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Abstract: Intermittency in the grid creates operational issues for power system operators (PSO). One
such intermittent parameter is load. Accurate prediction of the load is the key to proper planning
of the power system. This paper uses regression analyses for short-term load forecasting (STLF).
Assumed load data are first analyzed and outliers are identified and treated. The cleaned data
are fed to regression methods involving Linear Regression, Decision Trees (DT), Support Vector
Machine (SVM), Ensemble, Gaussian Process Regression (GPR), and Neural Networks. The best
method is identified based on statistical analyses using parameters such as Root Mean Square Error
(RMSE), Mean Absolute Error (MAE), Mean Square Error (MSE), R2, and Prediction Speed. The
best method is further optimized with the objective of reducing MSE by tuning hyperparameters
using Bayesian Optimization, Grid Search, and Random Search. The algorithms are implemented in
Python and Matlab Platforms. It is observed that the best methods obtained for regression analysis
and hyperparameter tuning for an assumed data set are Decision Trees and Grid Search, respectively.
It is also observed that, due to hyperparameter tuning, the MSE is reduced by 12.98%.

Keywords: short term load forecasting; machine learning; Bayesian optimization; grid search;
random search

1. Introduction

The continuous modernization of societies has increased electricity demand. Pen-
etration of renewable energy in the grid has led to improper scheduling of power [1,2].
One of the reasons for improper scheduling of power is inaccurate load forecasting. A de-
tailed analysis of variation in peak electricity demand is shown in Figure 1 [3]. As can be
seen from Figure 1, India’s peak power consumption is always rising, and this is the case
for all emerging countries. The ability to meet peak demand has also increased, which
can be accounted for by accurate load forecasting and efficient power management [4,5].
The increase in demand has forced the power system operators (PSO) to move away from
conventional methods to predict load. The emergence of machine learning techniques
has helped power system operators to predict load using various stochastic approaches.
In some recently reported work, machine learning methodology is used to solve outage
management problems in power distribution systems [6].

Load Forecasting is usually classified based on the duration of its prediction viz. Short
Term, Medium Term and Long term. The ranges for these prediction horizons are shown in
Table 1.

The most relevant forecasting for the day ahead and real-time power markets is STLF,
and this paper focuses on the implementation of STLF using stochastic approaches.

Various researchers have worked on the issue of short-term load forecasting (STLF)
using regression analysis. The implementation of STLF using Linear Regression is given
in [7]. Although Linear Regression methods are known for their simplicity, the accuracy
of Linear Regression depends upon the linearity factor between input and output [8].
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The solution to STLF obtained using a Support Vector Machine (SVM) is shown in [9,10].
Non Linearity aspects of the Input and Output of the data can be easily solved using SVM;
however, sometimes SVM can be ineffective with large data sets [11]. The approach to
STLF using Decision Trees (DT) is demonstrated in [12]. When the data set of the system
is large, DTs can produce effective solutions. The disadvantage of using DTs includes
false prediction through over-fitting [13]. Hidden relations between data points can be
effectively calculated using Ensemble [14,15]. Hardware integration of Ensemble methods
is often costly due to its complexities [16,17]. The issue of uncertainties can be dealt with
using Gaussian Process Regression (GPR) effectively [18], but lacks a mechanism to find
interrelation between parameters [19]. Neural Networks can provide accurate solutions to
those problems, where data are changing continuously and can have good communication
with Data Base Management Systems (DBMS) [20]. A comprehensive analysis of load
forecasting methods using predictive models is given in [21].

Figure 1. Yearly Peak Demand Requirement versus Peak Demand fulfilled of India in MW.

Table 1. Ranges of different prediction horizons for load forecasting.

Range Duration

Short term load forecasting (STLF) 1 hour to 1 week
Medium Term Load Forecasting (MTLF) 1 week to 1 year

Long Term Load Forecasting (LTLF) 1 year to 20 years

Hyperparameter tuning plays a crucial role in optimizing the operating parameters of
machine learning methodologies. This paper uses three different techniques for hyperpa-
rameter tuning using Grid Search, Random Search, and Bayesian Optimization. Grid Search
optimization is usually used in medical applications. In this paper, it is utilized in STLF
applications. The usage of Grid Search is broadly explained in [22]. The hyperparameter
tuning for SVM is reported in [23]. The advantages of Grid Search methodology include its
exhaustive nature of search but computational time increases exhaustively when a large
number of hyperparameters are tuned [24]. Various studies observed Random Search as
an important alternative to Grid Search. In Random Search, arbitrary combinations are
used to find the optimal solution, hence to a certain extent it becomes independent of
the number of hyperparameters [25]. One of the biggest limitations of Random Search
algorithms is their high dependence on their randomness. Hence, different parameters
produce different results [26]. The third method used for hyperparameter tuning in this
paper is Bayesian Optimization. Bayesian Optimization is based on Bayes theorem, which
is based on conditional probability. The goal of Bayesian reasoning is to become “less
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incorrect” with more data, which these systems do by continuously updating the surrogate
probability model after each evaluation of the objective function. Bayesian reasoning is a
form of inductive reasoning [27]. Bayesian Optimization is designed in such a way that its
current results depend upon past evaluation results, hence sufficient data are required to
produce quality results [28]. A detailed analysis of all the hyperparameter tuning methods
can be accessed in [29].

Instead of directly forecasting load, load is first classified using classifiers and the
classified load is then fed to the regression method to predict load. This advantage of this
approach is that, with classifiers, the load band is identified and regression methods are
applied to that particular band instead of all the data. This improved methodology is a
novel aspect of the manuscript. The following aspects have been discussed in this paper:

• Data are completely analyzed and outliers are detected using the Inter Quartile Range
(IQR) technique. After detection, outliers are removed since the data set is large;

• The cleaned data are then fed to various machine learning techniques including SVM,
Ensemble, Decision Trees, Neural Networks, and GPR. The best method is proposed
using statistical modeling. This statistical modeling is performed using parameters
such as Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Square
Error (MSE), R2, and Prediction Speed;

• After a comparative analysis of the statistical methods, the best method is determined.
This best method is further optimized by tuning parameters using three methods—
Bayesian Optimization, Grid Search, and Random Search—with the objective of
minimizing MSE. The method giving the least MSE is identified and proposed.

A detailed flow chart of the proposed methodology is shown in Figure 2. It can be
observed from Figure 2 that to select an accurate STLF model, data are first analysed and
outliers are removed. Feature scaling of data is performed to normalize the independent
variables of the data. After data analyses and feature scaling, data are trained using
regression models such as SVM, Ensemble, Decision Trees, Neural Networks, and GPR.
The best regression method is obtained by analyzing statistical parameters such as RMSE,
MAE, MSE, R2, and Prediction Speed. The best method is further optimized with the
objective of minimizing MSE by tuning hyperparameters.

Hyperparameter Tuning of
the Best using Bayesian
Optimizer, Grid Search,

and Random Search

Note Most Accurate
Regression Model After
Comparative Analysis

Parameter Prediction 
using 

Regression Models

Feature Scaling of the
Parameters and

Segregation of Data
Data AnalysisStart

EndNote Most Suitable Tuner

Outliers 
and  

Missing Data Correction

Data Anomalies Present

Data 
Anomalies 

Absent

Figure 2. Proposed methodology for short term load forecasting.
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The rest of the paper is organized as follows. Section 2 explains the procedure for the
data analysis of Load. Section 3 describes all the methodologies used in the paper. Section 4
deals with hyperparameter tuning. Section 5 presents the results and analysis followed by
a conclusion in Section 6.

2. Data Analysis of Load

This section deals with the analysis and cleaning of data.

2.1. Outlier Treatment

A detailed data analysis was performed on the considered load data. The inter quartile
method (IQR) method was used to detect outliers. A data entry that was caused due
to experimental error, variation in measurement, data anomaly, or any other reason was
called an outlier [30]. Although it is difficult to separate bad outliers from good outliers
with precision, data that are extremely unfamiliar without any considerable reason are
considered outliers. The presence of outliers may produce errors in the output by affecting
the mean and standard deviation. In this paper, outliers were detected and removed.
The following equations were used to detect outliers in the data.

IQR = Quart3 −Quart1 (1)

LB = Quart1 − 1.5× IQR (2)

UB = Quart3 + 1.5× IQR. (3)

The difference between the third quartile (Quart3) and the first quartile (Quart1) was
determined in (1). This difference was called IQR. The lower bound (LB) and upper bound
(UB) of the data using IQR were calculated in (2) and (3). Once outliers that were observed
beyond the LB ad UB were detected, they were removed from the system.

2.2. Statistical Parameter Descriptions

After outliers were detected and data were cleaned, the output was fed to various
regression methods. A quantitative analysis of each regression method is presented. Quan-
titative analysis includes the calculation of RMSE, MAE, MSE, R2, and Prediction Speed.
Errors were obtained from the true versus the predicted value of the system [10]. RMSE was
obtained by the square root of the mean of all the errors as shown in (4). MAE predicts the
average of the modulated difference between actual and predicted, which is computed in
(5). The average of the squared difference between average and predicted values are given
by MSE which is calculated in (6). R2 explains the variance in the linear dependency of a
predicted value with respect to the true value which is determined in (7). It lies between
0 and 1, where 1 represents a perfect fit model and 0 represents a perfectly unfit model.
A detailed explanation of all the statistical models is shown in [15]. After the best method
was determined, the MSE was further minimized by tuning or varying hyperparameters
such as leaf size. This was implemented by using three optimization techniques—Bayesian
Optimization, Grid Search, and Random Search—after which optimal parameters were
determined.

RMSE =

√√√√ n

∑
j=1

(yj − yj)
2

n
(4)

MAE =

n
∑

j=1
(yj − yj)

n
(5)

MSE =
1
n

n

∑
j=1

(yj − yj)
2 (6)
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R2 = 1− Anamolic Variation
Total Variation

, (7)

where yj and yj indicate the predicted and true values of the data and n determines the
total number of observations.

3. Methodologies

This section analyzes all the methods used for the prediction of STLF in this paper.

3.1. Decision Trees

To implement the Decision Tree (DT) algorithm, a tree-like structure was formed. Each
node of the tree was assigned a condition. As per the conditional requirement, the decisions
were progressed and arrived at an optimized decision. Various parameters determine
the operation of the tree. A tree is composed of nodes, which are further connected by
edges. The root node exists at the top of a decision tree, and this node is the origin of
decision-making where conditional operation starts. The node where decision-making is
performed is called the decision node and it is obtained after separating the root nodes.
The node where further splitting is not possible is called the leaf node. Branches represent
the flow from question to answer. The number of children at each node is determined by the
branching factor. If this value varies, an average branching factor is used for computational
purposes. The level of the tree is determined by the total number of parent nodes at that
node. A sub tree is formed by a section of the tree. The subgraph is a component of the
main graph. Pruning is performed to prevent overfitting; this is done by removing certain
nodes. Overfitting can give false and deceptive output. Decision Trees can be used in both
classifiers and regression.

Classification is performed to classify components into certain groups; a target variable
is set based upon which a decision is taken using the Decision Tree algorithm to obtain
the target variable. The set of rules which are obtained to achieve the target variable is
noted and used for future simulations. Regression is performed to predict future values of
the system. In this paper, decision trees were used to predict future values based on a set
of decisions formed to achieve the target value. All the required parameters of a tree are
presented in Figure 3. The structure of the tree can be seen in Figure 4.

Decision Tree

Root 
Node

Branches

Leaf Node

Level

Branching 
Factor

Node

Figure 3. Various parameters of Decision Trees.
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Decision Tree

Decision Node Decision Node

Leaf Node Leaf Node Leaf Node Decision Node

Leaf Node Leaf Node

Sub Tree

Root Node

Figure 4. Structure of Decision Tree.

3.2. Linear Regression

Linear Regression is a type of supervised learning. This approach models the rela-
tionship between the independent output variable and the dependent input variable. This
dependent variable can be one or more.

[Y] ≈ β0 + β1[X] (8)

[Y] = β0 + β1[X] + ε, (9)

where [Y] represents the output matrix and [X] represents the input matrix. β0 and β1
are intercept and slope, respectively, and together are called model coefficients. ε is the
error coefficient obtained after approximation. Linear Regression models are simple and
provide a clear interpretation. The whole process of Linear Regression is dependent on
intercept and slope. Intercept and slope are estimated using Linear Regression algorithms
and then compared with actual values. The objective function is formed in such a way that
the minimum error is obtained. The set of values related to intercept and slope, which give
the minimum error, uses precise model parameters to train. The training time of Linear
Regression models is fast and accurate. The main issue with Linear Regression models
is linearity. For effective implementation of Linear Regression models, there should be
linearity between [Y] and [X], otherwise, ε will be very high.

3.3. Support Vector Machine (SVM)

SVM uses kernels to train the algorithms. Kernels can be termed as a functional
relationship between two observations. These functional relationships can be linear—
Polynomial and Radial. The following equations determine the functions of different
kernels.

K(xi, xi
′
) =

p

∑
j=1

xi,j.xi′ ,j (10)

K(xi, x
′
i) =

(
1 +

p

∑
j=1

(xi,j)× (xi′ ,j)

)p

(11)

K(xi, x
′
i) = exp

(
−γ

p

∑
j=1

(xi,j − xi′ ,j)
2

)
, (12)

where xi and x
′
i are the observations, p is the degree of polynomial and γ is a positive

constant. The linear relationship is determined in (10), whereas polynomial and radial
relationships are computed in (11) and (12), respectively.
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The dominant factor in deciding the rules of SVM is the preciseness of the hyper-
plane and hyperplane shape. A suitable hyperplane is searched in N-dimensional space.
The plane with the best margin is considered to be the best fit. Support vectors are situated
close to the hyperplane.

3.4. Gaussian Process Regression (GPR)

GPR is one of the best methods for providing uncertainty measurement. It follows the
Bayesian approach to regression. It is an efficient technique for small data sets. GPR follows
a nonparametric approach. A nonparametric approach is an approach that is not limited by
its functional form. A probability distribution can be defined for a specific function or for
all the functions that fit the data. Since GPR has a nonparametric approach, it computes
the probability distribution of functions that fit the data. Two main aspects of GPR are
Gaussian Process Prior (GPP ) and Kernel function. Since GPR depends a lot on the prior
values, GPP plays a vital role in computing algorithms for GPR. The equation for GPP can
be computed from (13). RBF (Radial Basis Function) is considered as a kernel in this paper.
This function is calculated using (14).

f (x) ∼ GP(m(x), k(x, x
′
)) (13)

k(x, x
′
) = ∂2

f exp(− 1
2l2

m

∥∥∥x− x
′
∥∥∥2
), (14)

where m(x) is mean function, k(x, x
′
) is a covariance function, ∂2

f is signal variance and lm
is the length scale of the system.

3.5. Neural Networks

The main inspiration behind neural networks is the working characteristics of neurons
in the human brain. Hence, historical data play a key role in working neural networks.
The more data, the more robust its learning algorithm will be. It is a function-based
approach, where a function is decided based on the operating relationship between data
input and data output. The methodology used in this paper is ANN (Artificial Neural
Network). Two main components of ANN are the transfer function and activation function.
The complex pattern in the data is learned by the activation function. The activation
function plays as a selector, i.e., it chooses which signal from one neuron to another neuron
should pass. The activation function can be both linear and nonlinear. While transfer
functions are used to convert input signals into output signals, activation functions operate
on a threshold value that, when crossed, triggers the signal. A detailed diagram of ANN is
shown in Figure 5 and the description of the activation function is shown in Figure 6.

Step 1
Step 2

Transfer Function Activation Function Output

Bias
Input 1

Input 2

Input n

Figure 5. Structure of ANN.
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Cell Body

Activation 
Function

Axon from 
a neuron

Synapse

Dendrite

Figure 6. Activation function of ANN.

3.6. Ensemble

Ensemble systems combine two or more functions to give the desired output. En-
sembles can be both homogeneous and heterogeneous. To compute Ensemble, a base
method is first identified based on number of data points. In this manuscript, Decision
Trees were considered a base method because of their ability to handle large data sets.
The remaining methods were tested in combination with base methods using trail and
error. In this manuscript, the methods tested were SVM, GPR and Linear Regression, in
combination with base methods. Homogeneous methods have the same base methods,
while heterogeneous methods have different base methods. Ensembles are classified as
Bagging, Boosting, and Stacking. The functional approach of each of these methods can be
referred to in [14]. The biggest issues of Ensemble techniques are data bias and the quality
of base methods. A large data set is divided into groups and then each group is trained
based on probability distribution and using a distinct methodology. Finally, all results from
each method are accumulated into a single result and are presented as output. It is upon
the user to decide a number of parts based on the computation power his system possesses.

4. Hyperparameter Tuning

Hyperparameter tuning is generally performed to find a set of optimal parameters
that will help to train the model without compromising on any parameter. Two important
components to compute optimization algorithms are objective functions and constraints.
In this paper, the objective of reducing MSE is considered and constraints are obtained by
training parameters of the methodology. Three methods are used and compared to tuned
hyperparameters in this paper.

4.1. Grid Search

Grid Search is the most commonly used method in hyperparameter tuning. Firstly,
a set of hyperparameters is formed. If there are too many hyperparameters, some are
eliminated based on their importance. The dominant hyperparameters are then combined
to form sets and are plotted in the form of a grid. Then, each combination is tested and the
most optimum combination is obtained as a result. It is considered an exhaustive algorithm
as it checks all possible combinations of the system. The operation of the algorithm is
slow because of this exhaustiveness. Checking each point can be complicated and costly.
However, the accuracy obtained from this method can be high. A demonstration of the Grid
Search algorithm with two hyperparameters is given in Figure 7. It can be observed from
Figure 7 that, when two hyperparameters are plotted, every single value is considered
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Hyperparameter 1
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 2

Figure 7. Grid Search sample plotting for two hyperparameters.

4.2. Random Search

Random Search uses randomized combinations to check satisfaction for optimal
parameters of the systems. The concept is basically derived from Grid Search, but every
parameter is not validated. Only random parameters are validated. Because of this
Randomness, the accuracy of the tuning method can be compromised, but the training time
of the system is improved. When there are large hyperparameters to optimize, a Random
Search can be a decent option. A demonstration of a Random Search algorithm with two
hyperparameters is given in Figure 8. It can be observed from Figure 8 that, when two
hyperparameters are plotted, only random values are considered.

Hyperparameter 1

H
yp

er
pa

ra
m

et
er

 2

Figure 8. Random Search sample plotting for two hyperparameters.

4.3. Bayesian Optimization

The fundamental theorem behind Bayesian Optimization is the Bayesian Equation.
Bayes theorem is used for conditional probability, where the probability of a certain event
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is known based upon which the probability of another event is calculated. The description
of Bayes theorem is shown in (15).

p(score|hpm) =
p(score|hpm)× p(score)

p(hpm)
, (15)

where p(hpm) is the probability of the occurrence of the hyperparameter value and p(score)
is the probability of the occurrence of the required value. Bayesian Optimization can
be called an informed search technique where the possibility of certain events is known.
It considers past values for computational purposes. The pattern extracted from data
from past values is taken into account. It focuses on those parameter spaces, which can
potentially produce an optimal solution.

5. Results and Analysis

This Section analyzes the results of all the discussed methods and proposes the best
method for STLF.

5.1. Case Studies and Results

The proposed methodology has been implemented using the data set given in [31].
The electricity supply company of the Malaysian city of Johor generated these hourly load
data. This data set shows the variation of load corresponding to day, month, year, time
and temperature. The best correlation factor is obtained from combining all the input
parameters to obtain the output. A combination of all input parameters is 93.8 percent
correlated to the output. The methods have also been tested using the data of [32,33]
with similar input parameters. While investigating the data, it was found that around
2.5% of the data set was outliers. These outliers were removed. The output load data
were scaled between 0 to 1 with the base quantity as the peak value. Hold-out validation
was used with 80 and 20 for testing and training, respectively. The data set was trained
with algorithms consisting of Ensemble, DTs, Neural Networks, SVM, GPR, and Linear
Regressions. The output of DTs is shown in Figure 9. Figure 9a represents the true versus
the predicted values of the system, and Figure 9b indicates how fit the model is and is
used for the calculation of R2. If there is an overfitting issue, it has been crosschecked
using cross-validation, replacing it with hold out validation. Similarly, the corresponding
results of Linear Regression, SVM, Ensemble, GPR and Neural Networks are shown in
Figures 10–14, respectively.

Detailed statistical analyses of all the methods are shown in Table 2. It can be observed
that the best method was found to be a Decision Tree. The output of the Decision Tree was
further optimized with the objective to reduce MSE, and hyperparameters were further
tuned. Three different methods—Bayesian Optimization, Grid Search, and Random Search—
were simulated and compared. A detailed plot for hyperparameter tuning is presented
in Figure 15. Parameters considered for the tuning of Decision Trees were leaf size and
number of iterations. The number of iterations is significant with respect to the training
time of the method. The optimal hyperparameters are shown in Table 3. It can be observed
from Table 3 that the best method for hyperparameter tuning on this data set is Grid Search
with a leaf size of 6. Results of all hyperparameter tuning of all the methods can be referred
to in Table A1.
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(a)

(b)

Figure 9. Results with Decision Trees. (a) Actual versus predicted values of Decision Trees. (b) Lin-
earity analysis of Decision Trees.
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(a)

(b)

Figure 10. Results with Linear Regression. (a) Actual versus predicted values of Linear Regression.
(b) Linearity analysis of Linear Regression.
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(a)

(b)

Figure 11. Results with Support Vector Machines. (a) Actual versus predicted values of Support
Vector Machines. (b) Linearity analysis of Support Vector Machines.
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(a)

(b)

Figure 12. Results with Ensemble. (a) Actual versus predicted values of Ensemble. (b) Linearity
analysis of Ensemble.
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(a)

(b)

Figure 13. Results with Gaussian Process Regression. (a) Actual versus predicted values of Gaussian
Process Regression. (b) Linearity analysis of Gaussian Process Regression.
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(a)

(b)

Figure 14. Results with Artificial Neural Network. (a) Actual versus predicted values of Artificial
Neural Network. (b) Linearity analysis of Artificial Neural Network.

Table 2. Comparative analysis of forecasting methods.

Method RMSE R2 MSE MAE MAPE Training Time (s)

Decision Tree 0.087 0.85 0.0077 0.05 4.8 1.32

Linear Regression 0.13 0.62 0.019 0.13 12.5 0.72

SVM 0.085 0.78 0.0078 0.053 5.2 12.14

Ensemble 0.1 0.77 0.01 0.067 6.2 1.74

GPR 0.07 0.72 0.005 0.054 5.3 1151.5

Neural Network 0.07 0.82 0.005 0.061 5.9 8.02
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Table 3. Hyperparameter tuning results (Decision Tree).

Method MSE Leaf Size

Bayesian Optimization 0.0070 3
Grid Search 0.0067 6

Random Search 0.0069 5

Figure 15. Tuned hyperparameters Graphs of Tree using Grid Search.

Thus, three different methods to tune hyperparameters were analyzed to understand
the functionality of tuning.

5.2. Result Interpretation

It can be observed from Table 2 that:

• The performance of Linear Regression methods is not fit—this is because there is no
linear relation between data points;

• SVM produces good results but the training time of SVM is relatively high as compared
to that of Decision Tree. Additionally, SVM is highly dependent on the accuracy of the
hyperplane boundary, which can give inaccurate results during changes in data;

• The time taken to process GPR is the highest, hence this method can be highly ineffec-
tive when the load forecasting is integrated with applications such as power trading.
Although Neural Networks are producing promising results, when compared to the
training time of Decision Tree, it is on the higher side;

• The accuracy of Ensemble is highly dependent on the combinations of the methods
assumed. The fitting of the model (R2 ) is less as compared to Decision Trees.

Hence, considering all the parameters, it can be concluded that Decision Trees can be
an effective method for predicting short term load.

5.3. Comparative Analysis

Various works have been published in the area of STLF. Most of the works have focused
on individual methods and the improvement of Individual methods. This paper, instead of
focusing on individual methods, focused on numerous methods and on understanding the
merit and demerit of each method. In [34], the focus is completely on ANN. ANN is efficient
when the data set is large; it is also affected by data sensitivity but it is important to understand
that not all load data sets might give consistent patterns, and also there might be data scarcity.
So, ANN might not be the best method for specific data sets. The algorithm used in [35,36]
is Recurrent Neural Network (RNN). The issue with RNN is the selection of an activation
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function and the system can be quite slow in producing results. Load data with long sequences
might not be processed easily. Since load data are highly dynamic in nature and vary according
to geographical location, RNN might not produce the best results. Since RNN follows a deep
learning architecture, its operational cost is also quite high. So, as compared to ANN used
in [34], and compared to deep learning methods used in [35,36], the methodology used in this
paper tries to behave as per the nature of the data set and produce an efficient algorithm. Some
of the algorithms produced in this area are highly individualistic in nature; Reference [12,14]
focused only on a single method whereas this paper focuses on crucial regression methods.
The methodology used in [15] is close to that of this paper but lacks a comparative analysis
of important hyperparameter tuning methods, whereas this paper gives a broad comparative
analysis of hyperparameter tuning methods.

6. Conclusions

The following objectives have been achieved in this paper:

• Detailed data analyses of the assumed data were performed. It was found that 2.5% of
the data contained outliers using the IQR method. These outliers were removed;

• The best regression model for depicting load was found to be Decision Tree with
an RMSE, R2, MSE, MAE and training time of 0.087, 0.85, 0.0077, 0.05, and 1.32,
respectively;

• The best optimizer for hyperparameter tuning was achieved using Grid Search with a
leaf size of 6 and a reduced MSE of 0.0067861.

A Decision Tree is one of the best methods for solving the issue of STLF because the
load has a dynamic nature. It changes with seasons, days, and months, among other param-
eters. Linear Regression methods did not perform well, with a very low R2 value, which
implies it is difficult to establish linear relations among input and output parameters. Since
the data set is large, Neural Networks also produced reasonably good results but, because
of their computational cost, they lag behind Decision Trees. As far as hyperparameter
tuning is concerned, Grid Search is considered the best method because of its certainty.
Bayesian Optimization has more reliability than Grid Search but it requires strong, pre-
computed values which might not be available with data sets. Randomized Search for
hyperparameter tuning can be highly unpredictable since it depends on random values.

Based on the proposed research work, the following areas can be promising future
aspects of the research:

• The forecasted load active power can be scheduled with constraints obtained from
Distributed Energy Sources integrated with the grid;

• Calculation of Localized Marginal Pricing (LMP) and Distributed Localized Marginal
Pricing (DLMP) can be carried out with forecasted load;

• A more robust comparison with Deep Learning methods can be carried out and the
advantages and disadvantages of each individual method can be presented;

• Peer to Peer trading using forecasted load can be analyzed.
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Abbreviations
The following abbreviations are used in this manuscript:

PSO power system operators
STLF short-term load forecasting
DT decision tree
SVM support vector machine
GPR gaussian process regression
RMSE root mean square error
MAE mean absolute error
MSE mean sqaure error
DBMS database management system
IQR interquartile range
RBF radial basis function
ANN artificial neural network
LMP localized marginal pricing
DLMP distributed localized marginal pricing

Appendix A. Hyperparameter Tuning

Table A1. Results of Hyperparameter tuning for methods used in the study.

Method Tuning Method MSE

Decision Trees Bayesian 0.007
Grid Search 0.0067

Random Search 0.0069

Linear Regression Bayesian 0.0182
Grid Search 0.017

Random Search 0.0185

SVM Bayesian 0.0066
Grid Search 0.0065

Random Search 0.0067

Ensemble Bayesian 0.009
Grid Search 0.008

Random Search 0.0095

GPR Bayesian 0.0045
Grid Search 0.004

Random Search 0.0048

Neural Network Bayesian 0.0048
Grid Search 0.0045

Random Search 0.0049
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