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Abstract: Climate change and global warming, caused by excessive carbon emissions from trans-
portation and other environmentally hazardous activities, are serious problems for many countries
nowadays. Therefore, while some countries are not making optimal use of their resources, others
are working hard to preserve a green and clean environment in order to foster long-term growth.
Governments and policymakers throughout the world are finally starting to take the risks of climate
change and global warming seriously. This paper extends previous literature related to environmental
design practices by investigating the impacts of environmental innovation and the deployment of
green energy on decreasing carbon dioxide (CO2) emissions for Saudi Arabia during the period
1990–2018. Different CO2 emission measures are incorporated in the analysis, namely per capita
CO2 emissions, CO2 intensity, CO2 emissions from liquid fuel use, and CO2 emissions from heat
and electricity generation. Overall, the outcomes of the autoregressive distributed lag (ARDL) tech-
nique demonstrate the presence of a long-term association between our two main variables (green
energy use and environmental innovation) and the different measures of CO2 emissions, except CO2

emissions from liquid fuels consumption for green energy use and CO2 intensity for environmental
innovation. In another sense, the use of renewable energies and technologies linked to environmental
patents proves to be a good alternative if they do not contribute to environmental pollution. On the
basis of the results, this study offers several policy recommendations.

Keywords: environmental innovation; renewable energy; carbon emissions

1. Introduction

Countries around the world are grappling with serious challenges, including environ-
mental degradation and climate change. Economic activities, such as aggregate household
usage and energy generation and usage, are the primary source of pollution due to carbon
dioxide (CO2) emissions [1–6]. Growing domestic consumption adds to CO2 emissions
since it raises energy demand [7–11]. However, energy production and consumption are
critical for economies in industrialized countries as well as developing and contemporary
economies because they dictate all economic activity. Industries, houses, and cars all
need a variety of energy kinds and sources to get things done. Making and using energy
has severe implications for the environment since it generates waste, such as radioactive
material, and pollutes the air as a result [12–14]. The use of energy systems degrades the
environment, pollutes water and air, and has negative effects on human health and marine
life, all of which must be considered. For the most part, the environmental impact of energy
use, particularly that derived from fossil fuels, is dependent on several factors: the used
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technology, total energy consumption, efficiency in turning primary energy into a usable
form of energy (containing distribution), and the fuel mix used to generate that energy [15].

In the energy mix, the usage of fossil fuels such as coal, natural gas, and crude oil
continues to pollute the environment and emit carbon dioxide. One of the main ways to
combat global warming is to have a low-carbon economy, and technological innovation in
the energy field is seen as a key part of that strategy [16–21]. The term “energy technology
innovation” refers to the expansion of science and technology in the energy sector. It also
mentions producing innovations intended at boosting the application of new energy-related
technology for commercial purposes [22].

Energy characteristics classify energy technology innovations as either renewable or
fossil-based, depending on their form of energy [23]. A growing body of evidence indicates
that innovations in energy technologies are influencing global energy usage systems. By
updating the energy consumption structure, the adoption of sustainable green technologies
(such as solar, wind, and biomass) facilitates the shift away from a coal-based economy
and offers a practical option to lessen regional reliance on fossil fuels [24,25]. Therefore,
researchers and environmentalists believe that environmental technology innovation is a
successful solution to decrease CO2 emissions, and studies have shown the presence of
negative correlations [26]. Some other academics disagree about the detrimental associa-
tions. According to [27], innovation can cut CO2 emissions in rich countries but raise their
levels in developing economies because of the relevance of a place-bound context. Further,
different definitions of environmental innovation have been provided in the literature. It
has been employed to refer to all inventions that have good environmental consequences
(see, for instance, [28]) or merely those innovations that are targeted to have such benefits
(see, for instance, [29]). In order to prevent misunderstanding, “environmental innovation”
has been used here to refer to any novel technology or product that has less negative
environmental consequences than the alternatives. In addition, ref. [30] revealed an inverse
link between CO2 emissions and environmental innovation by using the GMM methods.
Ref. [31] observed in OECD nations that R&D expenditures and clean energy had no clear
link with CO2 emissions. Generally, there is no apparent agreement among scholars on
energy technology innovations and CO2 emissions. Examining the role of environment-
related technology innovation and the clean energy source in environmental protection in
the Kingdom of Saudi Arabia, for instance, can contribute to the body of knowledge on the
subject.

This study aims to fill the knowledge gap by investigating the importance of green
energy deployment and environmental innovation to environmental protection in Saudi
Arabia. In this context, the development of environmental innovation is crucial for address-
ing the harmful consequences of environmental degradation and therefore contributes to
environmental protection. Three important additions to the literature are made by this
study. First, previous research has employed a variety of variables, time periods, and
methodologies, and the country’s economic structure has shifted dramatically throughout
the time period under consideration. It is critical to know just how strong the established
connection in the current literature still remains for Saudi Arabia. Second, the current
study examines the link between environmental innovation, economic growth, and green
energy use for four proxies of environmental protection using multivariate time-series data
from 1990 to 2018 in Saudi Arabia that, to the best of our knowledge, have not already
been performed in this circumstance. It shows the time series’ statistical characteristics and
defines the absence or presence of long- and short-run correlations among the determinants
in the positive and negative directions. Third, a complete conceptual and empirical frame-
work is established to explain the theoretical relationship between the underlying factors
in this study. In this paper, Saudi Arabia was chosen for two major considerations: first,
it has experienced a remarkable rise in the number of patents relating to environmental
innovation, which is estimated at around 1236 patents during the period 1990–2018 [32].
Second, Saudi Arabia is the first-largest producer of CO2 emissions per capita in the Middle
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East and was one of the world’s top ten polluters in 2018. Most of Saudi Arabia’s CO2
emissions derive from fossil fuel use for transportation, heating, and power generation [33].

The remaining part of this paper is subdivided into five sections: Section 2 is devoted
to a review of the relevant literature. Section 3 is devoted to empirical methodology. Sec-
tion 4 emphasizes the exploration of the empirical findings. The conclusion and policy
recommendations are involved in Section 5.

2. Literature Review
2.1. Green Energy and Environmental Quality Nexus

There is a significant body of literature that has been published in the topic of energy
policy concerning the linkage between energy use or, more precisely, of non-renewable
energies and emissions of carbon dioxide (CO2). In recent years, researchers have been
investigating the connection between CO2 emissions and the use of green energy. The
research has taken into consideration a wide range of descriptive variables, together with a
diversity of geographic regions, sophisticated econometric tools, and other factors.

In this subsection, we will review this relationship. One of the original pieces of
research was performed by [34], who examined the causality literature amongst CO2 emis-
sions and green energy use in developing economies. Both the long-term conservation
assumption and the short-term neutrality assumption are supported by the authors’ find-
ings. In the same direction, ref. [35] studied the causal link for five countries of SAARC
during 1975–2010, between GDP, renewable energy production, poverty, CO2 emissions,
and natural resource depletion. Using Granger’s approach to causality, they discovered
proof of growth assumption between them using the FMOLS approach. Ref. [36] also
investigated green energy use’s role in the world’s next fastest emerging economies’ eco-
nomic production and CO2 emissions. The research uses many reliable econometric panel
specifications by introducing yearly data between 1990 and 2012. The results provide
empirical evidence of a robust, long-term interaction between the factors. Further, using
green energy has been shown to negatively affect CO2 emissions and positively affect
economic growth. The investigation exposes that fossil-fuels-rich countries necessitate the
diversification of their energy portfolios through integrating renewable sources of energy
that foster environmental performance and sustainability as well as enhance the overall
level of air quality while simultaneously lowering the degree to which their economies
are susceptible to price fluctuations. Using data for OECD states, ref. [37] analyzed the
impact of energy from renewable sources on carbon emissions by including some other
pertinent variables. The findings of the empirical research indicate that the utilization of
renewable sources of energy is essential in order to preserve the ecosystem. Observed
evidence empirically indicates that nations ought to stimulate investment in the green
energy sector and education and that research and development programs related to the
green energy sector had better be built to guarantee environmental sustainability. For
G7 countries, ref. [38] examined the carbon effects of trade, electricity costs, and use of
renewables. It appears from their results that the size of exchange has a favorable effect on
CO2 emissions but that clean energies and oil prices have a negative effect.

Recently, ref. [39] studied the impacts of five significant determinants on clean en-
ergy use during 1998 and 2018 for the ASEAN + 3 economies to ensure economic and
environmental stability. They revealed that economic freedom and pollution have such a
negative association with using clean energy. Using non-renewable and renewable energy
use as determinant factors, ref. [40] examined how energy consumption affects both income
and environment in ASEAN nations performing the innovative technique, namely the
moments quantile regression method. Specifically, all quantiles (10th to 90th) showed a
reduction in CO2 emissions when using renewable energy sources; however, this reduc-
tion was statistically irrelevant at the higher quantiles (60th to 90th). Findings on panel
estimate methodologies (DOLS, FMOLS, and FE-OLS) also support the EKC assumption.
According to their findings, a one percent rise in the usage of non-clean energy amplifies
CO2 emissions by 0.29 percent; a one percent rise in clean energy use moderates CO2
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emissions by 0.17 percent, 0.15 percent, and 0.17 percent, respectively, through performing
FMOLS, DOLS, and FE-OLS, respectively. Over the period 1970–2018, ref. [41] sought
to determine the dynamic impacts of globalization on carbon emissions, as well as the
usage of clean and non-clean energy sources for Argentina. For the purposes of this study,
the econometric technique explored involves the use of methodologies that are resilient
to the existence of structural break issues that may occur in the data. The technique of
Maki cointegration, which included various structural breakdowns, demonstrated long-run
correlations between clean and non-clean energy usage, carbon emissions, globalization,
and economic growth, among other findings. When the tool of autoregressive distributed
lag was used to evaluate elasticity, the outcomes exposed that both clean energy use and
globalization were associated in short- and long-term drop-in emissions. Using Saudi Ara-
bian data, ref. [9] employed the simultaneous equation modeling technique to investigate
the three-way linkage among environmental quality, economic growth, and green energy
spanning the year 1990 to 2016. The findings show bidirectional causation between green
energy use and CO2 emissions; nonetheless, the use of green sources in Saudi Arabia did
not help to reduce the disparity between improving the economic situation and saving the
environment. Within the same framework, ref. [42] reviewed the combined influence of
economic growth and green energy on mitigating CO2 emissions, and they provided sup-
port for the results that renewable energy sources only have a marginal effect on slowing
environmental degradation. They also confirmed that the combined influence of green
energy usage and economic growth on measures of CO2 emissions is statistically negligible
for all the assessed specifications, regardless of the model used, indicating that the share
of using green energy is not enough to minimize the detrimental influence of economic
expansion on Saudi Arabia’s environment, including its level of quality. Further, ref. [43]
explored the relationship between the use of renewable energy sources and carbon dioxide
emissions during the period of 2000–2015 using data from countries that are quickly urban-
izing. They performed this by employing an estimate based on the generalized method of
moments (GMM). They found that switching to renewable energy lowers carbon dioxide
emissions. Using data from 36 OECD nations spanning 2000–2019, ref. [44] analyzed how
adopting energy efficiency and renewable energy initiatives affected their CO2 emissions.
Emissions were reduced due to the use of renewable energy and increased energy effi-
ciency, as estimated by the GMM system. For the effects of renewable technologies, it
seems that hydropower and wind energy both help to lower emissions, though to varying
degrees. Despite this, solar energy has not been shown to reduce emissions by a statistically
meaningful amount. Further, the use of fossil fuels worsens environmental standards.

2.2. Environmental Innovation and Environmental Quality Nexus

The implications of environmental innovation on the environment have received a
negligible amount of attention from researchers. Ref. [45] used the simultaneous panel data
model to evaluate the correlation between toxic air pollution rates and environmental inno-
vations as part of an empirical study of the connection between environmental protection
and environmental innovation. Over the course of 16 years, from 1989 to 2004, a group
of 127 US manufacturing companies reported two-directional causal linkages between
emissions and environmental innovation. According to the researchers, environmental
innovation will play a crucial role in reducing harmful emissions in the US, and stricter
emission rules will result in better environmental conditions and larger emissions reduc-
tions. Additionally, ref. [46] showed that “greening” suppliers’ environmental efficiency
is significantly increased by innovation in the field of the environment. Their research
suggests that in order to improve environmental efficiency, innovations in environmental
processes and commodities may be more effective than innovations in environmental
management. The research conducted by [47] confirms the significance and effect of en-
vironmental innovation in the case of China, highlighting energy efficiency and R&D as
essential factors in bringing about a decrease in carbon dioxide emissions. The results of
the latter study are compatible with the findings of [48], which validates the findings of
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the later study’s conclusions. Furthermore, further findings suggest that environmental
attitudes and environmental control are beneficial for environmental innovation. Using
data for N-11 economies, ref. [49] confirmed that technology innovation has a harmful
influence on carbon emissions. This will contribute to the achievement of the COP 21
objectives. In the same context, ref. [50] used a spatial econometric model to assess whether
China’s CO2 emissions can be reduced by new energy technology innovations. The findings
indicate that while innovative technology related to clean energy sources helps to moderate
CO2 emissions, innovation in the field of fossil energy technologies has been found to be
ineffective in lowering carbon dioxide emissions.

Recently, from 1990Q1 to 2016Q4, ref. [13] scrutinized the cyclical influence of tech-
nological innovation in the environmental field on CO2 emissions in the United States.
The outcomes display that during the expansion phase, positive shocks in environmental-
related technology innovation result in a drop in CO2 emissions. Similarly, ref. [51] are
influential in assessing if innovation, calculated based on the number of patents that have
been authorized, benefits or damages the environment in 32 economic sectors and China’s
30 provinces. They draw the conclusion that innovative new technologies are more envi-
ronmentally beneficial than less innovative ones. Ref. [52] also used an ARDL specification
to observe the influence of environmental innovation, GDP per capita, the usage of clean
energy, and economic openness degree on CO2 emissions during 23 years in 15 European
nations. Their findings demonstrate that environmental innovation has the potential to
reduce CO2 emissions in the long run; however, the observed impact in the short term is
the inverse, indicating the possibility of a rebound effect. For the top 10 carbon-emitting
economies, ref. [53] investigated how trade, environmental innovation, and renewable
energy use affect CO2 emissions. CS-ARDL (cross-sectionally augment autoregressive
distributed lag) approach outcomes display that income, green energy use, and environ-
mental innovation, as well as trade, are major factors in clearing up consumer-based carbon
emissions and territorial carbon emissions in the long term. Using data from 37 OECD
economies from 1970 to 2019, ref. [54] analyzed the importance of fiscal decentralization,
technological innovation in the environmental field, and export diversification in achieving
the objective of carbon neutrality. It employs second-generation tests for empirical analysis,
which can deal with heterogeneity and cross-sectional dependency difficulties. In order
to accomplish this, this study makes use of the most recent cointegration methods. It is
necessary to inspect the long-run dynamic equilibrium among the series of interests using
the AMG (augmented mean group) technique. According to the findings, CO2 emissions
are amplified in the long run by fiscal decentralization and export diversification, as well
as GDP growth. In contrast, the usage of clean sources of energy and the development of
environmentally friendly technologies contribute to environmental betterment. Using data
for BRICS economies, ref. [55] contribute to the body of current research by identifying
the cyclical and asymmetries in the influence of environmental innovative technology on
carbon emissions. An important finding from this research was that the economic slump
had a major long-term beneficial impact on the development of environmental-related
technology and carbon emissions. Second, while the economy is growing, the amount of
carbon dioxide emitted is reduced due to positive shocks to environmental technology
innovation. Another finding from this study is that shocks of innovation in environmental-
related technologies were countercyclical during business cycles. Finally, positive shocks
to the innovation process in green technologies had a greater influence on carbon dioxide
emissions than negative shocks to the innovation process in green technologies.

3. Empirical Methodology
3.1. Model and Research Strategy

In this paper, we examine the long-term association, also known as cointegration,
between green energy consumption (REC), real GDP per capita, foreign direct investment
(FDI), environmental patents-related technologies (EPR), urbanization (UBR), and envi-
ronmental protection. By using a comparative analysis, this last one is proxied by four
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environmental indicators of CO2: CO2 emissions per capita (CO2pc), CO2 emissions re-
sulting from the generation of heat and electricity (CO2elph), CO2 emissions caused by
the consumption of liquid fuels (CO2lif), and CO2 intensity (CO2int). Hence, the literature
review allows us to create for empirical examination the following model:

CO2pc
CO2elph
CO2li f
CO2int

 = f (RECt, GDPt, FDIt, EPRt, URBt) (1)

By utilizing the natural logarithm of the series from Specification (1), the regression to
be approximated may be represented as follows:

ln CO2pc
ln CO2elph
ln CO2li f
ln CO2int

 = β0 + β1 ln RECt + β2 ln GDPt + β3 ln FDIt + β4 ln EPRt + β5 ln URBt + εt (2)

where four indicators explain environmental degradation, explicitly per capita CO2 emis-
sions (CO2pc), CO2 emissions resulting from the generation of heat and electricity (CO2elph),
CO2 emissions caused by the consumption of liquid fuels (CO2lif), and CO2 intensity
(CO2int). REC denotes renewable energy use. GDP refers to per capita real GDP. FDI
signifies technology transfer given by net inflows of foreign direct investment. EPR is used
as a proxy of environmental patents-related technologies. The urban population is proxied
by URB. The long-term elasticity is represented by the parameters βi and εt, error term.

Assuming that there is an increase in REC and the environmental patents-related
technologies cause lower CO2 emissions, β1(REC) < 0 and β1(EPR) < 0. Nevertheless, we
predicted that a rise in per capita GDP and urbanization cause higher emissions of CO2
(β 2(GDP), and β5(URB) are positive). In terms of FDI, we predicted CO2 emissions to have
either positive or negative coefficients.

In this study, we employ the ARDL technique, which was first proposed by [56]
and then refined by [57]. In case of comparison to certain other tests of cointegration,
the ARDL approach is characterized by the feature that it may be used to non-stationary
variables without being constrained to the same order of integration as the time series
under consideration. As soon as integrated variables of order 0 and 1 are used, the test
of cointegration can be performed concurrently on both factors. One other feature of the
ARDL model is that it allows for a larger sample size. Indeed, in case of comparison
to certain other tests, this model is more appropriate for small samples and enables the
generation of more consistent findings in these circumstances. For the equations to be
approximated, the general form of the ARDL technique is given below:


∆ ln CO2pc

∆ ln CO2elph

∆ ln CO2li f

∆ ln CO2int


= α0 +

n
∑

k=1
α1k


∆ ln CO2pc

∆ ln CO2elph

∆ ln CO2li f

∆ ln CO2int


(t−k)

+
n
∑

k=1
α2k∆ ln REC(t−k) +

n
∑

k=1
α3k∆ ln GDP(t−k) +

n
∑

k=1
α4k∆ ln FDI(t−k)+

n
∑

k=1
α5k∆ ln EPR(t−k)

+
n
∑

k=1
α6k∆ ln URB(t−k) + β1


CO2pc

CO2elph

CO2li f

CO2int


+ β2 ln REC(t−1) + β3 ln GDP(t−1) + β4 ln FDI(t−1) + β5 ln EPR(t−1) + β6 ln URB(t−1) + εt

(3)

Furthermore, our methodological approach is divided into three stages: The first
checks the stationary characteristics of each variable using the unit root test, which enables
the determination of the order of the variables’ integration. In this context, the augmented
Dickey–Fuller (henceforth ADF) and Phillips and Perron (henceforth PP) stationarity tests
by [58,59] will accordingly apply for this objective. After that, the limit testing approach,
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also known as the bound test ARDL, is used to determine whether there are long-term
interactions among factors. The third phase is to assess the short- and long-term input
variables as well as to test their stability. Ref. [57] have all developed the ARDL approaches.
This approach is characterized by the fact that it does not require that the time series be
stable of the same degree, and Pesaran believes that the bound tests can be applied if the
time series is stable at the level, i.e., integrated of zero I(0) or integrated of the first degree
I(1) or a combination of the two, and the only condition for applying this test is that the
time series are not integrated with the second degree, i.e., of the form I(2). The ARDL model
is characterized by the fact that it takes a sufficient number of time delay periods and
gives better results for the parameters in the long term. We are able to determine the size
of the effect that each independent variable has on the dependent variable by using this
methodology. In addition, we are able to determine the complementary relationship that
exists between the dependent variable and the independent variables in both the long term
and the short term within the same equation. Moreover, this methodology is characterized
by the presence of highly reliable diagnostic tests.

3.2. Data and Descriptive Statistics

For this work, we utilized yearly data for Saudi Arabia that was gathered from the
databases of the World Development Indicators (WDI), with data extending from 1990 to
2018 for these indicators. The description and source of the used series are arranged in
Table 1. Likewise, Table 2 displays the main descriptive statistics relating to the variables
over the period in question. One of the most important aspects of this table is the normality
test (Jarque–Bera). This displays that the null assumption of normality cannot be rejected
at 5% for CO2pc, CO2int, CO2elhp, GDP, and urban population variables. Otherwise,
the findings of Jarque–Bera tests expose that CO2pc, CO2int, CO2elhp, GDP, and urban
population have a normal distribution.

Table 1. Description of variables and expected sign.

Indicators Variables Description Source Expected Sign

Environmental indicators

CO2pc CO2 emissions (metric tons per capita).

[60] N/A

CO2int
CO2 intensity (kg per kg of oil equivalent
energy use).

CO2elph
CO2 emissions from electricity and heat
production, total (% of total fuel combustion).

CO2lif
CO2 emissions from liquid fuel consumption
(% of total).

Energy indicator REC Renewable energy consumption (% of total
final energy consumption). [60] Negative

Economic indicators
GDP GDP per capita (constant 2010 USD).

[60] Positive/Negative
FDI Foreign direct investment, net inflows (% of

GDP).

Technology indicator EPR Environmental patents-related technologies. [32] Negative

Demographic indicator URB Urban population (% of the total population). [60] Positive

N/A: not available.
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Table 2. Descriptive statistics and pairwise correlations for Saudi Arabia.

CO2pc CO2elhp CO2lif CO2int REC GDP FDI EPR URB

Mean 13.631 48.710 74.869 2.526 0.013 19,465.34 1.651 42.620 80.891
Median 12.718 49.102 78.032 2.505 0.009 19,367.58 1.043 2.000 80.979
Max 17.691 50.486 90.023 2.868 0.037 21,399.10 8.496 233.000 84.287
Min 10.249 46.981 49.914 2.367 0.006 16,696.41 −1.307 0.000 76.583
SD 2.288 1.168 10.872 0.113 0.008 1195.413 2.517 71.239 2.142
Skewness 0.435 −0.038 −0.908 1.289 1.746 −0.165 1.311 1.558 −0.183
Kurtosis 1.708 1.479 2.879 4.852 4.881 2.336 3.863 4.216 2.023
Jarque−Bera 2.931 2.414 3.732 10.501 19.012 0.708 9.528 13.527 1.405
Probability 0.230 0.299 0.154 0.005 0.000 0.701 0.008 0.001 0.495

CO2pc 1
CO2 elhp −0.265 1
CO2lif 0.248 0.001 1
CO2 int −0.425 −0.322 −0.363 1
REC −0.520 −0.410 −0.185 0.855 1
GDP 0.647 −0.369 0.180 0.128 −0.008 1
FDI 0.444 −0.302 0.061 −0.404 −0.349 0.217 1
EPR 0.851 −0.177 0.040 −0.076 −0.275 0.692 0.061 1
URB 0.900 0.055 0.269 −0.689 −0.782 0.376 0.474 0.675 1

Notes: SD, Min., and Max. are standard deviation, minimum, and maximum, respectively.

In addition to the foregoing, the finding from Table 2 reveals that the range for the
environmental indicators is from 10.249 to 17.691 metric tons for per capita CO2 emissions.
In the interval of 46.981 to 50.486 percent of total combusting fuel, CO2 emissions from
electricity and heat generation are actually produced. The utilization of liquid fuel usage
results in CO2 emissions ranging from 49.914 to 90.023 (kt). For the carbon dioxide intensity,
the range is 2.367 to 2.868 kg of oil equivalent energy consumption. Aside from that,
the proportion of green energy use in total final energy use varies from 0.006 percent
to 0.037 percent. Concerning the economic indicators, per capita GDP varies from USD
16,696.41 to USD 21,399; FDI ranges from −1.307 to 8.496% of GDP. Environmental patents-
related technologies range from 0 to 233 and urbanization from 76.583 to 84.287% of the
total population. Likewise, this table demonstrates that per capita GDP has the strongest
link with per capita CO2 emissions; however, the CO2 intensity variable has the weakest
relationship with GDP per capita. Concerning the environmental indicators, CO2 intensity
has the highest correlation with renewable energy. Apart from that, increasing renewable
energy consumption is negatively linked to GDP and associated negatively with three out of
four measures of CO2 emissions, implying that increasing usage derived from green energy
sources causes economic growth to slow without worsening environmental conditions.

4. Empirical Results

The following stages are required for the use of the ARDL approach for cointegration
analysis: (i) check for time-series stationarity; (ii) determine the most appropriate number
of lags; (iii) to establish a long-term relationship, it is necessary to go through the bound
test; (iv) compute the long- and the short-term parameters of the regression model; (v) the
CUSUM and CUSUMSQ procedures, as well as residue analysis, are used to determine the
model’s stability.

This study performs the ADF and PP tests of stationarity in order to obtain the
integration order of the variables under consideration. We must first confirm that no series
of order 2 is integrated because, as presented by [57], the critical values only concern
integration levels 0 and 1. Once this is accomplished, we can utilize the bound test.
Although it should be noted that performing the bounds test for cointegration is preferred
in case the variables are integrated into dissimilar orders I(0) and I(1), this does not rule out
the use of the bounds test in circumstances when both variables are integrated in a similar
order. Table 3 presents the findings of the assessed tests. Whole variables are shown to be
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stationary not at level but at the first difference. As a result, they are integrated into the
first order.

Table 3. Unit root tests analysis.

Variables
ADF Test PP Test

Order of Integration
Level First Difference Level First Difference

CO2pc
−1.495
(0.519)

−1.010
(0.734)

−1.327
(0.602)

−4.162
(0.003) * I(1)

CO2elph
−2.907
(0.059) ***

−7.685
(0.000) *

−2.874
(0.063) ***

−7.685
(0.000) * I(0)/I(1)

CO2lif
−3.105
(0.038) ***

−5.333
(0.000) *

−3.313
(0.024) **

−5.513
(0.000) * I(0)/I(1)

CO2int
−3.864
(0.007)*

−6.931
(0.000) *

−4.135
(0.004) *

−6.931
(0.000) * I(0)/I(1)

REC −3.265
(0.026) **

−4.942
(0.000) *

−3.577
(0.013) **

−5.032
(0.000) * I(0)/I(1)

GDP −1.932
(0.313)

−5.504
(0.000) *

−2.024
(0.275)

−5.541
(0.000) * I(1)

FDI −2.429
(0.143)

−3.865
(0.006) *

−1.637
(0.451)

−3.705
(0.009) * I(1)

EPR 4.085
(1.000)

1.360
(0.998)

3.536
(1.000)

−5.107
(0.000)* I(1)

URB −0.116
(0.938)

−5.302
(0.000) *

−2.933
(0.053) ***

−21.170
(0.000) * I(0)/I(1)

Note: ***, **, and * show significance at 10%, 5%, and 1%, respectively. The null hypothesis for the PP and ADF
tests is that a series has a unit root (is non-stationary).

After defining the order in which the variables are integrated, the following objective is
to establish the appropriate number of lags to consider. It is next essential to fix an optimal
number of lags for the vector autoregressive (VAR) regression that is accomplished by
applying the Akaike information criterion (AIC) criteria and Schwartz information criterion
(SIC) (Table 4). For the period 1990–2018, two VAR models (P = 0 and 1) were estimated.
One-unit lag is implied by the AIC criteria. In this study, just the last requirement has been
taken into consideration.

Table 4. Criteria of selecting lag length for cointegration.

Lag LogL LR FPE AIC SIC HQ

0 75.963 NA 1.85 × 10−10 −5.381 −5.091 −5.298
CO2pc 1 226.131 219.476 * 3.09 × 10−14 * −14.163 * −12.131 * −13.578 *

0 92.639 NA 1.53 × 10−11 −7.876 −7.578 −7.806
CO2elph 1 214.737 166.497 * 7.00 × 10−15 * −15.703 * −13.620* −15.212 *

0 92.935 NA 1.49 × 10−11 −7.903 −7.605 −7.833
CO2lif 1 206.612 155.014 * 1.46 × 10−14 * −14.964 * −12.881 * −14.474 *

0 43.819 NA 1.72 × 10−9 −3.151 −2.857 −3.073
CO2int 1 175.415 186.428 * 6.64 × 10−13 * −11.117 * −9.056 * −10.571 *

* Designates lag order selected by the criterion, NA refers to not available. LR: Likelihood ratio criterion.
FPE: Final prediction error. HQ: Hannan–Quinn criteria.

To check out the long-term association between the series in the investigation, we use
the ARDL approach for cointegration after choosing the optimal lags for the model and the
sequence in which the covariates should be integrated. The F-statistic is calculated using
the bound test (Table 5). This tests the null assumption that the parameters of the lagged
variables in Equation (2) are zero. Concerning the environmental indicators, the F-statistics
are equal to 5.212 for CO2pc, 6.278 for CO2elph, 6.240 for CO2lif, and 5.482 for CO2int in
comparison to the critical values under and above the 5% and 1% significance levels. The
test statistic is higher than the maximum allowable level (3.41 and 4.68, respectively). As a
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result, we reject the null assumption of the absence of a long-term link and conclude that
there is a long-term association between the different variables in the four models.

The [57] approach, which is reliant on the assessment of ARDL modeling techniques,
was used to compute the parameters of the short- and long-term association (Equation (3)).
As exposed in Table 6, the estimation results reveal that all the parameters of the estimated
regression are extremely significant, indicating that the model is reliable (5 percent and
even 1 percent in most cases). Likewise, the model is globally significant. In addition,
the error correction process is assessed to examine the short-term linkage between the
factors. The outcomes demonstrate that the error correction term ECM (−1) displays a
statistically significant coefficient, which suggests that the speed with which short-term
adjustments attain equilibrium may be made statistically significant. Furthermore, this
term has a value of around −0.372 (−0.540), which means that when the CO2pc (CO2elph)
are over or under their equilibrium value, they would adjust by 37.2 percent (54 percent)
every year, depending on their position. The coefficients of the lag variables serve as a
representation for the short-run elasticities. These latter are statistically significant with
the predicted signs for all variables and all models, except for renewable energy for the
CO2lif and CO2int models, which are not statistically significant. Increasing real GDP per
capita and urbanization by 1% each, for example, would result in a 0.060 percent and a
25.040 percent rise in CO2 per capita, respectively, in the short run. It is obvious that an
augmentation in GDP per capita will require augmentation in energy use for the transport
of people and goods, for example. Indeed, in the case of Saudi Arabia, individual transport
of people is more developed, and the more income increases, the more people tend to
afford devices with combustion engines, fueled by gasoline and which emit polluting
gases and particles. The rise in wealth will result in augmented demand. In the idea of
wanting to meet the added demand, environmental resources will be overexploited and
thus cause environmental degradation. In addition to the foregoing, the concentration of
the population is growing in the cities of Saudi Arabia. This leads to the development of
transport networks and an increase in household waste, a responsible factor affecting the
environment. Saudi Arabia is urbanizing in a unique process that weighs heavily on the
natural environment of cities and destroys their ecological heritage.

Furthermore, the long-run coefficients, which likewise express long-term elasticities,
are shown in the middle of Table 6. According to the statistically significant values of the
variable “REC,” an increase of 1 percent in green energy use would cause reductions in
carbon emissions of 0.185 percent, 0.031 percent, and −0.305 percent, respectively, in the
following three categories: CO2pc, CO2elph, and CO2int. This coefficient has a negative
sign, which is compatible with the outcomes of [39] for the case of ASEAN +3 economies,
ref. [41] for the example of Argentina, ref. [61] for the example of China and the United
States and India, ref. [43] for the example of Central/Eastern European countries, and [44]
for 36 OECD countries. These studies unequivocally show that a reduction in carbon
emissions relates to the utilization of renewable and environmentally friendly forms of
energy. Therefore, green sources are proving to be among the most promising solutions
available, if not the best, as long as they do not lead to environmental damage, especially
for CO2pc, CO2elph, and CO2int. The good distribution of clean energy sources, particularly
biomass, hydroelectricity, wind power, and solar, appoint them as an important asset for
Saudi Arabia, and they can improve the economic situation and the quality of life and help
reduce the burden on the environment.
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Table 5. ARDL Bound Test results.

Estimated Model
Bound Testing to Cointegration CO2pc Bound Testing to Cointegration CO2elph

Optimal Lag Length F-Stat Cointegration Optimal Lag Length F-Stat Cointegration

FCO2pc /
[
CO2pc/REC, GDP, FDI, EPR, URB

]
1,1,0,1,0,1 5.212 ** Yes FCO2elph /

[
CO2elph/REC, GDP, FDI, EPR, URB

]
1,1,1,1,1,1 6.278 * Yes

FREC/
[
REC/CO2pc, GDP, FDI, EPR, URB

]
1,0,1,0,1,1 0.742 No FREC/

[
REC/CO2elph, GDP, FDI, EPR, URB

]
1,1,1,0,1,1 5.033 ** Yes

FGDP/
[
GDP/CO2pc, REC, FDI, EPR, URB

]
1,0,0,0,0,1 5.262 ** Yes FGDP/

[
GDP/CO2elph, REC, FDI, EPR, URB

]
1,1,0,1,0,1 1.867 No

FFDI /
[
FDI/CO2pc, REC, GDP, EPR, URB

]
1,0,0,0,0,0 7.236 * Yes FFDI /

[
FDI/CO2elph, REC, GDP, EPR, URB

]
1,0,0,0,0,0 7.044 * Yes

FEPR/
[
EPR/CO2pc, REC, GDP, FDI, URB

]
1,0,0,0,1,0 5.462 ** Yes FEPR/

[
EPR/CO2elph, REC, GDP, FDI, URB

]
1,0,0,0,1,0 5.840 ** Yes

FURB/
[
URB/CO2pc, REC, GDP, FDI, EPR

]
1,0,1,1,0,1 8.560 * Yes FURB/

[
URB/CO2elph, REC, GDP, FDI, EPR

]
1,1,1,1,0,1 14.670 * Yes

Bound testing to cointegration CO2lif Bound testing to cointegration CO2int

FCO2li f /
[
CO2li f /REC, GDP, FDI, EPR, URB

]
1,0,0,0,1,0 6.240 * Yes FCO2int /[CO2int/REC, GDP, FDI, EPR, URB] 1,0,0,0,0,1 5.482 ** Yes

FREC/
[

REC/CO2li f , GDP, FDI, EPR, URB
]

1,1,0,1,0,1 1.373 No FREC/[REC/CO2int, GDP, FDI, EPR, URB] 1,0,0,0,1,1 0.876 No

FGDP/
[

GDP/CO2li f , REC, FDI, EPR, URB
]

1,1,0,1,1,0 5.377 ** Yes FGDP/[GDP/CO2int, REC, FDI, EPR, URB] 1,0,0,0,0,1 2.313 No

FFDI /
[

FDI/CO2li f , REC, GDP, EPR, URB
]

1,0,0,0,0,0 6.880 * Yes FFDI /[FDI/CO2int, REC, GDP, EPR, URB] 1,1,0,0,0,0 6.501 * Yes

FEPR/
[

EPR/CO2li f , REC, GDP, FDI, URB
]

1,0,0,0,0,0 1.344 No FEPR/[EPR/CO2int, REC, GDP, FDI, URB] 1,0,0,0,0,0 1.365 No

FURB/
[
URB/CO2li f , REC, GDP, FDI, EPR

]
1,0,1,1,0,1 7.316 * Yes FURB/[URB/CO2int, REC, GDP, FDI, EPR] 1,1,1,1,0,1 6.758 * Yes

Significance level Lower bound I(0) Upper bound I(1)
10% 2.26 3.35
5% 2.62 3.79
1% 3.41 4.68

The selection of optimal lags is implemented on AIC. Note: * and ** are rejection of null hypothesis at 1% and 5% levels of significance, respectively.
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Table 6. Estimated coefficients from the ARDL models.

Model 1: CO2pc Model 2: CO2elph Model 3: CO2lif Model 4: CO2int

Coefficients t-Stat Coefficients t-Stat Coefficients t-Stat Coefficients t-Stat

Short-run results
∆lnREC −0.036 −0.966 * −0.076 −3.426 * −0.021 −1.063 −0.084 −0.835
∆lnGDP 0.060 0.222 * 0.189 1.436 * 0.299174 2.143 ** 0.359 0.409 **
∆lnFDI 0.000 0.094 * 0.000 0.226 * 0.004 1.507 ** −0.040 −1.877
∆lnEPR −0.012 −0.862 ** −0.000 −0.115 * −0.001 −0.212 * −0.008 −0.186
∆lnURB 25.040 1.980 * 15.845 1.981 * 2.022 2.296 ** 63.757 1.948 ***
ECM(−1) −0.372 −1.902 *** −0.540 −2.688 *** −1.322 −6.772 * −0.276 −1.475 *
Long-run results
lnREC −0.185 −1.404 * −0.031 −0.534 * −0.015 −1.052 −0.305 −0.674 *
lnGDP 0.163 0.230 ** 0.073 0.280 * 0.226 2.300 ** 1.299 0.405
lnFDI 0.035 1.416 * 0.010 1.494 ** 0.003 1.525 * −0.147 −0.982
lnEPR −0.033 −0.922 ** −0.017 −1.027 * −0.009 −1.544 * −0.031 −0.185
lnURB 2.418 0.757 * 2.866 1.520 * 1.529 2.636 ** 2.602 0.173 *
Constant −10.736 −0.627 * 15.670 1.812 *** 5.463 1.867 *** 3.628 0.047 **
Diagnostic test statistics
LM Test 0.394 0.477 4.640 0.304
ARCH test 1.137 0.140 0.040 0.117
Durbin-
Watson 1.357 1.735 2.444 2.012

R-squared 0.971 0.813 0.796 0.709
Stability Analysis
CUSUM Unstable Stable Stable Stable
CUSUMSQ Stable Unstable Stable Stable

Note: ***, **, and * indicate significance levels at 10%, 5%, and 1%, respectively.

Similarly, the long-term elasticity of environmental patents-related technologies (EPR)
to environmental protection variables displays a statistically negative and significant
coefficient (except CO2int), which signifies that a 1% augmentation in EPR would imply a
decline in CO2 emissions. This is in accordance with the outcomes of [13] for the case of the
United States, ref. [51] for the case of China’s 30 provinces and 32 economic sectors, ref. [62]
for the case of United States, ref. [63] for the case of Malaysia, ref. [64] for a representative
sample of 15 European nations, who generally found that environmental innovation is
going to be a crucial driver in the effort to cut harmful emissions, and it is expected
that stronger emission standards would generate environmental improvements, which
will lead to additional cuts in emissions. Moreover, the implementation of cutting-edge
technologies that are protected by environmental patents is beneficial to the conservation
of the natural world because it will make a sizeable contribution to the reduction of carbon
emissions in Saudi Arabia. This, in turn, makes the protection of the environment a higher
priority. This is primarily the potential role of environmental patents-related technologies
in the promotion of green technologies, non-polluting or less polluting, in the context of
climate variation and worldwide warming, and the promotion of the transfer of such green
technologies in favor of Saudi Arabia.

Even though the model parameters are statistically significant (both individually and
globally), it is still necessary to determine whether the model is accurate. As a result,
validity checks, such as autocorrelation of error testing, should be implemented on the data.
Because of autocorrelation among residuals, inconsistencies in the calculated parameters
will occur when there is a correlation between the residuals (since the lagged endogenous
variable is included in the regression as an exogenous variable). The results of the various
validity tests used are presented in Table 6. In general, the diagnostic tests have revealed
that the specifications that have been implemented are acceptable. The tests implemented
to determine the existence of ARCH (autoregressive conditional heteroscedasticity) in
the assessed specification do not reveal any evidence of a heteroskedasticity problem at
the 5 percent threshold of the estimated regression. In addition, the LM-test tests used
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to determine whether correlated residues were present do not reveal any issues with
autocorrelation of errors at the 5% level. Likewise, the adjustment parameters defined by
R2 are between 0.709 and 0.971, respectively, which shows that the model fits well.

Checking the stability of the short- and long-term parameters in the specification (3)
is the final stage in ARDL estimation. There are two strategies used: CUSUMQ, which
is based on the cumulative sum of squared recursive residuals, and CUSUM, which is
based on the cumulative sum of recursive residuals (Figure 1). The results demonstrate that
the graph of the statistics of CUSUM and CUSUMQ remains within the range of critical
values for the vast majority of models when the 5 percent threshold is reached, indicating a
long-term stability of the model coefficients.
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5. Conclusions and Implications

This article examines the role of environmental innovation and green energy de-
ployment in improving the environment in Saudi Arabia during the period 1990–2018.
Specifically, this paper explores the long-term relationship, also known as cointegration,
between green energy use, real GDP per capita, FDI, environmental patents-related tech-
nologies (EPR), urbanization (UBR), and environmental degradation. By using comparative
analysis, this last one is proxied by four environmental indicators of CO2 emissions: per
capita CO2 emissions (CO2pc), CO2 emissions resulting from the generation of heat and
electricity (CO2elph), CO2 emissions caused by the usage of liquid fuels (CO2lif), and CO2
intensity (CO2int). Further, the ARDL procedure developed by [57] and initially intro-
duced by [56] is also implemented. Overall, the results of the ARDL regression indicate
the existence of a long-term linkage between our two main variables (REC and EPR) and
the different measures of CO2 emissions (except CO2lif for REC and CO2int for EPR). An
increase of 1% in green energy use would cause reductions in carbon emissions of 0.185%,
0.031%, and −0.305%, respectively, in the following three categories: CO2pc, CO2elph, and
CO2int. In addition, the long-term elasticity of EPR to environmental protection variables
displays a statistically negative and significant coefficient (except CO2int), which signifies
that a 1% augmentation in EPR would imply a decline in CO2 emissions. In another sense,
the use of renewable energies and technologies linked to environmental patents prove to be
good alternatives, if they do not contribute to environmental pollution. Thus, Saudi Arabia
as a rich country is more likely to deploy renewable energy technologies, as it can more
readily support the costs of creating new technologies and motivate them with financial
rewards. In addition, the results demonstrate that the error correction term ECM (−1) has
a significant coefficient showing that the short-term adjustment to equilibrium in terms
of speediness is robust. Furthermore, this term has a value of around −0.372 (−0.540),
which means that when the CO2pc (CO2elph) are over or under their equilibrium value,
they would adjust by 37.2% (54%) every year, depending on their position. Interestingly,
the findings highly appreciate the contribution of both green energy and environmental
innovation in protecting the environment in Saudi Arabia.

According to these findings, the following policies are recommended. First, the expan-
sion of green energy sources. The industrialization process in Saudi Arabia necessitates a
large number of natural resources, particularly energy; however, renewable energy can be
developed more speedily. Renewable energy production can both meet industrialization’s
energy demands and help reduce carbon emissions. In fact, the growth of green sources
has, without a doubt, contributed to the decline in the level of carbon emissions, and it
has the potential to assist considerably to lessen polluted emissions in the foreseeable
future [39,43,44]. At this point, policies relating to renewable energy should concentrate
on reducing emissions by boosting the proportion of green energy sources and optimizing
technologies related to the green energy sector, relocating and reforming polluting indus-
tries to increase industrial efficiency and so forth. The optimal link between green energy
sources and carbon emissions may be improved experimentally by increasing the share of
green energy. There should be more emphasis on regulating the percentage of green energy
in Saudi Arabia’s energy mix and ensuring that carbon emissions are significantly reduced.
Meanwhile, the ideal reduction impact on emissions for renewable energy technology
is still in its infancy; thus, Saudi Arabia should actively seek international collaboration
and increase the share of energy generated from green sources or decrease the energy
intensity. Second, to aid the adoption of innovative environmental legislation to remove the
barriers that prevent patents from being completely implemented in the secondary sector,
Saudi Arabia should enact environmental laws. In addition, the government should also
consider the production per renewable energy unit and focus on ensuring that economic
growth and renewable energy development are coordinated. Although current efforts to
minimize carbon emissions are minimal, it is possible that increasing the efficiency of green
energy sources may become a central focus in the future. In addition, Saudi Arabia should
implement measures that encourage the creation of environmental-related patents and
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speed up their spread across the country. Finally, Saudi Arabia has determined that its
economy needs to shift toward energy-intensive industries and services, as well as foster
the growth of high technology.
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Abbreviations

Acronyms Description
CO2pc CO2 emissions (metric tons per capita).
CO2int CO2 intensity (kg per kg of oil equivalent energy use).
CO2elph CO2 emissions from electricity and heat production, total (% of total fuel combustion).
CO2lif CO2 emissions from liquid fuel consumption (% of total).
REC Renewable energy consumption (% of total final energy consumption).
GDP GDP per capita (constant 2010 USD).
FDI Foreign direct investment, net inflows (% of GDP).
EPR Environmental patents-related technologies.
URB Urban population (% of the total population).
ARDL Autoregressive Distributed Lag.
OECD Organization for Economic Co-operation and Development.
R&D Research and development.
IEA International Energy Agency.
SAARC South Asian Association for Regional Cooperation.
FMOLS Fully Modified Ordinary Least Square.
ASEAN +3 Association of Southeast Asian Nations Plus Three.
ASEAN Association of Southeast Asian Nations.
DOLS Dynamic ordinary least square.
FE-OLS Fixed-effects ordinary least square.
EKC Environmental Kuznets Curve.
GMM Generalized method of moments.
US United States.
CS-ARDL Cross-sectionally augment autoregressive distributed lag.
AMG Augmented mean group.
BRICS Brazil, Russia, India, China, and South Africa.
PP Phillips and Perron unit root test.
ADF Augmented Dickey–Fuller unit root test.
WDI World Development Indicators.
CUSUM Cumulative sum of recursive residuals.
CUSUMSQ Cumulative sum of squared recursive residuals.
VAR Vector autoregressive regression.
SIC Schwartz Information Criterion criteria
AIC Akaike Information Criterion.
LR Likelihood ratio criterion.
FPE Final Prediction Error.
HQ Hannan–Quinn criteria.
ECM Error correction term.
ARCH Autoregressive Conditional Heteroscedasticity.
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