen that as eccentricity occurs, the amplitude of AEF fluctuations
increases because the PM flux density is modulated by the eccentric permeance and re-
sults in a new harmonic component of AEF. The higher the eccentricity, the greater the
fundamental amplitude of the AEF.
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The following conclusion can be drawn by analyzing the REF and AEF of the motor
under different eccentricities: a large magnetic pull in the radial direction will be produced
as the mover eccentricity occurs, and the thrust fluctuation amplitude of the motor increases,
which will affect the motor load-carrying capacity.

5. Analysis of Stator Mode and Electromagnetic Vibration of TFPMLSM

REF acts on stator teeth as an excitation force with the operation of motor. It will cause
resonance and endanger the safety and stability of the system when the frequency of REF
is close to the natural frequency of the motor and the spatial order of the REF matches the
vibration mode of the motor. The order of the vibration mode and natural frequency of the
motor can be obtained by modal analysis, which provides a theoretical basis for avoiding
the resonance.

5.1. Characteristics of Stator Modal by Finite Element Analysis

The stator of the TFPMLSM is composed of the stator combination of multiple unit
motors. The ratio of its axial length to outer diameter is as high as 20–50, and the influence
of the electromagnetic force on the axial vibration is small. Therefore, the radial mode and
low-order axial mode are mainly analyzed in this paper. The coils that have little impact
on the vibration are ignored to simplify the computation and a simplified stator model is
obtained as shown in Figure 19. The material parameters are shown in Table 2.
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Table 2. Material properties of stator.

Material Name Model Number Density (kg/m3) Young’s Modulus (Gpa) Young’s Modulus

Silicon steel sheet DW465_50 7700 170 0.26
Permanent magnet NdFe30 7550 160 0.24

The MSM is used to calculate the 2–4 modal vibration modes and natural frequencies
of the motor, as shown in Table 3. From the previous analysis, the fundamental and second
harmonics have the greatest impact on the electromagnetic vibration. When the mover
moves at the maximum speed of 1 m/s, the fundamental and second harmonic frequencies
of the motor are 55.56 Hz and 111.11 Hz respectively, which is quite different from each
natural frequency of the motor and the resonance will not occur.

The submersible motors often need to be slotted into the stator to be fixed in the
casing, therefore, the unconstraint and fixed constraint are set at the stator slot, respectively,
to obtain the relationship between the mode order and natural frequency, as shown in
Figure 20. It can be seen that for the motor with fixed constraint, each natural frequency of
stator is high. However, the fundamental working frequency of TFPMLSM is no more than
55.56 Hz, which is much lower than each natural frequency, resulting in a low probability
of resonance.
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Table 3. Vibration modes and natural frequencies.

Mode Number Mode Shapes Natural Frequency [Hz]

Radial 2nd mode
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5.2. Harmonic Response Analysis

The FEM is used to conduct magnetic-structural coupling analysis. The stator tooth
surface and outer surface are selected as the vibration measurement surfaces to observe the
vibration characteristics of the motor, as shown in Figure 21.

The vibration velocity response of the measuring surface is shown in Figure 22. It can
be found that the vibration response law of the stator outer surface is roughly the same
as that of the stator tooth surface. The fundamental frequency of REF has the greatest
impact on the vibration, and it also causes a large radial vibration response at 666 Hz
(12 times frequency).
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Figure 23. Electromagnetic vibration response of stator tooth surface and outer surface with 40% 
mover eccentricity. (a) Stator tooth surface vibration response; (b) vibration response of stator outer 
surface. 

6. Conclusions 
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ing environment, the eccentricity could also significantly affect the vibration performance. 
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vibration, the air gap flux density is firstly calculated and the REF which is the source of 
electromagnetic vibration is investigated by FEM. The influence of mover eccentricity on 
REF is then analyzed and the electromagnetic vibration response is obtained. The follow-
ing conclusions can be drawn according to the research of this paper. 
1. Based on the Maxwell tensor method, it is obtained that the REF of the TFPMLSM is 
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which is different from traditional longitudinal flux motors. 
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Figure 22. Electromagnetic vibration response of stator tooth surface and outer surface. (a) Stator
tooth surface vibration response; (b) vibration response of stator outer surface.

Figure 23 shows the vibration response at 40% eccentricity towards X direction.
Figure 23a presents that the electromagnetic vibration amplitude of the stator teeth in-
creases in all directions after eccentricity. Figure 23b shows that the eccentricity increases
the electromagnetic vibration response amplitude in the X and Y directions of the outer
surface, while the vibration amplitude in the Z direction is basically unchanged.
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Figure 23. Electromagnetic vibration response of stator tooth surface and outer surface with 40% 
mover eccentricity. (a) Stator tooth surface vibration response; (b) vibration response of stator outer 
surface. 

6. Conclusions 
Due to its special magnetic circuit, the REF and vibration characteristics of the 

TFPMLSM is different from other motors. Considering its long-term underground work-
ing environment, the eccentricity could also significantly affect the vibration performance. 
To reveal the electromagnetic vibration characteristics and the impact of eccentricity on 
vibration, the air gap flux density is firstly calculated and the REF which is the source of 
electromagnetic vibration is investigated by FEM. The influence of mover eccentricity on 
REF is then analyzed and the electromagnetic vibration response is obtained. The follow-
ing conclusions can be drawn according to the research of this paper. 
1. Based on the Maxwell tensor method, it is obtained that the REF of the TFPMLSM is 

not only related to the radial flux density component, but also to the axial component, 
which is different from traditional longitudinal flux motors. 

2. A large magnetic pull in the radial direction will be produced as the mover eccen-
tricity occurs, and the thrust fluctuation amplitude of the motor increases, which will 
affect the motor load-carrying capacity. 

3. The natural frequencies of the motor are obtained based on MSM. Compared to the 
fundamental working frequency, which is 55.56 Hz at maximum speed of 1 m/s, each 

Figure 23. Electromagnetic vibration response of stator tooth surface and outer surface with 40%
mover eccentricity. (a) Stator tooth surface vibration response; (b) vibration response of stator
outer surface.



Energies 2023, 16, 7911 17 of 18

6. Conclusions

Due to its special magnetic circuit, the REF and vibration characteristics of the TF-
PMLSM is different from other motors. Considering its long-term underground working
environment, the eccentricity could also significantly affect the vibration performance.
To reveal the electromagnetic vibration characteristics and the impact of eccentricity on
vibration, the air gap flux density is firstly calculated and the REF which is the source of
electromagnetic vibration is investigated by FEM. The influence of mover eccentricity on
REF is then analyzed and the electromagnetic vibration response is obtained. The following
conclusions can be drawn according to the research of this paper.

1. Based on the Maxwell tensor method, it is obtained that the REF of the TFPMLSM is
not only related to the radial flux density component, but also to the axial component,
which is different from traditional longitudinal flux motors.

2. A large magnetic pull in the radial direction will be produced as the mover eccentricity
occurs, and the thrust fluctuation amplitude of the motor increases, which will affect
the motor load-carrying capacity.

3. The natural frequencies of the motor are obtained based on MSM. Compared to the
fundamental working frequency, which is 55.56 Hz at maximum speed of 1 m/s, each
natural frequency of the motor is much higher, therefore, resonance will not occur at a
low speed.

4. The fundamental frequency of the electromagnetic force has the greatest impact on
the electromagnetic vibration of the TFPMLSM, which is different from the traditional
rotating motor.
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