
Citation: Dorge, C.; Bibeau, E.L.

Deep Learning-Based Prediction of

Unsteady Reynolds-Averaged

Navier-Stokes Solutions for

Vertical-Axis Turbines. Energies 2023,

16, 1130. https://doi.org/10.3390/

en16031130

Academic Editor: João Carlos de

Campos Henriques

Received: 14 November 2022

Revised: 9 January 2023

Accepted: 12 January 2023

Published: 19 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Deep Learning-Based Prediction of Unsteady
Reynolds-Averaged Navier-Stokes Solutions for
Vertical-Axis Turbines
Chloë Dorge * and Eric Louis Bibeau

Department of Mechanical Engineering, University of Manitoba, 75 Chancellors Cir,
Winnipeg, MB R3T 5V6, Canada
* Correspondence: umdorge6@myumanitoba.ca

Abstract: The following study investigates the effectiveness of a deep learning-based method for
predicting the flow field and flow-driven rotation of a vertical-axis hydrokinetic turbine operating in
previously unseen free-stream velocities. A Convolutional Neural Network (CNN) is trained and
tested using the solutions of five two-dimensional (2-D), foil-resolved Unsteady Reynolds-Averaged
Navier-Stokes (URANS) simulations, with free-stream velocities of 1.0, 1.5, 2.0, 2.5, and 3.0 m/s. Based
on the boundary conditions of free-stream velocity and rotor position, the flow fields of x-velocity, y-
velocity, pressure, and turbulent viscosity are inferred, in addition to the angular velocity of the rotor.
Three trained CNN models are developed to evaluate the effects of (1) the dimensions of the training
data, and (2) the number of simulations used as training cases. Reducing data dimensions was found
to diminish mean relative error in predictions of velocity and turbulent viscosity, while increasing it
in predictions of pressure and angular velocity. Increasing the number of training cases from two to
three was found to reduce relative error for all predicted unknowns. With the best achieved CNN
model, the variables of x-velocity, y-velocity, pressure, turbulent viscosity, and angular velocity were
inferred with mean relative errors of 6.93%, 9.82%, 10.7%, 7.48%, and 0.817%, respectively.

Keywords: deep learning; vertical-axis turbine; turbine interaction; array optimization; URANS; CFD

1. Introduction

The optimization of turbine array layouts is an important and challenging problem
in the fields of wind and hydrokinetic energy. The maximization of aerodynamic array
efficiency, which is defined as the energy output of the entire array in proportion to
the energy output of an equal number of isolated turbines [1], requires vastly different
array layouts for horizontal-axis and vertical-axis turbines. In order to achieve an array
efficiency of about 90%, horizontal-axis wind turbines (HAWTs) are generally spaced by
eight to ten rotor diameters in the streamwise direction, and three to five rotor diameters
in the cross-flow direction [1]. In contrast, the energy output of vertical-axis turbine
arrays is enhanced by aerodynamic interactions, especially when turbines are arranged
in counter-rotating pairs [2]. The synergy of closely spaced vertical-axis wind turbines
(VAWTs) has been demonstrated in field [2] and wind tunnel experiments [3,4], as well
as by numerical models [5–9]. In wind tunnel tests, counter-rotating VAWT pairs with a
spacing of 1.25 turbine diameters were shown to improve array efficiency by an average of
14% over a wind direction range of 50◦ [4]. In field analyses of VAWT triads, the efficiency
of an isolated turbine was found to be 95% recovered at four turbine diameters downstream
from a counter-rotating pair [2]. With optimal layouts, it is expected that VAWT arrays
could achieve power densities an order of magnitude greater than those seen in HAWT
arrays, which are typically in the range of 2 to 3 W/m2 [2]. Although the phenomenon
of vertical-axis turbine synergy is well documented, further investigation is required to
optimize the layouts of vertical-axis turbine arrays with greater precision.

Energies 2023, 16, 1130. https://doi.org/10.3390/en16031130 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en16031130
https://doi.org/10.3390/en16031130
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://doi.org/10.3390/en16031130
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en16031130?type=check_update&version=1

Energies 2023, 16, 1130 2 of 33

Due to the high computational cost of foil-resolved turbine simulations, turbine
arrays are generally modelled by replacing complex rotor geometries with zero-thickness,
permeable momentum sinks, commonly referred to as actuators. To eschew the resolution
of boundary layers, the flow at the actuator is assumed to be inviscid. In general, actuators
can be classified as non-rotating or rotating, i.e., exerting a static or dynamic load on the
fluid domain, respectively. Non-rotating actuators take the form of the swept area of the
foils, i.e., a cylinder for straight-bladed vertical-axis turbines, and a disc for horizontal-
axis turbines. Rotating actuators, on the other hand, are comprised of lines or surfaces
that track with the position of each foil, coinciding with the aerodynamic center or chord
line, respectively.

Actuator Cylinders (ACs) are produced by discretizing the swept area of the foils and
computing the normal and tangential blade forces produced at each element, based on the
local relative flow velocity and angle of attack [10]. The calculated forces are then used to
determine the flow velocities induced downstream of each element [10]. Two-dimensional
AC models can be performed for straight-bladed turbines, while three-dimensional AC
models can be developed for turbines with curved blades [11]. To account for the effects
of the rotor shaft and struts, actuator-in-actuator models consisting of two concentric
cylinders have also been developed [12]. AC models have been shown to accurately predict
power coefficients of isolated turbines when validated against experimental and numerical
results [10,13], although discrepancies have been observed for high-solidity turbines [13].
In studies deploying AC models with inviscid flow solvers, interactions between VAWT
pairs have been shown to increase array efficiency by more than 10% [11]. Experimentally
and numerically validated AC models have also been coupled with RANS solvers to predict
power outputs and blockage effects in marine turbine arrays [14,15].

While more computationally expensive than AC models, Actuator Line (AL) mod-
els are able to approximate important transient effects such as foil tip vortices and swirl,
both of which have a significant impact on wake evolution and power production. In AL
models, the static lift, drag, and pitching moment coefficients of the actuator elements are
interpolated from coefficient lookup tables at each time step, based on the local relative
fluid velocity and angle of attack [16]. Using the computed coefficients, the forces incident
on each actuator element are determined, and projected back onto the fluid domain as
a momentum source term [16]. AL models rely on empirical corrections and carefully
calibrated foil data to prescribe the projection of calculated body forces from the actuator
elements onto the fluid domain, and the injection of leading and trailing edge vortices [16].
To account for the unsteady effects of dynamic stall and added mass, static foil charac-
teristics must be corrected at each time step, based on the local flow field of the actuator
element [16]. The prediction of dynamic stall, in particular, has been identified as a weak-
ness in AL models [17]. For vertical-axis turbines, lift and drag coefficients must also be
corrected to account for the phenomenon of flow curvature, wherein the circular path of
the foils results in a non-uniform angle of attack along the chord line [16]. With properly
calculated aerodynamics loads, AL models have been shown to resolve flow fields almost as
accurately as foil-resolved models [17]. In addition, high-fidelity AL models coupled with
RANS or Large Eddy Simulation (LES) solvers have been highly effective in the analysis of
interactions between VAWT pairs and triads [5,6].

Unlike AC and AL models, foil-resolved models are rarely used as a method for
optimizing turbine arrays, due to their large computational cost. Nevertheless, such rigor-
ous optimizations are attainable. In a recent study, 2-D foil-resolved URANS simulations
were carried out for 24 layouts of a VAWT pair, and for a single configuration of a VAWT
triad [7]. Each simulation was performed with the same inlet velocity, and with the same
constant angular velocity applied to each rotor [7]. For the assessed pair layouts, array
efficiency was enhanced by as much as 15% [7]. With the addition of a third turbine, array
efficiency was increased by another 3% [7]. While turbine arrays are typically modelled
by assuming that each turbine has the same fixed angular velocity, models employing
flow-driven rotation can more accurately replicate the turbine interactions observed in field

Energies 2023, 16, 1130 3 of 33

and laboratory experiments. In such models, the angular velocity of each turbine in the
array is calculated at every time step, based on its local velocity field. This method was
recently implemented in 2-D foil-resolved URANS models to examine the performance of
co-rotating and counter-rotating VAWT pairs in 16 wind directions [9]. For VAWT pairs
with spacings of 0.5 to 1 turbine diameters, array efficiency was found to improve by as
much as 23% [9]. In addition, the closely spaced turbines were shown to exhibit phase
synchronization, a phenomenon that had not previously been demonstrated in numerical
models [9]. Although performing foil-resolved URANS simulations for numerous array
layouts is exceedingly time consuming, such stringent studies are critical for the valida-
tion of actuator-based array models. Moreover, foil-resolved models will undoubtedly
play an important role in the improvement of vertical-axis turbine designs for pairwise or
cluster-wise operation.

To reduce the computational cost of foil-resolved array modelling, predictive deep
learning techniques should be investigated. Deep learning refers to a category of machine
learning that employs Artificial Neural Networks (ANNs), which are computational models
that transform inputs through three or more interconnected layers of nodes, or neurons.
ANNs are trained to extract non-linear relationships between inputs and ground truths
through an iterative process, in which trainable parameters in each node are adjusted to
reduce the discrepancy between the output of the ANN and the target solution. Given their
capacity to extract general patterns from highly complicated data, ANNs are a powerful
method for reducing the computational cost associated with the modelling of physical field
phenomena. By training an ANN with the solutions of foil-resolved array models, the
performance of previously unseen turbine layouts could potentially be predicted, thereby
reducing the number of foil-resolved simulations that must be performed to find an optimal
array configuration.

Convolutional Neural Networks (CNNs), which are a class of ANNs, are particu-
larly well-suited to applications involving array-based data. While CNNs are often used
for image classification and segmentation, they can also be trained to infer the solutions
of Computational Fluid Dynamics (CFD) models. CNNs have been applied to a broad
range of CFD problems, including the modelling of flow fields around bluff bodies and
foils [18–21], the modelling of convective heat transfer in U-bend channels [22], and the
optimization of airfoil and heat sink geometries [23]. When trained with the solutions of
2-D RANS simulations, CNNs have been shown to predict velocity and pressure fields
around previously unseen airfoil shapes with a relative error of less than 3% [20]. Despite
their demonstrated efficacy in thermofluid applications, CNNs are not governed by physics
equations, and their predictions may therefore violate the laws of conservation. For ap-
plications requiring especially stringent solutions, computational cost can be reduced by
using CNN predictions as boundary conditions in physics-based models. For RANS or
LES-based turbulent viscosity models, this approach necessitates the prediction of velocity,
pressure, and turbulent viscosity fields. In a study modelling turbulent and steady laminar
flows around foils and ellipses, the coupling of a CNN and a 2-D RANS solver was found
to reduce computation time by 1.9 to 7.4 times, while satisfying the convergence conditions
of the solver [21].

In the field of wind energy, applications of deep learning are expanding. A variety of
ANNs have been trained with LES solutions to predict the 2-D velocity fields of HAWT
arrays, including a Deep Convolutional Conditional Generative Adversarial Network
(DC-CGAN) [24], a Super-Fidelity Network (SFNet) [25], and a Bilateral Convolutional
Neural Network (BiCNN) [26]. Even with limited training examples, the predictions of
these networks were found to be in good agreement with numerical data. In a similar work,
an ANN was trained with the solutions of actuator-RANS simulations to predict the three-
dimensional velocity and turbulent kinetic energy fields of a single HAWT, and of multiple
HAWTs in series, based on the inflow conditions of velocity and turbulence intensity [27].
For an isolated turbine, velocity and turbulent kinetic energy were predicted with relative
errors below 5% [27]. While the capacity of ANNs to predict flow fields around turbines

Energies 2023, 16, 1130 4 of 33

is well established, the concomitant prediction of flow fields and turbine performance
would serve as a more comprehensive tool in the optimization of array layouts. Given
that rotational power is proportional to angular velocity and torque, the performance of a
turbine could potentially be predicted in terms of either variable, while the other variable
is prescribed.

With the aim of facilitating the optimization of turbine arrays via foil-resolved models,
this study investigates the viability of using a CNN to predict the flow field and flow-driven
rotation of a vertical-axis turbine. In the proposed method, a CNN is trained to infer the
solutions of a 2-D foil-resolved URANS model for a vertical-axis hydrokinetic turbine
operating in free-stream velocities between 1.0 and 3.0 m/s. For the boundary conditions
of free-stream velocity and rotor position, the angular velocity of the turbine is predicted,
as well as the flow field variables of x-velocity, y-velocity, pressure, and turbulent viscosity.
Training and testing data are produced from the solutions of five URANS simulations, with
free-stream velocities of 1.0, 1.5, 2.0, 2.5, and 3.0 m/s. Three CNN models are generated
and compared to assess the effects of (1) the dimensions of the training data, and (2) the
number of simulations that are used as training cases.

The methodology and insights developed through this research are put forward here
as a potential steppingstone to a deep learning-based method for optimizing the layouts
of vertical-axis turbine pairs and triads. However, the findings of this work may also be
relevant in other CFD problems where transient simulations are required for numerous
permutations. The main takeaways of this study are as follows:

1. Smaller data dimensions were found to produce a lower mean relative error in the
velocity and turbulent viscosity fields, and a larger mean relative error in the pressure
field. Further investigation is required to improve the concurrent prediction of these
flow variables.

2. Using three simulations as training cases rather than two was found to yield signifi-
cantly better results overall. However, a more granular investigation is required to
assess how prediction error varies over the considered range of free-stream velocities,
using different numbers and combinations of simulations as training cases.

3. Although the results obtained in this work are not considered rigorous enough for
application in industry, they underscore the potential of deep learning techniques in
the modelling of vertical-axis turbines.

2. Materials and Methods

The following section outlines the methodologies underlying the preparation of the
numerical turbine model, the generation and processing of data, and the development of
the CNN models. The key features and working principles of the developed CNNs are
also described.

2.1. URANS Model

To generate training and testing data for the CNNs, 2-D URANS simulations of a
vertical-axis turbine are performed in ANSYS Fluent, for the free-stream velocities of 1.0, 1.5,
2.0, 2.5, and 3.0 m/s. Flow-driven turbine rotation is achieved by deploying the dynamic
mesh method with the Six Degree of Freedom (6DOF) solver. The decision to apply the
dynamic mesh method, as opposed to the sliding mesh approach, was based on the idea
that the methodology of this study would be modified to predict the performance of turbine
pairs operating with flow-driven rotation. Although the sliding mesh method requires that
a rotational velocity be specified, it could just as easily have been applied in this study,
with a lower computational cost. In that case, the prediction of the rotor’s angular velocity
would have been redundant, and the torque on the rotor (or the resultant power output)
could have been predicted instead.

A User-Defined Function (UDF) is used to specify the mass, moment of inertia, and
rotational axis of the turbine. The turbine is modelled as free-wheeling, i.e., with no
counter-torque applied to the rotor shaft, to achieve higher rotational velocities and steeper

Energies 2023, 16, 1130 5 of 33

gradients in the flow domain. The geometry, mass, and moment of inertia of the turbine
modelled in this study are based on those of a 5-kW, four-bladed, H-rotor hydrokinetic
turbine, with a 60-inch rotor diameter, and NACA 0018 foils with a chord length of 4 inches
and a pitching angle of 4◦.

The two-dimensional RANS equation is solved at each time step, assuming an incom-
pressible Newtonian fluid, and zero external body forces on the flow domain. By applying
the Boussinesq approximation, the Reynolds stress is made proportional to the strain rate
of the mean velocity, with a proportionality coefficient of turbulent viscosity, denoted as µt.
The resultant RANS equation can be expressed as follows:

ρuj
∂ui
∂xj

=
∂

∂xj

[
−pδij + (µ + µt)

(
∂ui
∂xj

+
∂uj

∂xi

)]
, (1)

where ρ and µ are the density and dynamic viscosity of the fluid, respectively, u is the mean
velocity, and p is the mean static pressure. The turbulent viscosity term is solved using
the Transition SST turbulence model [28], owing to its proven accuracy in the modelling of
vertical-axis turbines [29]. The turbulence intensity of the flow domain is assumed to be
5%, and the turbulent length scale is specified as the diameter of the rotor. To ensure that
the network is trained and tested based on stable simulation solutions, data are exported
at each time step of the 21st turbine revolution [30]. All simulations are performed using
second-order spatial and temporal discretization, with a residual criterion of 1 × 10−6. To
complete this study within a practical time frame, simulations are executed on the Grex
high performance computer at the University of Manitoba.

As depicted in Figure 1, the flow domain is divided into three regions: a rectangular
outer domain, a square middle domain, and a circular rotor domain. The region over which
solutions are inferred by the CNN encompasses the middle and rotor domains.

Energies 2023, 16, x FOR PEER REVIEW 5 of 34

angular velocity would have been redundant, and the torque on the rotor (or the resultant
power output) could have been predicted instead.

A User-Defined Function (UDF) is used to specify the mass, moment of inertia, and
rotational axis of the turbine. The turbine is modelled as free-wheeling, i.e., with no coun-
ter-torque applied to the rotor shaft, to achieve higher rotational velocities and steeper
gradients in the flow domain. The geometry, mass, and moment of inertia of the turbine
modelled in this study are based on those of a 5-kW, four-bladed, H-rotor hydrokinetic
turbine, with a 60-inch rotor diameter, and NACA 0018 foils with a chord length of
4 inches and a pitching angle of 4°.

The two-dimensional RANS equation is solved at each time step, assuming an in-
compressible Newtonian fluid, and zero external body forces on the flow domain. By ap-
plying the Boussinesq approximation, the Reynolds stress is made proportional to the
strain rate of the mean velocity, with a proportionality coefficient of turbulent viscosity,
denoted as µt. The resultant RANS equation can be expressed as follows: 𝜌𝑢ത௝ 𝜕𝑢ത௜𝜕𝑥௝ = 𝜕𝜕𝑥௝ ቈ−𝑝̅𝛿௜௝ + (𝜇 + 𝜇௧) ቆ𝜕𝑢ത௜𝜕𝑥௝ + 𝜕𝑢ത௝𝜕𝑥௜ቇ቉, (1)

where 𝜌 and 𝜇 are the density and dynamic viscosity of the fluid, respectively, 𝑢ത is the
mean velocity, and 𝑝̅ is the mean static pressure. The turbulent viscosity term is solved
using the Transition SST turbulence model [28], owing to its proven accuracy in the mod-
elling of vertical-axis turbines [29]. The turbulence intensity of the flow domain is as-
sumed to be 5%, and the turbulent length scale is specified as the diameter of the rotor. To
ensure that the network is trained and tested based on stable simulation solutions, data
are exported at each time step of the 21st turbine revolution [30]. All simulations are per-
formed using second-order spatial and temporal discretization, with a residual criterion
of 1 × 10−6. To complete this study within a practical time frame, simulations are executed
on the Grex high performance computer at the University of Manitoba.

As depicted in Figure 1, the flow domain is divided into three regions: a rectangular
outer domain, a square middle domain, and a circular rotor domain. The region over
which solutions are inferred by the CNN encompasses the middle and rotor domains.

Figure 1. Flow domain geometry with a demarcated inference region. Figure 1. Flow domain geometry with a demarcated inference region.

The division of the flow domain into discrete zones serves three important purposes.
Firstly, the separate zones allow for greater control over the mesh resolution around the
turbine. By adjusting the resolution of each zone independently, grid independence can

Energies 2023, 16, 1130 6 of 33

be achieved with fewer grid elements. Secondly, the zones are also used to limit solution
exports to the desired CNN inference region, thereby minimizing the memory required to
store solution data, and reducing the computational expense of processing solution exports
into training and testing data. As can be seen in Figure 1, the border of the inference region
coincides with the outer boundary of the middle flow domain. Lastly, the division of the
flow domain into discrete zones is required in the deployment of the 6DOF solver, which
governs the flow-driven rotation of the rotor. In the configuration of the dynamic mesh,
the dynamic rotor domain is defined as rigid, i.e., having an invariant mesh structure. To
maintain mesh continuity between the dynamic rotor domain and the rest of the flow field,
the middle domain is defined as deforming, i.e., with a mesh structure that is reconstructed
at each time step, in accordance with the motion of the rigid rotor domain. The outer
domain is defined as stationary, i.e., with a fixed mesh.

Triangular meshing is applied throughout the flow domain, as required by the dynamic
mesh method, with a growth rate of 1.1. Twenty layers of inflation meshing are applied
around the foils and the rotor shaft, with a growth rate of 1.2. A first-cell height of
2.0 × 10−3 mm (y+ ~ 1.7) is applied along all surfaces. The first cell is deliberately placed
within the viscous sublayer (y+ < 5), as required by the Transition SST turbulence model [28].
A first-cell width of 0.10 mm (x+ ~ 84) is applied along surfaces in the tangential direction.
To estimate the non-dimensional first-cell height and width, the maximum relative velocity
of the fluid at the surface of the foils is assumed to be the sum of the maximum free-
stream velocity (3.0 m/s) and the magnitude of the tangential velocity of the foil, assuming
a maximum rotational velocity of 200 RPM. The inflation layer meshing is depicted in
Figure 2.

Energies 2023, 16, x FOR PEER REVIEW 6 of 34

The division of the flow domain into discrete zones serves three important purposes.
Firstly, the separate zones allow for greater control over the mesh resolution around the
turbine. By adjusting the resolution of each zone independently, grid independence can
be achieved with fewer grid elements. Secondly, the zones are also used to limit solution
exports to the desired CNN inference region, thereby minimizing the memory required
to store solution data, and reducing the computational expense of processing solution ex-
ports into training and testing data. As can be seen in Figure 1, the border of the inference
region coincides with the outer boundary of the middle flow domain. Lastly, the division
of the flow domain into discrete zones is required in the deployment of the 6DOF solver,
which governs the flow-driven rotation of the rotor. In the configuration of the dynamic
mesh, the dynamic rotor domain is defined as rigid, i.e., having an invariant mesh struc-
ture. To maintain mesh continuity between the dynamic rotor domain and the rest of the
flow field, the middle domain is defined as deforming, i.e., with a mesh structure that is
reconstructed at each time step, in accordance with the motion of the rigid rotor domain.
The outer domain is defined as stationary, i.e., with a fixed mesh.

Triangular meshing is applied throughout the flow domain, as required by the dy-
namic mesh method, with a growth rate of 1.1. Twenty layers of inflation meshing are
applied around the foils and the rotor shaft, with a growth rate of 1.2. A first-cell height
of 2.0 × 10−3 mm (y+ ~ 1.7) is applied along all surfaces. The first cell is deliberately placed
within the viscous sublayer (y+ < 5), as required by the Transition SST turbulence model
[28]. A first-cell width of 0.10 mm (x+ ~ 84) is applied along surfaces in the tangential di-
rection. To estimate the non-dimensional first-cell height and width, the maximum rela-
tive velocity of the fluid at the surface of the foils is assumed to be the sum of the maxi-
mum free-stream velocity (3.0 m/s) and the magnitude of the tangential velocity of the
foil, assuming a maximum rotational velocity of 200 RPM. The inflation layer meshing is
depicted in Figure 2.

Figure 2. Inflation layer meshing around a foil.

A grid independence study is performed by varying the cell size in the outer, middle,
and rotor domains. The properties of the meshes evaluated in the grid independence
study are summarized in Table 1. Each mesh is evaluated with an inlet velocity of 3.0 m/s
and a time step of 1.0 × 10−4 s.

Table 1. Properties of the meshes evaluated in the grid independence study.

Mesh
No.

Time Step
Size, T [s]

Maximum Element Size [m]
Growth Rate Number of

Nodes Rotor Domain Middle Domain Outer Domain
1 1.0 × 10−4 0.0050 0.025 0.10 1.1 863,894
2 1.0 × 10−4 0.010 0.050 0.10 1.1 657,687
3 1.0 × 10−4 0.010 0.050 0.20 1.1 554,085
4 1.0 × 10−4 0.020 0.10 0.20 1.1 500,988

To ensure that grid independence is achieved without forfeiting computational effi-
ciency, the four meshes are compared in terms of both their solutions and computational
expense after 5000 time steps, at time t = 0.50 s. The compared metrics include the rotor

Figure 2. Inflation layer meshing around a foil.

A grid independence study is performed by varying the cell size in the outer, middle,
and rotor domains. The properties of the meshes evaluated in the grid independence study
are summarized in Table 1. Each mesh is evaluated with an inlet velocity of 3.0 m/s and a
time step of 1.0 × 10−4 s.

Table 1. Properties of the meshes evaluated in the grid independence study.

Mesh No.
Time Step
Size, T [s]

Maximum Element Size [m]
Growth

Rate
Number
of NodesRotor

Domain
Middle
Domain

Outer
Domain

1 1.0 × 10−4 0.0050 0.025 0.10 1.1 863,894
2 1.0 × 10−4 0.010 0.050 0.10 1.1 657,687
3 1.0 × 10−4 0.010 0.050 0.20 1.1 554,085
4 1.0 × 10−4 0.020 0.10 0.20 1.1 500,988

To ensure that grid independence is achieved without forfeiting computational effi-
ciency, the four meshes are compared in terms of both their solutions and computational
expense after 5000 time steps, at time t = 0.50 s. The compared metrics include the rotor
angle, the rotor drag and lift coefficients, and the simulation running time. The solutions of

Energies 2023, 16, 1130 7 of 33

Mesh 2 and Mesh 3 were found to deviate from those of the finest mesh (Mesh 1) by an
absolute maximum of 3.0%, while reducing computation time by 38% and 46%, respectively.
Relative to Mesh 1, Mesh 4 was found to produce absolute discrepancies exceeding 10%,
and was therefore deemed inadequate.

Since grid and time step independence are interrelated, further investigation is re-
quired to ascertain whether grid independence is maintained with time step sizes larger
than the one deployed throughout the first grid independence test (T = 1.0 × 10−4 s).
Although Mesh 2 and Mesh 3 were both found to be viable in the grid independence study,
their sensitivity to time step size could differ. Using time steps of 2.0 × 10−4 s, 4.0 × 10−4 s,
and 5.0 × 10−4 s, the rotor angles produced by the two meshes at t = 0.50 s are determined.
For both meshes, the rotor angles achieved with time steps of 1.0 × 10−4 s and 2.0 × 10−4 s
were found to be in good agreement, with an absolute difference of less than 2%. Time
steps of 4.0 × 10−4 s and 5.0 × 10−4 s were found to produce excessive discrepancy in the
rotor angle when deployed with Mesh 2, and were therefore not tested with Mesh 3. Based
on the results obtained in the grid and time step independence studies, simulations are
conducted using Mesh 3, with a time step of 2.0 × 10−4 s. Mesh 3 is depicted in Figure 3.

Energies 2023, 16, x FOR PEER REVIEW 7 of 34

angle, the rotor drag and lift coefficients, and the simulation running time. The solutions
of Mesh 2 and Mesh 3 were found to deviate from those of the finest mesh (Mesh 1) by an
absolute maximum of 3.0%, while reducing computation time by 38% and 46%, respec-
tively. Relative to Mesh 1, Mesh 4 was found to produce absolute discrepancies exceeding
10%, and was therefore deemed inadequate.

Since grid and time step independence are interrelated, further investigation is re-
quired to ascertain whether grid independence is maintained with time step sizes larger
than the one deployed throughout the first grid independence test (T = 1.0 × 10−4 s). Alt-
hough Mesh 2 and Mesh 3 were both found to be viable in the grid independence study,
their sensitivity to time step size could differ. Using time steps of 2.0 × 10−4 s, 4.0 × 10−4 s,
and 5.0 × 10−4 s, the rotor angles produced by the two meshes at t = 0.50 s are determined.
For both meshes, the rotor angles achieved with time steps of 1.0 × 10−4 s and 2.0 × 10−4 s
were found to be in good agreement, with an absolute difference of less than 2%. Time
steps of 4.0 × 10−4 s and 5.0 × 10−4 s were found to produce excessive discrepancy in the
rotor angle when deployed with Mesh 2, and were therefore not tested with Mesh 3. Based
on the results obtained in the grid and time step independence studies, simulations are
conducted using Mesh 3, with a time step of 2.0 × 10−4 s. Mesh 3 is depicted in Figure 3.

Figure 3. Flow domain meshing, with blue and red arrows indicating the inlet and outlet of the
flow domain, respectively.

The individual and combined computation times of the five performed simulations
are shown in Table 2.

Table 2. Computational cost of each simulation.

Inlet Velocity
[m/s]

Number of CPUs
Used

Computation Time for 21 Turbine Revolutions
[Days] [CPU Hours]

1.0 12 24.5 7061
1.5 12 15.4 4444
2.0 12 12.9 3699
2.5 12 9.27 2671
3.0 12 7.97 2296

Total 70.0 20,171

Figure 3. Flow domain meshing, with blue and red arrows indicating the inlet and outlet of the flow
domain, respectively.

The individual and combined computation times of the five performed simulations
are shown in Table 2.

Table 2. Computational cost of each simulation.

Inlet Velocity [m/s] Number of CPUs
Used

Computation Time for 21 Turbine
Revolutions

[Days] [CPU Hours]

1.0 12 24.5 7061
1.5 12 15.4 4444
2.0 12 12.9 3699
2.5 12 9.27 2671
3.0 12 7.97 2296

Total 70.0 20,171

Energies 2023, 16, 1130 8 of 33

2.2. Data Generation

To generate training and testing data for the CNN, flow field data are exported in
ASCII format at each time step of the 21st turbine revolution. These exports contain the
x-velocity, y-velocity, relative total pressure, turbulent viscosity, and wall shear stress at
each node within the specified export region, as well as the coordinates of each node. To
minimize the quantity of data that must be stored and processed, flow field exports are
limited to the region over which the CNN will be trained to infer solutions, i.e., the middle
and rotor domains, as depicted in Figure 1. In addition to the flow field data, a record of
the angular position of the rotor domain at each time step is also exported.

2.3. Data Pre-Processing

The following section outlines the steps taken to process the raw simulation exports
into training and testing data for the CNN. Each unit of data that is used to train or test
the CNN is comprised of concatenated inputs and targets, which are often referred to as
boundary conditions and ground truths. Boundary conditions and ground truths may
consist of one or more matrices each, depending on the number of information items that
are fed into and predicted by the network. The CNNs applied in the following work use five
boundary conditions and five ground truths, for a total of ten concatenated matrices. As
there is an equal number of boundary conditions and ground truths, the networks perform
a one-to-one mapping of inputs to outputs. The contents of each boundary condition and
ground truth are shown in Figure 4.

Energies 2023, 16, x FOR PEER REVIEW 8 of 34

2.2. Data Generation
To generate training and testing data for the CNN, flow field data are exported in

ASCII format at each time step of the 21st turbine revolution. These exports contain the
x-velocity, y-velocity, relative total pressure, turbulent viscosity, and wall shear stress at
each node within the specified export region, as well as the coordinates of each node. To
minimize the quantity of data that must be stored and processed, flow field exports are
limited to the region over which the CNN will be trained to infer solutions, i.e., the middle
and rotor domains, as depicted in Figure 1. In addition to the flow field data, a record of
the angular position of the rotor domain at each time step is also exported.

2.3. Data Pre-Processing
The following section outlines the steps taken to process the raw simulation exports

into training and testing data for the CNN. Each unit of data that is used to train or test
the CNN is comprised of concatenated inputs and targets, which are often referred to as
boundary conditions and ground truths. Boundary conditions and ground truths may
consist of one or more matrices each, depending on the number of information items that
are fed into and predicted by the network. The CNNs applied in the following work use
five boundary conditions and five ground truths, for a total of ten concatenated matrices.
As there is an equal number of boundary conditions and ground truths, the networks
perform a one-to-one mapping of inputs to outputs. The contents of each boundary con-
dition and ground truth are shown in Figure 4.

Figure 4. Boundary conditions and ground truths.

As shown in Figure 4, the five boundary condition channels contain only two pieces
of information: the free-stream velocity of the flow, which is always applied in the x-di-
rection, and the location of solid bodies within the flow domain. In the four boundary
condition channels that contain only a mask, the solid and fluid regions are delineated as
one and zero, respectively. For all other channels with non-zero values in the fluid do-
main, solid regions are set to zero. The ground truth channels contain the variables that
are to be predicted by the CNN; namely, the field variables of x-velocity, y-velocity, pres-
sure, and turbulent viscosity, and the angular velocity of the rotor.

The data pre-processing applied in this study is largely based on the methods out-
lined in [20]. The steps taken to generate the boundary conditions and ground truths
shown in Figure 4 are summarized below. For conciseness, the steps are not presented in
their programmed order of execution.
1. Since the flow field data exported from the turbine simulations are produced from a

non-uniform mesh, the data are interpolated onto a uniform grid. Interpolated vari-
ables include x-velocity vx, y-velocity vy, relative total pressure p, turbulent viscosity

Figure 4. Boundary conditions and ground truths.

As shown in Figure 4, the five boundary condition channels contain only two pieces of
information: the free-stream velocity of the flow, which is always applied in the x-direction,
and the location of solid bodies within the flow domain. In the four boundary condition
channels that contain only a mask, the solid and fluid regions are delineated as one and
zero, respectively. For all other channels with non-zero values in the fluid domain, solid
regions are set to zero. The ground truth channels contain the variables that are to be
predicted by the CNN; namely, the field variables of x-velocity, y-velocity, pressure, and
turbulent viscosity, and the angular velocity of the rotor.

The data pre-processing applied in this study is largely based on the methods outlined
in [20]. The steps taken to generate the boundary conditions and ground truths shown
in Figure 4 are summarized below. For conciseness, the steps are not presented in their
programmed order of execution.

1. Since the flow field data exported from the turbine simulations are produced from a
non-uniform mesh, the data are interpolated onto a uniform grid. Interpolated vari-
ables include x-velocity vx, y-velocity vy, relative total pressure p, turbulent viscosity

Energies 2023, 16, 1130 9 of 33

µt, and wall shear stress τwall. For all channels, a grid resolution of 1024 × 1024 is
applied. The wall shear stress data are used to delineate between solid and fluid
regions, since non-zero values only occur along the edges of solid bodies and form
closed loops. Prior to interpolating the wall shear stress data, the data are binarized
by setting all non-zero values to one. This step is performed to enhance the definition
of solid edges. By interpolating from the binarized wall shear stress data, solid and
fluid regions are tidily set to one and zero, respectively, to produce the mask shown
in Figure 5.

Energies 2023, 16, x FOR PEER REVIEW 9 of 34

µt, and wall shear stress τwall. For all channels, a grid resolution of 1024 × 1024 is ap-
plied. The wall shear stress data are used to delineate between solid and fluid re-
gions, since non-zero values only occur along the edges of solid bodies and form
closed loops. Prior to interpolating the wall shear stress data, the data are binarized
by setting all non-zero values to one. This step is performed to enhance the definition
of solid edges. By interpolating from the binarized wall shear stress data, solid and
fluid regions are tidily set to one and zero, respectively, to produce the mask shown
in Figure 5.

Figure 5. [0, 1] mask produced by the delineation of solid and fluid regions.

2. The [0, 1] mask shown in Figure 5 is used to generate the five boundary condition
matrices. To produce the boundary condition channel that that will map onto the
x-velocity ground truth, the mask is inverted and multiplied by the free-stream ve-
locity v∞. The remaining four boundary condition channels, which map onto the
channels of y-velocity, pressure, turbulent viscosity, and angular velocity, all contain
the mask.

3. The interpolated x-velocity, y-velocity, and pressure matrices are normalized with
respect to the magnitude of the free-stream velocity v∞ as follows: 𝑣෤௫ = 𝑣௫/|𝑣ஶ|, (2) 𝑣෤௬ = 𝑣௬/|𝑣ஶ|, (3) 𝑝෤ = 𝑝/|𝑣ஶ|ଶ. (4)

4. To encode the Reynolds number in both the boundary conditions and ground truths,
the free-stream velocity, x-velocity, and y-velocity matrices are scaled in the follow-
ing manner: Firstly, the free-stream velocity is scaled linearly so that the minimum
and maximum velocities of 1.0 and 3.0 m/s are made 0.10 and 1.0 m/s, respectively.
In order that this scaling be reflected in the ground truths, the x-velocity and y-ve-
locity matrices are scaled by an equivalent factor as the free-stream velocity matrix.

5. In CNN-based predictions of flow fields around airfoils, the removal of the offset
from the pressure channel has been shown to improve results [20]. To perform this
step, the mean of the pressure channel 𝑝̅ is subtracted from each element i of the
matrix. For a normalized pressure matrix 𝑝෤ with n elements, a zero-offset pressure
matrix 𝑝̂ is obtained as follows: 𝑝୫ୣୟ୬ = ෍ 𝑝෤௜ ௜ /𝑛, (5)

𝑝̂ = 𝑝෤ − 𝑝୫ୣୟ୬. (6)

Figure 5. [0, 1] mask produced by the delineation of solid and fluid regions.

2. The [0, 1] mask shown in Figure 5 is used to generate the five boundary condition
matrices. To produce the boundary condition channel that that will map onto the x-
velocity ground truth, the mask is inverted and multiplied by the free-stream velocity
v∞. The remaining four boundary condition channels, which map onto the channels
of y-velocity, pressure, turbulent viscosity, and angular velocity, all contain the mask.

3. The interpolated x-velocity, y-velocity, and pressure matrices are normalized with
respect to the magnitude of the free-stream velocity v∞ as follows:

ṽx = vx/|v∞| (2)

ṽy = vy/|v∞| (3)

p̃ = p/|v∞|2 (4)

4. To encode the Reynolds number in both the boundary conditions and ground truths,
the free-stream velocity, x-velocity, and y-velocity matrices are scaled in the following
manner: Firstly, the free-stream velocity is scaled linearly so that the minimum and
maximum velocities of 1.0 and 3.0 m/s are made 0.10 and 1.0 m/s, respectively. In
order that this scaling be reflected in the ground truths, the x-velocity and y-velocity
matrices are scaled by an equivalent factor as the free-stream velocity matrix.

5. In CNN-based predictions of flow fields around airfoils, the removal of the offset from
the pressure channel has been shown to improve results [20]. To perform this step,
the mean of the pressure channel p is subtracted from each element i of the matrix.
For a normalized pressure matrix p̃ with n elements, a zero-offset pressure matrix p̂ is
obtained as follows:

pmean = ∑
i

p̃i /n, (5)

p̂ = p̃− pmean. (6)

6. Using the exported record of the rotor’s angular position, the angular velocity of the
turbine is calculated at each time step. To produce the angular velocity channel, the
[0, 1] mask is inverted and multiplied by the computed angular velocity.

Energies 2023, 16, 1130 10 of 33

7. As explained in step one, the ground truth matrices of x-velocity, y-velocity, pressure,
and turbulent viscosity were produced by interpolating the exported flow field data
onto a uniform grid. Since the exported data only correspond to points within the
fluid domain, the boundaries of solid regions are lost in the interpolation process, and
solid regions are filled with non-uniform values. To zero all elements within solid
regions, the ground truth matrices are multiplied by the inverse of the mask matrix.
The non-uniform and zeroed solid regions are depicted in Figure 6.

Energies 2023, 16, x FOR PEER REVIEW 10 of 34

6. Using the exported record of the rotor’s angular position, the angular velocity of the
turbine is calculated at each time step. To produce the angular velocity channel, the
[0, 1] mask is inverted and multiplied by the computed angular velocity.

7. As explained in step one, the ground truth matrices of x-velocity, y-velocity, pres-
sure, and turbulent viscosity were produced by interpolating the exported flow field
data onto a uniform grid. Since the exported data only correspond to points within
the fluid domain, the boundaries of solid regions are lost in the interpolation process,
and solid regions are filled with non-uniform values. To zero all elements within
solid regions, the ground truth matrices are multiplied by the inverse of the mask
matrix. The non-uniform and zeroed solid regions are depicted in Figure 6.

(a)

(b)

Figure 6. Solid regions with (a) non-uniform values and (b) all data points set to zero.

8. The five boundary condition matrices and five ground truth matrices are concate-
nated into a single array.

9. Each of the five ground truth channels is scaled to the [−1, 1] range, in order to sim-
plify the learning task of the CNN. To achieve this, the maximum absolute value for
each channel is determined across all training and testing data, and each channel is
then divided by its respective absolute maximum. The boundary condition channel
containing the free-stream velocity is scaled by the same factor as the x-velocity
ground truth, so that they correlate. The other boundary condition channels are not
scaled, as they only contain a [0, 1] mask.
Due to the large dimensions of the produced arrays (10 × 1024 × 1024) and the large

quantity of time steps within a single turbine revolution, training and testing data are only
prepared for one quarter revolution of each simulation.

2.4. Data Post-Processing
Since the data used to train and test the CNN were normalized and scaled, the out-

puts of the CNN are processed in the inverse way. Although this post-processing does not
affect the percent error in the network predictions, it is required to calculate the absolute
difference between the network predictions and the pre-computed ground truths in terms
of physical units. To undo the normalization and scaling of the training and testing data,
the following steps are executed:
1. The [−1, 1] scaling that was applied in step nine of the pre-processing is removed

from all channels. This step is applied to the CNN outputs as well as to the ground
truths, in order that the discrepancy between them be calculated. To achieve this,
each channel is multiplied by its respective scaling factor, i.e., the absolute maximum
that was calculated in step nine of the pre-processing.

2. The scaling that was applied to encode the Reynolds number in the velocity channels,
as described in step four of the pre-processing, is removed. To perform this step, the

Figure 6. Solid regions with (a) non-uniform values and (b) all data points set to zero.

8. The five boundary condition matrices and five ground truth matrices are concatenated
into a single array.

9. Each of the five ground truth channels is scaled to the [−1, 1] range, in order to
simplify the learning task of the CNN. To achieve this, the maximum absolute value
for each channel is determined across all training and testing data, and each channel
is then divided by its respective absolute maximum. The boundary condition channel
containing the free-stream velocity is scaled by the same factor as the x-velocity
ground truth, so that they correlate. The other boundary condition channels are not
scaled, as they only contain a [0, 1] mask.

Due to the large dimensions of the produced arrays (10 × 1024 × 1024) and the large
quantity of time steps within a single turbine revolution, training and testing data are only
prepared for one quarter revolution of each simulation.

2.4. Data Post-Processing

Since the data used to train and test the CNN were normalized and scaled, the outputs
of the CNN are processed in the inverse way. Although this post-processing does not
affect the percent error in the network predictions, it is required to calculate the absolute
difference between the network predictions and the pre-computed ground truths in terms
of physical units. To undo the normalization and scaling of the training and testing data,
the following steps are executed:

1. The [−1, 1] scaling that was applied in step nine of the pre-processing is removed
from all channels. This step is applied to the CNN outputs as well as to the ground
truths, in order that the discrepancy between them be calculated. To achieve this, each
channel is multiplied by its respective scaling factor, i.e., the absolute maximum that
was calculated in step nine of the pre-processing.

2. The scaling that was applied to encode the Reynolds number in the velocity channels,
as described in step four of the pre-processing, is removed. To perform this step, the
free-stream velocity channel is scaled linearly so that 0.10 m/s becomes 1.0 m/s, and

Energies 2023, 16, 1130 11 of 33

1.0 m/s becomes 3.0 m/s. The x-velocity and y-velocity channels are then scaled by
the same factor.

3. Lastly, to undo step three of the pre-processing, the x-velocity, y-velocity, and pressure
channels are denormalized with respect to the magnitude of the free-stream velocity.

2.5. Neural Network Architectures

In order to investigate the effect of data dimensions on prediction error, the following
study relies on two CNN architectures: one designed for inputs of size 10 × 1024 × 1024,
and the other for inputs of size 10 × 128 × 128. Both architectures are comprised of two
key sections: an encoder, which progressively compresses the network input by a factor
of two until a 1 × 1 feature map is obtained, and a decoder, which progressively expands
the 1 × 1 feature map by a factor of two until the original input dimensions are restored.
The compression and expansion of inputs are commonly referred to as down-sampling and
up-sampling, respectively.

Since the two networks are used to predict the same unknowns (the flow fields of x-
velocity, y-velocity, pressure, and turbulent viscosity, and the angular velocity of the rotor),
they both contain five input channels and five output channels. The larger architecture,
depicted in Figure 7, features ten down-sampling layers (five layers of 4 × 4 convolution
and five layers of 2 × 2 convolution), and ten up-sampling layers (nine layers of up-
sampling by nearest-neighbour interpolation, and one layer of 4 × 4 de-convolution). The
smaller architecture, depicted in Figure 8, features seven down-sampling layers (two layers
of 4 × 4 convolution and five layers of 2 × 2 convolution), and seven up-sampling layers
(six layers of up-sampling by bilinear interpolation, and one layer of 4 × 4 de-convolution).

In both architectures, each up-sampling layer is followed by a single convolutional
layer that maintains the dimensions of the input it receives. Batch normalization, a tech-
nique used in ANNs to augment the accuracy and speed of training [31], is applied to the
outputs of convolutional layers in the encoder and decoder, prior to applying non-linear
activation functions. In both architectures, the leaky ReLU activation function is applied
in the encoder with a slope of 0.2, while the ReLU activation function is applied in the
decoder. Both networks also deploy feature-wise concatenation, which consists of stacking
equally sized outputs from the encoder and decoder before they are inputted to the next
up-sampling layer. The main elements of the CNNs presented in this study are further
explained below.

Energies 2023, 16, 1130 12 of 33Energies 2023, 16, x FOR PEER REVIEW 12 of 34

Figure 7. Large network architecture. Figure 7. Large network architecture.

Energies 2023, 16, 1130 13 of 33Energies 2023, 16, x FOR PEER REVIEW 13 of 34

Figure 8. Small network architecture.

2.5.1. Convolution
Convolutional layers are comprised of filters and biases. Filters, commonly known

as kernels, are matrices containing trainable weights. Each filter is accompanied by a bias,
which is a single trainable value. In the training of a CNN, weights and biases are fine-
tuned through an iterative process of forward and backward propagation. In forward
propagation, inputs are processed through the layers of the network to produce outputs,
which are then compared to a pre-computed ground truth. In the process of backward
propagation, the weights and biases in each layer of the network are adjusted with respect
to the gradient of error between them and the final output.

In the process of convolution, a filter convolves across the elements of an input matrix
with a specified stride. At each instance, an element-wise multiplication is performed, and
the elements of the resultant matrix are summed (these combined operations are hereon

Figure 8. Small network architecture.

2.5.1. Convolution

Convolutional layers are comprised of filters and biases. Filters, commonly known
as kernels, are matrices containing trainable weights. Each filter is accompanied by a
bias, which is a single trainable value. In the training of a CNN, weights and biases are
fine-tuned through an iterative process of forward and backward propagation. In forward
propagation, inputs are processed through the layers of the network to produce outputs,
which are then compared to a pre-computed ground truth. In the process of backward
propagation, the weights and biases in each layer of the network are adjusted with respect
to the gradient of error between them and the final output.

In the process of convolution, a filter convolves across the elements of an input matrix
with a specified stride. At each instance, an element-wise multiplication is performed, and

Energies 2023, 16, 1130 14 of 33

the elements of the resultant matrix are summed (these combined operations are hereon
denoted by the symbol “*”). The obtained value is then summed with the bias to produce
a single element in the output matrix, otherwise known as the compressed feature map.
Depending on the choice of input size, filter size, and stride, the dimensions of the input
matrix may be maintained or increased. The transformation of an input in a convolutional
layer is illustrated in Figure 9.

Energies 2023, 16, x FOR PEER REVIEW 14 of 34

denoted by the symbol “*”). The obtained value is then summed with the bias to produce
a single element in the output matrix, otherwise known as the compressed feature map.
Depending on the choice of input size, filter size, and stride, the dimensions of the input
matrix may be maintained or increased. The transformation of an input in a convolutional
layer is illustrated in Figure 9.

Figure 9. Convolution.

Convolutional layers can also process an input with multiple channels, i.e., an array,
into an output with a single channel. In this type of convolutional layer, the number of
filters and biases matches the number of channels in the input array. Using the convolu-
tion method illustrated in Figure 9, an output matrix is generated for each channel of the
input array. These matrices are then summed to produce the final output of the layer. The
processing of a multi-channel input into a single-channel output is illustrated in Figure
10.

Figure 10. Convolution for multi-channel inputs.

Figure 9. Convolution.

Convolutional layers can also process an input with multiple channels, i.e., an array,
into an output with a single channel. In this type of convolutional layer, the number of
filters and biases matches the number of channels in the input array. Using the convolution
method illustrated in Figure 9, an output matrix is generated for each channel of the input
array. These matrices are then summed to produce the final output of the layer. The
processing of a multi-channel input into a single-channel output is illustrated in Figure 10.

Energies 2023, 16, x FOR PEER REVIEW 14 of 34

denoted by the symbol “*”). The obtained value is then summed with the bias to produce
a single element in the output matrix, otherwise known as the compressed feature map.
Depending on the choice of input size, filter size, and stride, the dimensions of the input
matrix may be maintained or increased. The transformation of an input in a convolutional
layer is illustrated in Figure 9.

Figure 9. Convolution.

Convolutional layers can also process an input with multiple channels, i.e., an array,
into an output with a single channel. In this type of convolutional layer, the number of
filters and biases matches the number of channels in the input array. Using the convolu-
tion method illustrated in Figure 9, an output matrix is generated for each channel of the
input array. These matrices are then summed to produce the final output of the layer. The
processing of a multi-channel input into a single-channel output is illustrated in Figure
10.

Figure 10. Convolution for multi-channel inputs. Figure 10. Convolution for multi-channel inputs.

Energies 2023, 16, 1130 15 of 33

Another common technique applied in convolutional layers is the padding of input
matrices with zeros. This technique is applied to improve the extraction of features around
the edges of inputs, as well as to produce the desired output dimensions. The application
of a convolutional layer to a zero-padded input is demonstrated in Figure 11.

Energies 2023, 16, x FOR PEER REVIEW 15 of 34

Another common technique applied in convolutional layers is the padding of input
matrices with zeros. This technique is applied to improve the extraction of features around
the edges of inputs, as well as to produce the desired output dimensions. The application
of a convolutional layer to a zero-padded input is demonstrated in Figure 11.

Figure 11. Convolution with zero padding.

The height and width of the output matrix, denoted as Hout and Wout, respectively,
can be calculated based on the dimensions of the input matrix, the thickness of the pad-
ding applied to the input, the dimensions of the filter, and the convolutional stride. De-
noting the input height, width, and padding thickness as Hin, Win, and P, respectively, and
the filter height, width, and convolutional stride as Hf, Wf, and S, respectively, Hout and
Wout are calculated as follows: 𝐻୭୳୲ = 𝐻୧୬ − 𝐻୤ + 2𝑃𝑆 + 1. (7)

𝑊୭୳୲ = 𝑊୧୬ − 𝑊୤ + 2𝑃𝑆 + 1. (8)

2.5.2. Up-Sampling by Interpolation
A variety of interpolation techniques are commonly applied in up-sampling layers,

including the nearest neighbour, linear, bilinear, bicubic and trilinear methods. In the fol-
lowing work, the nearest neighbour and bilinear interpolation methods are applied in the
large and small architectures, respectively.

In the nearest neighbour approach, the dimensions of the input matrix are scaled by
a factor n, and the value of each element in the input matrix is applied to n × n elements
in the output matrix. The method is depicted in Figure 12, with an assumed scaling factor
of two.

Figure 11. Convolution with zero padding.

The height and width of the output matrix, denoted as Hout and Wout, respectively,
can be calculated based on the dimensions of the input matrix, the thickness of the padding
applied to the input, the dimensions of the filter, and the convolutional stride. Denoting
the input height, width, and padding thickness as Hin, Win, and P, respectively, and the
filter height, width, and convolutional stride as Hf, Wf, and S, respectively, Hout and Wout
are calculated as follows:

Hout =
Hin − Hf + 2P

S
+ 1. (7)

Wout =
Win −Wf + 2P

S
+ 1. (8)

2.5.2. Up-Sampling by Interpolation

A variety of interpolation techniques are commonly applied in up-sampling layers,
including the nearest neighbour, linear, bilinear, bicubic and trilinear methods. In the
following work, the nearest neighbour and bilinear interpolation methods are applied in
the large and small architectures, respectively.

In the nearest neighbour approach, the dimensions of the input matrix are scaled by a
factor n, and the value of each element in the input matrix is applied to n × n elements in the
output matrix. The method is depicted in Figure 12, with an assumed scaling factor of two.

Energies 2023, 16, x FOR PEER REVIEW 16 of 34

Figure 12. Up-sampling by nearest-neighbour interpolation.

In the bilinear approach, the dimensions of an input matrix are scaled by a factor n,
and the input matrix is stretched so that its corner elements coincide with those of the
output matrix. The unknown values in the output matrix are then calculated by repeatedly
performing linear interpolation in the vertical and lateral directions. The method is de-
picted in Figure 13, with an assumed scaling factor of two.

Figure 13. Up-sampling by bilinear interpolation.

2.5.3. Transposed Convolution
Transposed convolutional layers, or de-convolutional layers, serve the inverse func-

tion of convolutional layers. Assuming that the output of a convolutional layer is inputted
to a de-convolutional layer with the same filter dimensions and stride, the output of the
de-convolutional layer will have the same dimensions as the input to the convolutional
layer. In the process of de-convolution, the filter strides over an empty output matrix and
is multiplied by a corresponding element of the input matrix at each location. The process
is repeated until the filter is multiplied by each element in the input matrix, and the over-
lapping elements of the resultant matrices are summed to obtain the final output. The
process of transposed convolution is depicted in Figure 14.

Figure 14. Transposed convolution.

2.5.4. Activation Functions
Activation functions are used in ANNs to facilitate the learning of complex non-lin-

ear patterns [32]. Activation functions are used between the nodes of successive network
layers to process the outputs of one layer before they are used as inputs in the next layer,
as shown in Figure 15. By modulating the output of each node through a non-linear

Figure 12. Up-sampling by nearest-neighbour interpolation.

Energies 2023, 16, 1130 16 of 33

In the bilinear approach, the dimensions of an input matrix are scaled by a factor n,
and the input matrix is stretched so that its corner elements coincide with those of the
output matrix. The unknown values in the output matrix are then calculated by repeatedly
performing linear interpolation in the vertical and lateral directions. The method is depicted
in Figure 13, with an assumed scaling factor of two.

Energies 2023, 16, x FOR PEER REVIEW 16 of 34

Figure 12. Up-sampling by nearest-neighbour interpolation.

In the bilinear approach, the dimensions of an input matrix are scaled by a factor n,
and the input matrix is stretched so that its corner elements coincide with those of the
output matrix. The unknown values in the output matrix are then calculated by repeatedly
performing linear interpolation in the vertical and lateral directions. The method is de-
picted in Figure 13, with an assumed scaling factor of two.

Figure 13. Up-sampling by bilinear interpolation.

2.5.3. Transposed Convolution
Transposed convolutional layers, or de-convolutional layers, serve the inverse func-

tion of convolutional layers. Assuming that the output of a convolutional layer is inputted
to a de-convolutional layer with the same filter dimensions and stride, the output of the
de-convolutional layer will have the same dimensions as the input to the convolutional
layer. In the process of de-convolution, the filter strides over an empty output matrix and
is multiplied by a corresponding element of the input matrix at each location. The process
is repeated until the filter is multiplied by each element in the input matrix, and the over-
lapping elements of the resultant matrices are summed to obtain the final output. The
process of transposed convolution is depicted in Figure 14.

Figure 14. Transposed convolution.

2.5.4. Activation Functions
Activation functions are used in ANNs to facilitate the learning of complex non-lin-

ear patterns [32]. Activation functions are used between the nodes of successive network
layers to process the outputs of one layer before they are used as inputs in the next layer,
as shown in Figure 15. By modulating the output of each node through a non-linear

Figure 13. Up-sampling by bilinear interpolation.

2.5.3. Transposed Convolution

Transposed convolutional layers, or de-convolutional layers, serve the inverse function
of convolutional layers. Assuming that the output of a convolutional layer is inputted
to a de-convolutional layer with the same filter dimensions and stride, the output of the
de-convolutional layer will have the same dimensions as the input to the convolutional
layer. In the process of de-convolution, the filter strides over an empty output matrix
and is multiplied by a corresponding element of the input matrix at each location. The
process is repeated until the filter is multiplied by each element in the input matrix, and
the overlapping elements of the resultant matrices are summed to obtain the final output.
The process of transposed convolution is depicted in Figure 14.

Energies 2023, 16, x FOR PEER REVIEW 16 of 34

Figure 12. Up-sampling by nearest-neighbour interpolation.

In the bilinear approach, the dimensions of an input matrix are scaled by a factor n,
and the input matrix is stretched so that its corner elements coincide with those of the
output matrix. The unknown values in the output matrix are then calculated by repeatedly
performing linear interpolation in the vertical and lateral directions. The method is de-
picted in Figure 13, with an assumed scaling factor of two.

Figure 13. Up-sampling by bilinear interpolation.

2.5.3. Transposed Convolution
Transposed convolutional layers, or de-convolutional layers, serve the inverse func-

tion of convolutional layers. Assuming that the output of a convolutional layer is inputted
to a de-convolutional layer with the same filter dimensions and stride, the output of the
de-convolutional layer will have the same dimensions as the input to the convolutional
layer. In the process of de-convolution, the filter strides over an empty output matrix and
is multiplied by a corresponding element of the input matrix at each location. The process
is repeated until the filter is multiplied by each element in the input matrix, and the over-
lapping elements of the resultant matrices are summed to obtain the final output. The
process of transposed convolution is depicted in Figure 14.

Figure 14. Transposed convolution.

2.5.4. Activation Functions
Activation functions are used in ANNs to facilitate the learning of complex non-lin-

ear patterns [32]. Activation functions are used between the nodes of successive network
layers to process the outputs of one layer before they are used as inputs in the next layer,
as shown in Figure 15. By modulating the output of each node through a non-linear

Figure 14. Transposed convolution.

2.5.4. Activation Functions

Activation functions are used in ANNs to facilitate the learning of complex non-linear
patterns [32]. Activation functions are used between the nodes of successive network layers
to process the outputs of one layer before they are used as inputs in the next layer, as
shown in Figure 15. By modulating the output of each node through a non-linear activation
function, the relative importance of each node output is encoded within the network.

Energies 2023, 16, 1130 17 of 33

Energies 2023, 16, x FOR PEER REVIEW 17 of 34

activation function, the relative importance of each node output is encoded within the
network.

Figure 15. Application of an activation function between the nodes of successive network layers.

The Rectified Linear Unit (ReLU) and Leaky ReLU activation functions, which are
used in the encoder and de-coder sections of the CNNs, respectively, are depicted in Fig-
ure 16. In this work, the Leaky ReLU function is applied with a constant slope a of 0.2.

(a) (b)

Figure 16. Non-linear activation functions, (a) ReLU and (b) Leaky ReLU.

2.6. Supervised Training of CNNs
The CNNs developed in this study rely on supervised learning, which is the induc-

tion of a model from training data [33]. For networks performing classification, training
data consist of labelled data with one or more categorical variables. For networks per-
forming prediction, such as the ones applied in this work, training data consist of pre-
computed ground truths with numerical values in a continuous range. Throughout this
study, training is performed using the Adam optimization algorithm [34].

2.6.1. Loss Function
In the training of the CNN, the weights and biases of the network are optimized to

minimize the mean absolute error between the pre-computed ground truth and the output
of the CNN. The mean absolute error, commonly known as the L1 loss, is calculated by
summing the absolute error between the corresponding elements of the ground truth and
output matrices, and then dividing the total by the number of matrix elements. For a
ground truth matrix y and an output matrix a, each having n elements, the L1 loss is cal-
culated as follows:

𝐿ଵ = 1𝑛 ෍|𝑦௜ − 𝑎௜|.௡
௜ୀଵ (9)

Figure 15. Application of an activation function between the nodes of successive network layers.

The Rectified Linear Unit (ReLU) and Leaky ReLU activation functions, which are used
in the encoder and de-coder sections of the CNNs, respectively, are depicted in Figure 16.
In this work, the Leaky ReLU function is applied with a constant slope a of 0.2.

Energies 2023, 16, x FOR PEER REVIEW 17 of 34

activation function, the relative importance of each node output is encoded within the
network.

Figure 15. Application of an activation function between the nodes of successive network layers.

The Rectified Linear Unit (ReLU) and Leaky ReLU activation functions, which are
used in the encoder and de-coder sections of the CNNs, respectively, are depicted in Fig-
ure 16. In this work, the Leaky ReLU function is applied with a constant slope a of 0.2.

(a) (b)

Figure 16. Non-linear activation functions, (a) ReLU and (b) Leaky ReLU.

2.6. Supervised Training of CNNs
The CNNs developed in this study rely on supervised learning, which is the induc-

tion of a model from training data [33]. For networks performing classification, training
data consist of labelled data with one or more categorical variables. For networks per-
forming prediction, such as the ones applied in this work, training data consist of pre-
computed ground truths with numerical values in a continuous range. Throughout this
study, training is performed using the Adam optimization algorithm [34].

2.6.1. Loss Function
In the training of the CNN, the weights and biases of the network are optimized to

minimize the mean absolute error between the pre-computed ground truth and the output
of the CNN. The mean absolute error, commonly known as the L1 loss, is calculated by
summing the absolute error between the corresponding elements of the ground truth and
output matrices, and then dividing the total by the number of matrix elements. For a
ground truth matrix y and an output matrix a, each having n elements, the L1 loss is cal-
culated as follows:

𝐿ଵ = 1𝑛 ෍|𝑦௜ − 𝑎௜|.௡
௜ୀଵ (9)

Figure 16. Non-linear activation functions, (a) ReLU and (b) Leaky ReLU.

2.6. Supervised Training of CNNs

The CNNs developed in this study rely on supervised learning, which is the induction
of a model from training data [33]. For networks performing classification, training data
consist of labelled data with one or more categorical variables. For networks performing
prediction, such as the ones applied in this work, training data consist of pre-computed
ground truths with numerical values in a continuous range. Throughout this study, training
is performed using the Adam optimization algorithm [34].

2.6.1. Loss Function

In the training of the CNN, the weights and biases of the network are optimized
to minimize the mean absolute error between the pre-computed ground truth and the
output of the CNN. The mean absolute error, commonly known as the L1 loss, is calculated
by summing the absolute error between the corresponding elements of the ground truth
and output matrices, and then dividing the total by the number of matrix elements. For
a ground truth matrix y and an output matrix a, each having n elements, the L1 loss is
calculated as follows:

L1 =
1
n

n

∑
i=1
|yi − ai|. (9)

2.6.2. Training Parameters

Several parameters are adjusted to fine-tune the training of the CNN, including the
learning rate, the batch size, and the number of epochs. The learning rate is used within
the training optimization algorithm to specify the increment by which weights and biases
are adjusted at each iteration of the training process. The batch size specifies the number

Energies 2023, 16, 1130 18 of 33

of training inputs that are submitted to the CNN at one time. An epoch is the processing
of the entire training dataset through one cycle of forward and backward propagation.
Through numerous epochs, the weights and biases of the network are fine-tuned by the
training optimization function.

Training parameters are selected based on the metrics of training loss and validation
loss. Training loss, which is calculated after each cycle of forward and backward propaga-
tion, is a measure of how well the network is fitting to the training data. Validation loss,
which is calculated at the end of each epoch, is a measure of how well the network is fitting
to previously unseen data, i.e., data which did not influence the weights and biases of the
network. A portion of the training data is reserved for the purpose of validation; in this
case, 20% of the dataset. Both the training and validation losses are calculated using the
loss function described in the previous section.

2.7. Evaluation Metrics

The performance of the trained CNN models is evaluated with respect to each of the
predicted unknowns, which include the flow variables of x-velocity, y-velocity, pressure,
and turbulent viscosity, as well as the angular velocity of the turbine. For each network
channel, relative error is calculated as the sum of the absolute difference between the
elements of the ground truth and output matrices, divided by the sum of the elements in
the ground truth matrix. For a ground truth matrix y and an output matrix a, each having n
elements, the relative error RE is calculated as follows:

RE =
∑n

i=1|yi − ai|
∑n

i=1 yi
(10)

The minimum, maximum, and average relative errors are determined across all testing
samples. In order to evaluate the performance of the trained models with respect to
different free-stream velocities, the maximum, minimum, and average relative errors are
also calculated based on the samples of each individual testing case.

3. Results and Discussion

The following section presents the results of the CFD simulations, as well as the
training and testing results of the three developed CNN models.

3.1. URANS Simulations

To generate training and testing data for the CNN, five 2-D URANS simulations were
performed in ANSYS Fluent, for the free-stream velocities of 1.0, 1.5, 2.0, 2.5, and 3.0 m/s.
The contour plots of x-velocity, y-velocity, relative total pressure, and turbulent viscosity
are shown in Figure 17, for the free-stream velocity of 3.0 m/s.

Energies 2023, 16, 1130 19 of 33Energies 2023, 16, x FOR PEER REVIEW 19 of 34

(a)

(b)

(c)

(d)

Figure 17. Turbine wake field at v∞ = 3.0 m/s, for the variables of (a) x-velocity, (b) y-velocity, (c) rel-
ative total pressure, and (d) turbulent viscosity.

Figure 17. Turbine wake field at v∞ = 3.0 m/s, for the variables of (a) x-velocity, (b) y-velocity, (c)
relative total pressure, and (d) turbulent viscosity.

Energies 2023, 16, 1130 20 of 33

The flow field around the turbine is shown in greater detail in Figure 18.

Energies 2023, 16, x FOR PEER REVIEW 20 of 34

The flow field around the turbine is shown in greater detail in Figure 18.

(a) (b)

(c) (d)

Figure 18. Flow field around the turbine rotor at v∞ = 3.0 m/s, for the variables of (a) x-velocity,
(b) y-velocity, (c) relative total pressure, and (d) turbulent viscosity.

The average angular velocity of the rotor in the 21st revolution is shown in Table 3,
for each of the five simulated free-stream velocities.

Table 3. Average angular velocity of the rotor for each simulated free-stream velocity.

Free-Stream Velocity [m/s] Average Angular Velocity [RPM]
1.0 64.3
1.5 97.7
2.0 131
2.5 167
3.0 198

3.2. CNN Training
In this work, three CNN models were developed and compared to investigate how

network predictions are influenced by the dimensions of training data and the number of
training cases. For each model, training and validation losses were minimized by tuning
the parameters of learning rate, batch size, and number of epochs. The datasets and

Figure 18. Flow field around the turbine rotor at v∞ = 3.0 m/s, for the variables of (a) x-velocity, (b)
y-velocity, (c) relative total pressure, and (d) turbulent viscosity.

The average angular velocity of the rotor in the 21st revolution is shown in Table 3, for
each of the five simulated free-stream velocities.

Table 3. Average angular velocity of the rotor for each simulated free-stream velocity.

Free-Stream Velocity [m/s] Average Angular Velocity [RPM]

1.0 64.3
1.5 97.7
2.0 131
2.5 167
3.0 198

3.2. CNN Training

In this work, three CNN models were developed and compared to investigate how
network predictions are influenced by the dimensions of training data and the number of
training cases. For each model, training and validation losses were minimized by tuning
the parameters of learning rate, batch size, and number of epochs. The datasets and training

Energies 2023, 16, 1130 21 of 33

parameters used to generate each model are detailed in Table 4. Training was performed
using an NVIDIA GeForce RTX 6020 GPU.

Table 4. Datasets and training parameters used to develop each CNN model.

Model No. Data Size
Training Cases
(Free-Stream

Velocities) [m/s]

Number of Training
Samples Learning Rate Batch Size Number of Epochs

1 10 × 1024 × 1024 1.0, 3.0 386 6 × 10−4 2 518
2 10 × 128 × 128 1.0, 3.0 386 1 × 10−5 16 1500
3 10 × 128 × 128 1.0, 1.5, 3.0 578 5 ×10−4 16 1500

The training and validation loss curves produced for Model 1, Model 2, and Model
3 are depicted in Figures 19–21, respectively.

Energies 2023, 16, x FOR PEER REVIEW 21 of 34

training parameters used to generate each model are detailed in Table 4. Training was
performed using an NVIDIA GeForce RTX 6020 GPU.

Table 4. Datasets and training parameters used to develop each CNN model.

Model No. Data Size
Training Cases

(Free-Stream Velocities)
[m/s]

Number of Training
Samples

Learning
Rate Batch Size Number of

Epochs

1 10 × 1024 × 1024 1.0, 3.0 386 6 × 10−4 2 518
2 10 × 128 × 128 1.0, 3.0 386 1 × 10−5 16 1500
3 10 × 128 × 128 1.0, 1.5, 3.0 578 5 ×10−4 16 1500

The training and validation loss curves produced for Model 1, Model 2, and Model 3
are depicted in Figures 19–21, respectively.

Figure 19. Training and validation losses produced in Model 1 over 518 epochs.

Figure 20. Training and validation losses produced in Model 2 over 1500 epochs.

Figure 21. Training and validation losses produced in Model 3 over 1500 epochs.

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16
0.18
0.2

0 50 100 150 200 250 300 350 400 450 500 550

Lo
ss

Epoch

Training
Validation

0
0.0002
0.0004
0.0006
0.0008
0.001

0.0012
0.0014

0 250 500 750 1000 1250 1500

Lo
ss

Epoch

Training
Validation

0
0.02
0.04
0.06
0.08
0.1

0.12

0 250 500 750 1000 1250 1500

Tr
ai

ni
ng

 lo
ss

Epoch

0
0.02
0.04
0.06
0.08
0.1

0.12

0 250 500 750 1000 1250 1500

V
al

id
at

io
n

lo
ss

Epoch

Figure 19. Training and validation losses produced in Model 1 over 518 epochs.

Energies 2023, 16, x FOR PEER REVIEW 21 of 34

training parameters used to generate each model are detailed in Table 4. Training was
performed using an NVIDIA GeForce RTX 6020 GPU.

Table 4. Datasets and training parameters used to develop each CNN model.

Model No. Data Size
Training Cases

(Free-Stream Velocities)
[m/s]

Number of Training
Samples

Learning
Rate Batch Size Number of

Epochs

1 10 × 1024 × 1024 1.0, 3.0 386 6 × 10−4 2 518
2 10 × 128 × 128 1.0, 3.0 386 1 × 10−5 16 1500
3 10 × 128 × 128 1.0, 1.5, 3.0 578 5 ×10−4 16 1500

The training and validation loss curves produced for Model 1, Model 2, and Model 3
are depicted in Figures 19–21, respectively.

Figure 19. Training and validation losses produced in Model 1 over 518 epochs.

Figure 20. Training and validation losses produced in Model 2 over 1500 epochs.

Figure 21. Training and validation losses produced in Model 3 over 1500 epochs.

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16
0.18
0.2

0 50 100 150 200 250 300 350 400 450 500 550

Lo
ss

Epoch

Training
Validation

0
0.0002
0.0004
0.0006
0.0008
0.001

0.0012
0.0014

0 250 500 750 1000 1250 1500

Lo
ss

Epoch

Training
Validation

0
0.02
0.04
0.06
0.08
0.1

0.12

0 250 500 750 1000 1250 1500

Tr
ai

ni
ng

 lo
ss

Epoch

0
0.02
0.04
0.06
0.08
0.1

0.12

0 250 500 750 1000 1250 1500

V
al

id
at

io
n

lo
ss

Epoch

Figure 20. Training and validation losses produced in Model 2 over 1500 epochs.

Energies 2023, 16, x FOR PEER REVIEW 21 of 34

training parameters used to generate each model are detailed in Table 4. Training was
performed using an NVIDIA GeForce RTX 6020 GPU.

Table 4. Datasets and training parameters used to develop each CNN model.

Model No. Data Size
Training Cases

(Free-Stream Velocities)
[m/s]

Number of Training
Samples

Learning
Rate Batch Size Number of

Epochs

1 10 × 1024 × 1024 1.0, 3.0 386 6 × 10−4 2 518
2 10 × 128 × 128 1.0, 3.0 386 1 × 10−5 16 1500
3 10 × 128 × 128 1.0, 1.5, 3.0 578 5 ×10−4 16 1500

The training and validation loss curves produced for Model 1, Model 2, and Model 3
are depicted in Figures 19–21, respectively.

Figure 19. Training and validation losses produced in Model 1 over 518 epochs.

Figure 20. Training and validation losses produced in Model 2 over 1500 epochs.

Figure 21. Training and validation losses produced in Model 3 over 1500 epochs.

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16
0.18
0.2

0 50 100 150 200 250 300 350 400 450 500 550

Lo
ss

Epoch

Training
Validation

0
0.0002
0.0004
0.0006
0.0008
0.001

0.0012
0.0014

0 250 500 750 1000 1250 1500

Lo
ss

Epoch

Training
Validation

0
0.02
0.04
0.06
0.08
0.1

0.12

0 250 500 750 1000 1250 1500

Tr
ai

ni
ng

 lo
ss

Epoch

0
0.02
0.04
0.06
0.08
0.1

0.12

0 250 500 750 1000 1250 1500

V
al

id
at

io
n

lo
ss

Epoch

Figure 21. Training and validation losses produced in Model 3 over 1500 epochs.

Energies 2023, 16, 1130 22 of 33

3.3. CNN Testing

The following section presents the testing results of the three trained CNNs, for each
individual testing case.

3.3.1. Model 1: Large Architecture with Two Training Cases

Model 1 was tested using simulation results for the free-stream velocities of 1.5, 2.0,
and 2.5 m/s. The minimum, maximum, and average relative errors produced for each
testing case are shown in Table 5.

Table 5. Relative errors produced by Model 1 in each channel, for the individual testing cases of
v∞ = 1.5, 2.0, and 2.5 m/s.

Testing Case (Free-Stream
Velocity) [m/s]

Number of Testing
Samples Channel Variable

Relative Error [%]

Minimum Maximum Average

1.5 37

x-Velocity, vx 33.1 33.4 33.2
y-Velocity, vy 53.0 53.4 53.1
Pressure, p 4.51 15.9 5.64

Turbulent viscosity, µt 29.3 30.2 29.6
Angular velocity, ω 0.0762 0.365 0.222

2.0 39

x-Velocity, vx 27.0 27.3 27.1
y-Velocity, vy 42.9 44.1 43.4
Pressure, p 9.11 43.2 11.6

Turbulent viscosity, µt 30.6 31.5 30.9
Angular velocity, ω 0.0765 0.485 0.231

2.5 38

x-Velocity, vx 13.5 13.7 13.6
y-Velocity, vy 11.1 12.1 11.5
Pressure, p 6.77 12.5 7.74

Turbulent viscosity, µt 19.1 20.5 19.6
Angular velocity, ω 1.22 1.63 1.45

From Table 5, it can be observed that the performance of Model 1 varies significantly
between the five predicted variables, as well as across the three testing cases. Average
relative error is markedly lower in the pressure field than in the velocity and turbulent
viscosity fields, although the pressure channel features a substantial maximum error for
the testing case of v∞ = 2.0 m/s. The angular velocity of the turbine is well predicted for all
testing cases.

The ground truths and network predictions generated for the free-stream velocities of
1.5, 2.0, and 2.5 m/s are shown in Figure 22. For the free-stream velocities of 1.5 and 2.0 m/s,
the gradients in the x-velocity, y-velocity, and turbulent viscosity fields are noticeably
underpredicted. In contrast, the gradients in the same fields are observably overpredicted
for a free-stream velocity of 2.5 m/s. For all three testing cases, a small square region of
discontinuity is visible in the x-velocity and turbulent viscosity predictions, around the
farthest downstream point of the foil path. In the channel of angular velocity, it can be seen
that the foils and rotor shaft are relatively well delineated, albeit with some irregularity.

Energies 2023, 16, 1130 23 of 33Energies 2023, 16, x FOR PEER REVIEW 23 of 34

 x-Velocity, vx y-Velocity, vy Pressure, p Turbulent
viscosity, µt

Angular
velocity, ω

1.5 m/s

Ground
truth

Network
prediction

2.0 m/s

Ground
truth

Network
prediction

2.5 m/s

Ground
truth

Network
prediction

Figure 22. Ground truths and network predictions of Model 1 for the testing cases of v∞ = 1.5, 2.0,
and 2.5 m/s.

3.3.2. Model 2: Small Architecture with Two Training Cases
Model 2 was tested using simulation results for the free-stream velocities of 1.5, 2.0,

and 2.5 m/s. The minimum, maximum, and average relative errors produced for each test-
ing case are shown in Table 6.

Figure 22. Ground truths and network predictions of Model 1 for the testing cases of v∞ = 1.5, 2.0,
and 2.5 m/s.

3.3.2. Model 2: Small Architecture with Two Training Cases

Model 2 was tested using simulation results for the free-stream velocities of 1.5, 2.0,
and 2.5 m/s. The minimum, maximum, and average relative errors produced for each
testing case are shown in Table 6.

Energies 2023, 16, 1130 24 of 33

Table 6. Relative errors produced by Model 2 in each channel, for the individual testing cases of
v∞ = 1.5, 2.0, and 2.5 m/s.

Testing Case (Free-Stream
Velocity) [m/s]

Number of Testing
Samples Channel Variable

Relative Error [%]

Minimum Maximum Average

1.5 37

x-Velocity, vx 25.6 26.7 26.1
y-Velocity, vy 23.0 24.8 24.0
Pressure, p 18.3 25.0 21.7

Turbulent viscosity, µt 9.10 10.5 9.50
Angular velocity, ω 1.32 1.94 1.64

2.0 39

x-Velocity, vx 20.2 21.1 20.6
y-Velocity, vy 17.0 18.5 17.7
Pressure, p 15.6 24.0 18.0

Turbulent viscosity, µt 8.56 9.71 9.34
Angular velocity, ω 0.316 0.963 0.645

2.5 38

x-Velocity, vx 13.3 13.8 13.5
y-Velocity, vy 12.8 14.1 13.5
Pressure, p 10.4 17.6 13.2

Turbulent viscosity, µt 6.98 8.07 7.47
Angular velocity, ω 1.43 1.97 1.72

From Table 6, it can be observed that the relative error in each of the flow fields
decreases with increasing free-stream velocity. Of the four flow fields, turbulent viscosity is
predicted with the smallest and least variable relative error. Across all testing samples, the
highest observed relative error (26.7%) occurs in the x-velocity channel, for a free-stream
velocity of 1.5 m/s. The angular velocity of the turbine is again well inferred, with a relative
error consistently below 2%.

The ground truths and network predictions generated for the free-stream velocities
of 1.5, 2.0, and 2.5 m/s are shown in Figure 23. In all testing cases, several discrepancies
can be observed. In the channels of x-velocity and turbulent viscosity, it can be seen
that the network does not fully replicate the vortex shedding at the turbine shaft. In
addition, the rippled wake pattern originating from the upstream arc of the foils appears
overly diffuse in the predicted y-velocity and turbulent viscosity fields. The x-velocity
is noticeably underestimated upstream of the rotor, and along the leftmost edge of the
inferred flow domain. This is especially noticeable for the free-stream velocity of 1.5 m/s.
Slight discrepancies can also be seen in the pressure contour plots, at the transition between
the light and dark regions.

Energies 2023, 16, x FOR PEER REVIEW 25 of 34

 x-Velocity, vx y-Velocity, vy Pressure, p Turbulent
viscosity, µt

Angular
velocity, ω

1.5 m/s

Ground
truth

Network
prediction

2.0 m/s

Ground
truth

Network
prediction

2.5 m/s

Ground
truth

Network
prediction

Figure 23. Ground truths and network predictions of Model 2 for the testing cases of v∞ = 1.5, 2.0,
and 2.5 m/s.

3.3.3. Model 3: Small Architecture with Three Training Cases
Model 3 was tested using simulation results for the free-stream velocities of 2.0 and

2.5 m/s. The minimum, maximum, and average relative errors produced for each testing
case are shown in Table 7.

Figure 23. Cont.

Energies 2023, 16, 1130 25 of 33

Energies 2023, 16, x FOR PEER REVIEW 25 of 34

 x-Velocity, vx y-Velocity, vy Pressure, p Turbulent
viscosity, µt

Angular
velocity, ω

1.5 m/s

Ground
truth

Network
prediction

2.0 m/s

Ground
truth

Network
prediction

2.5 m/s

Ground
truth

Network
prediction

Figure 23. Ground truths and network predictions of Model 2 for the testing cases of v∞ = 1.5, 2.0,
and 2.5 m/s.

3.3.3. Model 3: Small Architecture with Three Training Cases
Model 3 was tested using simulation results for the free-stream velocities of 2.0 and

2.5 m/s. The minimum, maximum, and average relative errors produced for each testing
case are shown in Table 7.

Figure 23. Ground truths and network predictions of Model 2 for the testing cases of v∞ = 1.5, 2.0,
and 2.5 m/s.

3.3.3. Model 3: Small Architecture with Three Training Cases

Model 3 was tested using simulation results for the free-stream velocities of 2.0 and
2.5 m/s. The minimum, maximum, and average relative errors produced for each testing
case are shown in Table 7.

Table 7. Relative errors produced by Model 3 in each channel, for the individual testing cases of
v∞ = 2.0 and 2.5 m/s.

Testing Case (Free-Stream
Velocity) [m/s]

Number of Testing
Samples Channel Variable

Relative Error [%]

Minimum Maximum Average

2.0 39

x-Velocity, vx 7.26 7.83 7.42
y-Velocity, vy 10.93 12.8 11.6
Pressure, p 8.55 18.0 10.3

Turbulent viscosity, µt 6.32 8.24 7.28
Angular velocity, ω 0.0661 0.193 0.113

2.5 38

x-Velocity, vx 6.13 6.67 6.42
y-Velocity, vy 7.18 8.60 7.99
Pressure, p 9.57 15.8 11.2

Turbulent viscosity, µt 6.93 8.54 7.69
Angular velocity, ω 1.48 1.59 1.54

Energies 2023, 16, 1130 26 of 33

From Table 7, it can be seen that Model 3 yields similar results for both testing cases.
Across all testing samples, the highest observed relative error (18.0%) occurs in the pressure
channel, for a free-stream velocity of 2.0 m/s.

The ground truths and network predictions generated for the free-stream velocities of
2.0 and 2.5 m/s are shown in Figure 24. In the velocity and turbulent viscosity channels, it
can be seen that the network does not accurately predict the vortex shedding at the rotor
shaft, or the rippled wake pattern emanating from the upstream foil path.

Energies 2023, 16, x FOR PEER REVIEW 27 of 34

 x-Velocity, vx y-Velocity, vy Pressure, p Turbulent
viscosity, µt

Angular
velocity, ω

2.0 m/s

Ground
truth

Network
prediction

2.5 m/s

Ground
truth

Network
prediction

Figure 24. Ground truths and network predictions of Model 3 for the testing cases of v∞ = 2.0 and
2.5 m/s.

3.4. Comparison of CNN Models
In the following section, the three CNNs developed in this study are quantitatively

and qualitatively compared amongst themselves. The data dimensions and training cases
applied in the generation of each model are reiterated in Table 8.

Table 8. Data dimensions and training cases applied in each CNN model.

Model No. Data Size Training Cases (Free-Stream Velocities) [m/s]
1 10 × 1024 × 1024 1.0, 3.0
2 10 × 128 × 128 1.0, 3.0
3 10 × 128 × 128 1.0, 1.5, 3.0

3.4.1. Comparison of Model 1 and Model 2 (Large vs. Small Data Dimensions)
The effects of training data dimensions can be observed by comparing the results of

Model 1 and Model 2. The average relative errors produced by each model are shown in
Table 9, based on the combined testing cases of v∞ = 1.5, 2.0, and 2.5 m/s.

Figure 24. Ground truths and network predictions of Model 3 for the testing cases of v∞ = 2.0 and
2.5 m/s.

3.4. Comparison of CNN Models

In the following section, the three CNNs developed in this study are quantitatively
and qualitatively compared amongst themselves. The data dimensions and training cases
applied in the generation of each model are reiterated in Table 8.

Table 8. Data dimensions and training cases applied in each CNN model.

Model No. Data Size Training Cases (Free-Stream Velocities) [m/s]

1 10 × 1024 × 1024 1.0, 3.0
2 10 × 128 × 128 1.0, 3.0
3 10 × 128 × 128 1.0, 1.5, 3.0

Energies 2023, 16, 1130 27 of 33

3.4.1. Comparison of Model 1 and Model 2 (Large vs. Small Data Dimensions)

The effects of training data dimensions can be observed by comparing the results of
Model 1 and Model 2. The average relative errors produced by each model are shown in
Table 9, based on the combined testing cases of v∞ = 1.5, 2.0, and 2.5 m/s.

Table 9. Relative errors produced by Model 1 and Model 2, for the combined testing cases of v∞ = 1.5,
2.0, and 2.5 m/s.

Model No.
Number of Testing

Samples Channel Variable
Relative Error [%]

Minimum Maximum Average

1 114

x-Velocity, vx 13.5 33.4 24.6
y-Velocity, vy 11.1 53.4 35.9
Pressure, p 4.51 43.2 8.37

Turbulent viscosity, µt 19.1 31.5 26.7
Angular velocity, ω 0.0762 1.63 0.633

2 114

x-Velocity, vx 13.3 26.7 20.0
y-Velocity, vy 12.8 24.8 18.3
Pressure, p 10.4 25.0 17.6

Turbulent viscosity, µt 6.98 10.5 8.77
Angular velocity, ω 0.316 1.97 1.33

As shown in Table 9, the reduction in data size significantly improved results in the
channels of x-velocity, y-velocity, and turbulent viscosity, reducing their respective mean
relative errors by about 5%, 18%, and 18%. Contrastingly, the mean relative error in the
pressure channel increased by roughly 9%. The angular velocity channel was the least
impacted, with an increase in mean relative error of about 0.7%. The varied effect of data
dimensions on the prediction of the four flow fields is attributable to differences of gradient
steepness. Since the pressure field features notably steeper gradients than the velocity and
turbulent viscosity fields, it incurs the most significant loss of detail from the reduction in
data resolution.

The ground truths and predictions of Model 1 and Model 2 are presented in Figure 25,
for the testing case of v∞ = 2.0 m/s. For ease of comparison, the ground truths and
predictions of Model 1 have been cropped to match those of Model 2. The ground truths of
the two models correspond to the same time step within the same simulation, and appear
almost identical. However, the ground truths of Model 2 have a lower resolution. This
is most noticeable in the pressure and angular velocity channels, along the boundaries of
light and dark regions.

From Figure 25, it can be observed that the reduction in data dimensions eliminated
the square anomaly occurring along the downstream foil arc, in the x-velocity and turbulent
viscosity fields. Although smaller data sizes diminished the relative error in the velocity
and turbulent viscosity channels, it also noticeably reduced the definition of some flow
features in these fields, including the vortex shedding downstream of the rotor shaft, and
the rippled wake pattern left by the cyclic passage of the foils.

Energies 2023, 16, 1130 28 of 33Energies 2023, 16, x FOR PEER REVIEW 29 of 34

 x-Velocity, vx y-Velocity, vy Pressure, p
Turbulent

viscosity, µt
Angular

velocity, ω

Model 1

Ground truth

Network
prediction

Model 2

Ground truth

Network
prediction

Figure 25. Ground truths and network predictions of Model 1 and Model 2, for the testing case of
v∞ = 2.0 m/s.

From Figure 25, it can be observed that the reduction in data dimensions eliminated
the square anomaly occurring along the downstream foil arc, in the x-velocity and turbu-
lent viscosity fields. Although smaller data sizes diminished the relative error in the ve-
locity and turbulent viscosity channels, it also noticeably reduced the definition of some
flow features in these fields, including the vortex shedding downstream of the rotor shaft,
and the rippled wake pattern left by the cyclic passage of the foils.

3.4.2. Comparison of Model 2 and Model 3 (Two vs. Three Training Cases)
The effects of data diversity can be observed by comparing the results of Model 2 and

Model 3. In order that the performance of the models be compared based on identical
testing datasets, the results produced by Model 2 for the free-stream velocity of 1.5 m/s
are disregarded. The average relative errors produced by each model are shown in Ta-
ble 10, based on the combined testing cases of v∞ = 2.0 and 2.5 m/s.

Figure 25. Ground truths and network predictions of Model 1 and Model 2, for the testing case of
v∞ = 2.0 m/s.

3.4.2. Comparison of Model 2 and Model 3 (Two vs. Three Training Cases)

The effects of data diversity can be observed by comparing the results of Model 2 and
Model 3. In order that the performance of the models be compared based on identical
testing datasets, the results produced by Model 2 for the free-stream velocity of 1.5 m/s are
disregarded. The average relative errors produced by each model are shown in Table 10,
based on the combined testing cases of v∞ = 2.0 and 2.5 m/s.

Table 10. Relative errors produced by Model 2 and Model 3, for the combined testing cases of
v∞ = 2.0 and 2.5 m/s.

Model No.
Number of Testing

Samples Channel Variable
Relative Error [%]

Minimum Maximum Average

2 77

x-Velocity, vx 13.3 21.1 17.1
y-Velocity, vy 12.8 18.5 15.6
Pressure, p 10.43 24.0 15.65

Turbulent viscosity, µt 7.0 9.7 8.4
Angular velocity, ω 0.3163 1.97 1.173

3 77

x-Velocity, vx 6.13 7.83 6.93
y-Velocity, vy 7.18 12.8 9.82
Pressure, p 8.55 18.0 10.7

Turbulent viscosity, µt 6.32 8.54 7.48
Angular velocity, ω 0.0661 1.59 0.817

As shown in Table 10, increasing the number of training cases from two to three
reduced the minimum, maximum, and average relative errors in all channels. The x-

Energies 2023, 16, 1130 29 of 33

velocity field showed the greatest improvement, with maximum and average relative errors
reduced by about 13% and 10%, respectively.

The ground truths and predictions of Model 2 and Model 3 are shown in Figure 26, for
the testing case of v∞ = 2.0 m/s. Since the ground truths of the two models are identical, i.e.,
correspond to the same time step within the same simulation and have the same resolution,
they are only shown once.

Energies 2023, 16, x FOR PEER REVIEW 30 of 34

Table 10. Relative errors produced by Model 2 and Model 3, for the combined testing cases of
v∞ = 2.0 and 2.5 m/s.

Model No.
Number of Testing

Samples Channel Variable
Relative Error [%]

Minimum Maximum Average

2 77

x-Velocity, vx 13.3 21.1 17.1
y-Velocity, vy 12.8 18.5 15.6

Pressure, p 10.43 24.0 15.65
Turbulent viscosity, µt 7.0 9.7 8.4

Angular velocity, ω 0.3163 1.97 1.173

3 77

x-Velocity, vx 6.13 7.83 6.93
y-Velocity, vy 7.18 12.8 9.82

Pressure, p 8.55 18.0 10.7
Turbulent viscosity, µt 6.32 8.54 7.48

Angular velocity, ω 0.0661 1.59 0.817

As shown in Table 10, increasing the number of training cases from two to three re-
duced the minimum, maximum, and average relative errors in all channels. The x-velocity
field showed the greatest improvement, with maximum and average relative errors re-
duced by about 13% and 10%, respectively.

The ground truths and predictions of Model 2 and Model 3 are shown in Figure 26,
for the testing case of v∞ = 2.0 m/s. Since the ground truths of the two models are identical,
i.e., correspond to the same time step within the same simulation and have the same res-
olution, they are only shown once.

 x-Velocity, vx y-Velocity, vy Pressure, p
Turbulent

viscosity, µt
Angular

velocity, ω

Ground truth

Model 2
prediction

Model 3
prediction

Figure 26. Ground truths and network predictions of Model 2 and Model 3, for the testing case of
v∞ = 2.0 m/s.

From Figure 26, it can be observed that Model 3 better predicts the x-velocity field
upstream of the rotor, and also produces smoother transitions between the light and dark
regions in the pressure contour plot. The vortex shedding behind the rotor shaft is also
slightly better inferred by Model 3, although the trailing edge vortices occurring along the
upstream foil arc are slightly better replicated by Model 2.

Figure 26. Ground truths and network predictions of Model 2 and Model 3, for the testing case of
v∞ = 2.0 m/s.

From Figure 26, it can be observed that Model 3 better predicts the x-velocity field
upstream of the rotor, and also produces smoother transitions between the light and dark
regions in the pressure contour plot. The vortex shedding behind the rotor shaft is also
slightly better inferred by Model 3, although the trailing edge vortices occurring along the
upstream foil arc are slightly better replicated by Model 2.

3.4.3. Comparison of Model 1 and Model 3 (Large Data Dimensions and Two Training
Cases vs. Small Data Dimensions and Three Training Cases)

The combined effects of data dimensions and data diversity can be observed by
comparing the results of Model 1 and Model 3. In order that the performance of the models
be compared based on identical testing datasets, the results produced by Model 1 for the
free-stream velocity of 1.5 m/s are omitted. The average relative errors produced by each
model are shown in Table 11, based on the combined testing cases of v∞ = 2.0 and 2.5 m/s.

From Table 11, it can be seen that the combined measures of reducing data size and
adding a training case significantly improved predictions in the channels of x-velocity,
y-velocity, and turbulent viscosity, lowering their respective mean relative errors by ap-
proximately 14%, 18%, and 18%. Although the pressure channel incurred an increase in
mean relative error of roughly 1%, the maximum relative error in the channel decreased by
about 25%. Predictions of angular velocity were not significantly affected.

Energies 2023, 16, 1130 30 of 33

Table 11. Relative errors produced by Model 1 and Model 3, for the combined testing cases of
v∞ = 2.0 and 2.5 m/s.

Model No.
Number of Testing

Samples Channel Variable
Relative Error [%]

Minimum Maximum Average

1 77

x-Velocity, vx 13.5 27.3 20.4
y-Velocity, vy 11.1 44.1 27.6
Pressure, p 6.77 43.2 9.68

Turbulent viscosity, µt 19.1 31.5 25.3
Angular velocity, ω 0.0765 1.63 0.831

3 77

x-Velocity, vx 6.13 7.83 6.93
y-Velocity, vy 7.18 12.8 9.82
Pressure, p 8.55 18.0 10.7

Turbulent viscosity, µt 6.32 8.54 7.48
Angular velocity, ω 0.0661 1.59 0.817

The ground truths and predictions of Model 1 and Model 3 are displayed in Figure 27,
for the testing case of v∞ = 2.0 m/s. For ease of comparison, the ground truths and
predictions of Model 1 have been cropped to match those of Model 3. The ground truths of
the two models correspond to the same time step within the same simulation, and appear
almost identical. However, the ground truths of Model 3 have a lower resolution. This
is most noticeable in the pressure and angular velocity channels, along the boundaries of
light and dark regions.

Energies 2023, 16, x FOR PEER REVIEW 32 of 34

 x-Velocity, vx y-Velocity, vy Pressure, p
Turbulent

viscosity, µt
Angular

velocity, ω

Model 1

Ground truth

Network
prediction

Model 3

Ground truth

Network
prediction

Figure 27. Ground truths and network predictions of Model 1 and Model 3, for the testing case of
v∞ = 2.0 m/s.

From Figure 27, it can be seen that the flow fields predicted by Model 3 are in better
agreement with the ground-truths overall, despite the omission of smaller details, such as
the vortices produced by the rotor shaft and foils. The substantial differences observed in
the results of Model 1 and Model 3 demonstrate how the performance of a CNN can be
drastically improved even with two simple changes, i.e., the resizing of training data, and
the addition of a training case.

4. Conclusions
In this study, the effectiveness of a deep learning-based turbine modelling method

was investigated. Three CNNs were trained to predict the solutions of a 2-D URANS
model, for a vertical-axis hydrokinetic turbine operating with flow-driven rotation in free-
stream velocities between 1 and 3 m/s. For the boundary conditions of free-stream velocity
and rotor position, the flow fields of x-velocity, y-velocity, pressure, and turbulent viscos-
ity were predicted, as well as the angular velocity of the rotor. Training and testing data
for the CNNs were derived from the solutions of five URANS simulations, with free-
stream velocities of 1.0, 1.5, 2.0, 2.5, and 3.0 m/s. To investigate the effects of training data
dimensions, two CNN architectures were developed for data sizes of 10 × 1024 × 1024 and
10 × 128 × 128. In order to assess the effects of data diversity, models were also developed
using two and three simulations as training cases. Specifically, one training dataset was
based on the free-stream velocities of 1.0 and 3.0 m/s, and the other was based on the free-
stream velocities of 1.0, 1.5, and 3.0 m/s.

The effect of data dimensions on prediction error was found to vary significantly for
different flow fields. Reducing data dimensions was found to improve predictions of ve-
locity and turbulent viscosity, while worsening predictions of pressure and angular ve-
locity. Using three simulations as training cases instead of two was found to improve pre-
dictions of all five unknowns, while the combined measures of reducing data size and

Figure 27. Ground truths and network predictions of Model 1 and Model 3, for the testing case of
v∞ = 2.0 m/s.

From Figure 27, it can be seen that the flow fields predicted by Model 3 are in better
agreement with the ground-truths overall, despite the omission of smaller details, such as

Energies 2023, 16, 1130 31 of 33

the vortices produced by the rotor shaft and foils. The substantial differences observed in
the results of Model 1 and Model 3 demonstrate how the performance of a CNN can be
drastically improved even with two simple changes, i.e., the resizing of training data, and
the addition of a training case.

4. Conclusions

In this study, the effectiveness of a deep learning-based turbine modelling method was
investigated. Three CNNs were trained to predict the solutions of a 2-D URANS model,
for a vertical-axis hydrokinetic turbine operating with flow-driven rotation in free-stream
velocities between 1 and 3 m/s. For the boundary conditions of free-stream velocity and
rotor position, the flow fields of x-velocity, y-velocity, pressure, and turbulent viscosity
were predicted, as well as the angular velocity of the rotor. Training and testing data
for the CNNs were derived from the solutions of five URANS simulations, with free-
stream velocities of 1.0, 1.5, 2.0, 2.5, and 3.0 m/s. To investigate the effects of training data
dimensions, two CNN architectures were developed for data sizes of 10 × 1024 × 1024 and
10 × 128 × 128. In order to assess the effects of data diversity, models were also developed
using two and three simulations as training cases. Specifically, one training dataset was
based on the free-stream velocities of 1.0 and 3.0 m/s, and the other was based on the
free-stream velocities of 1.0, 1.5, and 3.0 m/s.

The effect of data dimensions on prediction error was found to vary significantly
for different flow fields. Reducing data dimensions was found to improve predictions
of velocity and turbulent viscosity, while worsening predictions of pressure and angular
velocity. Using three simulations as training cases instead of two was found to improve
predictions of all five unknowns, while the combined measures of reducing data size
and increasing data diversity obtained the most favourable results overall. With the best
achieved CNN model, the variables of x-velocity, y-velocity, pressure, turbulent viscosity,
and angular velocity were predicted with mean relative errors of 6.93%, 9.82%, 10.7%,
7.48%, and 0.817%, respectively.

Based on the results of this study, several recommendations can be made. Firstly,
additional research is necessary to improve the concurrent prediction of velocity, pressure,
and turbulent viscosity fields, especially over larger flow domains. The effects of data
dimensions should be studied in greater detail, and alternative network architectures,
feature extraction techniques, and loss functions should be considered. More detailed
studies are also necessary to determine how prediction errors vary over the considered
range of free-stream velocities, using different numbers and combinations of simulations
as training cases. Although the results obtained in this study are not considered rigorous
enough for practical application, they highlight the great ability of CNNs to infer complex
flow phenomena based on limited training examples.

Author Contributions: Conceptualization, C.D.; methodology, C.D.; formal analysis, C.D.; writing—
original draft preparation, C.D.; writing—review and editing, C.D. and E.L.B.; supervision, E.L.B.;
project administration, E.L.B.; funding acquisition, E.L.B. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by Natural Resources Canada through the Clean Growth Program.

Data Availability Statement: Not applicable.

Acknowledgments: We thank Ali Kerrache for his assistance in using the Grex HPC at the University
of Manitoba. Thanks also to Michael Bear from New Energy Corporation for providing details on
the EnviroGen 005 Series hydrokinetic turbine. Lastly, thanks to Rahmat Ali for his guidance in the
development of the neural network architectures.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Energies 2023, 16, 1130 32 of 33

References
1. Hau, E. Wind Turbines: Fundamentals, Technologies, Application, Economics, 2nd ed.; Springer: Berlin, Germany, 2006; pp. 586–587.
2. Dabiri, J.O. Potential order-of-magnitude enhancement of wind farm power density via counter-rotating vertical-axis wind

turbine arrays. J. Renew. Sustain. Energy 2011, 3, 043104. [CrossRef]
3. Ahmadi-Baloutaki, M.; Carriveau, R.; Ting, D.S. A wind tunnel study on the aerodynamic interactions of vertical axis wind

turbines in array configurations. Renew. Energy 2016, 96, 904–913. [CrossRef]
4. Brownstein, I.D.; Wei, N.J.; Dabiri, J.O. Aerodynamically interacting vertical-axis wind turbines: Performance enhancement and

three-dimensional flow. Energies 2019, 12, 2724. [CrossRef]
5. Hezaveh, S.H.; Bou-Zeid, E.; Dabiri, E.; Kinzel, M.; Cortina, G.; Martinelli, L. Increasing the power production of vertical-axis

wind-turbine farms using synergistic clustering. Bound.-Layer Meteorol. 2018, 196, 275–296. [CrossRef]
6. Zhang, J.H.; Lien, F.S.; Yee, E. Investigations of vertical-axis wind-turbine group synergy using an actuator line model. Energies

2022, 15, 6211. [CrossRef]
7. Hansen, J.T.; Mahak, M.; Tzanakis, I. Numerical modelling and optimization of vertical axis wind turbine pairs: A scale up

approach. Renew. Energy 2021, 171, 1371–1381. [CrossRef]
8. Parneix, N.; Fuchs, R.; Immas, A.; Silvert, F.; Deglaire, P. Efficiency improvement of vertical-axis wind turbines with counter-

rotating lay-out. In Proceedings of the EWEA, Hamburg, Germany, 27–29 September 2016; pp. 1–8.
9. Hara, Y.; Jodai, Y.; Okinaga, T.; Furukawa, M. Numerical analysis of the dynamic interactions between two closely spaced

vertical-axis wind turbines. Energies 2021, 14, 2286. [CrossRef]
10. Cheng, Z.; Madsen, H.A.; Gao, Z.; Moan, T. Aerodynamic modeling of floating vertical axis wind turbines using the actuator

cylinder flow method. Energy Procedia 2016, 94, 531–543. [CrossRef]
11. Ning, A. Actuator cylinder theory for multiple vertical axis wind turbines. Wind Energy Sci. 2016, 1, 327–340. [CrossRef]
12. De Tavernier, D.; Ferreira, C. An extended actuator cylinder model: Actuator-in-actuator cylinder (AC-squared) model. Wind

Energy 2019, 22, 1058–1070. [CrossRef]
13. Martinez-Ojeda, E.; Solorio Ordaz, F.J.; Sen, M. Vertical-axis wind-turbine computations using a 2D hybrid wake actuator-cylinder

model. Wind Energy Sci. 2021, 6, 1061–1077. [CrossRef]
14. Shives, M.; Crawford, C.; Grovue, S. A tuned actuator cylinder approach for predicting cross-flow turbine performance with

wake interaction and channel blockage effects. Int. J. Mar. Energy 2017, 18, 30–56. [CrossRef]
15. Jégo, L.; Guillou, S.S. Study of a bi-vertical axis turbines farm using the actuator cylinder method. Energies 2021, 14, 5199.

[CrossRef]
16. Bachant, P.; Goude, A.; Wosnik, M. Actuator line modeling of vertical-axis turbines. arXiv 2016, arXiv:1605.01449.
17. Mohamed, O.S.; Melani, P.F.; Balduzzi, F.; Ferrara, G.; Bianchini, A. An insight on the key factors influencing the accuracy of the

actuator line method for use in vertical-axis turbines: Limitations and open challenges. Energy Convers. Manag. 2022, 270, 116249.
[CrossRef]

18. Guo, X.; Li, W.; Iorio, F. Convolutional neural networks for steady flow approximation. In Proceedings of the 22nd ACM SIGKDD
international conference on knowledge discovery and data mining, San Francisco, CA, USA, 13–17 August 2016.

19. Bhatnagar, S.; Afshar, Y.; Pan, S.; Duraisamy, K.; Kaushik, S. Prediction of aerodynamic flow fields using convolutional neural
networks. Comput. Mech. 2019, 64, 525–545. [CrossRef]

20. Thuerey, N.; Weißenow, K.; Prantl, L.; Hu, X. Deep learning methods for Reynolds-averaged Navier–Stokes simulations of airfoil
flows. AIAA J. 2020, 58, 25–36. [CrossRef]

21. Obiols-Sales, O.; Vishnu, A.; Malaya, N.; Chandramowliswharan, A. CFDNet: A deep learning-based accelerator for fluid
simulations. In Proceedings of the 34th ACM International Conference on Supercomputing, Barcelona, Spain, 29 June 2020.

22. Wang, Q.; Zhou, W.; Yang, L.; Huang, K. Comparison between conventional and deep learning-based surrogate models in
predicting convective heat transfer performance of U-bend channels. Energy AI 2022, 8, 100140. [CrossRef]

23. Hennigh, O. Automated design using neural networks and gradient descent. arXiv 2017, arXiv:1710.10352.
24. Zhang, J.; Zhao, X. Wind farm wake modeling based on deep convolutional conditional generative adversarial network. Energy

2022, 238, 121747. [CrossRef]
25. Li, R.; Zhang, J.; Zhao, X. Multi-fidelity modeling of wind farm wakes based on a novel super-fidelity network. Energy Convers.

Manag. 2022, 270, 116185. [CrossRef]
26. Li, R.; Zhang, J.; Zhao, X. Dynamic wind farm wake modeling based on a Bilateral Convolutional Neural Network and

high-fidelity LES data. Energy 2022, 258, 124845. [CrossRef]
27. Ti, Z.; Deng, X.W.; Yang, H. Wake modeling of wind turbines using machine learning. Appl. Energy 2020, 257, 114025. [CrossRef]
28. Menter, F.R.; Langtry, R.B.; Likki, S.R.; Suzen, Y.B.; Huang, P.G.; Völker, S. A correlation-based transition model using local

variables—Part I: Model Formulation. J. Turbomach. 2006, 128, 413–422. [CrossRef]
29. Marsh, P.; Ranmuthugala, D.; Penesis, I.; Thomas, G. The influence of turbulence model and two and three-dimensional domain

selection on the simulated performance characteristics of vertical axis tidal turbines. Renew. Energy 2017, 105, 106–116. [CrossRef]
30. Rezaeiha, A.; Kalkman, I.; Blocken, B. CFD simulation of a vertical axis wind turbine operating at a moderate tip speed ratio:

Guidelines for minimum domain size and azimuthal increment. Renew. Energy 2017, 107, 373–385. [CrossRef]
31. Bjorck, N.; Gomes, C.P.; Selman, B.; Weinberger, K.Q. Understanding batch normalization. Adv. Neural Inf. Process. Syst. 2018, 31,

7694–7705.

http://doi.org/10.1063/1.3608170
http://doi.org/10.1016/j.renene.2016.05.060
http://doi.org/10.3390/en12142724
http://doi.org/10.1007/s10546-018-0368-0
http://doi.org/10.3390/en15176211
http://doi.org/10.1016/j.renene.2021.03.001
http://doi.org/10.3390/en14082286
http://doi.org/10.1016/j.egypro.2016.09.232
http://doi.org/10.5194/wes-1-327-2016
http://doi.org/10.1002/we.2340
http://doi.org/10.5194/wes-6-1061-2021
http://doi.org/10.1016/j.ijome.2017.03.007
http://doi.org/10.3390/en14165199
http://doi.org/10.1016/j.enconman.2022.116249
http://doi.org/10.1007/s00466-019-01740-0
http://doi.org/10.2514/1.J058291
http://doi.org/10.1016/j.egyai.2022.100140
http://doi.org/10.1016/j.energy.2021.121747
http://doi.org/10.1016/j.enconman.2022.116185
http://doi.org/10.1016/j.energy.2022.124845
http://doi.org/10.1016/j.apenergy.2019.114025
http://doi.org/10.1115/1.2184352
http://doi.org/10.1016/j.renene.2016.11.063
http://doi.org/10.1016/j.renene.2017.02.006

Energies 2023, 16, 1130 33 of 33

32. Sharma, S.; Sharma, S.; Athaiya, A. Activation functions in neural networks. Towards Data Sci. 2017, 6, 310–316. [CrossRef]
33. Cunningham, P.; Cord, M.; Delany, S.J. Supervised learning. In Machine Learning Techniques for Multimedia, 1st ed.; Springer Berlin:

Heidelberg, Germany, 2008; pp. 21–49.
34. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.33564/IJEAST.2020.v04i12.054

	Introduction
	Materials and Methods
	URANS Model
	Data Generation
	Data Pre-Processing
	Data Post-Processing
	Neural Network Architectures
	Convolution
	Up-Sampling by Interpolation
	Transposed Convolution
	Activation Functions

	Supervised Training of CNNs
	Loss Function
	Training Parameters

	Evaluation Metrics

	Results and Discussion
	URANS Simulations
	CNN Training
	CNN Testing
	Model 1: Large Architecture with Two Training Cases
	Model 2: Small Architecture with Two Training Cases
	Model 3: Small Architecture with Three Training Cases

	Comparison of CNN Models
	Comparison of Model 1 and Model 2 (Large vs. Small Data Dimensions)
	Comparison of Model 2 and Model 3 (Two vs. Three Training Cases)
	Comparison of Model 1 and Model 3 (Large Data Dimensions and Two Training Cases vs. Small Data Dimensions and Three Training Cases)

	Conclusions
	References

