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Abstract: Historically, the combination of generous subsidies along with extreme climate has led to
unsustainable domestic electricity consumption in Saudi Arabia. The residential sector constitutes a
significant portion of this consumption. Amid the economic challenges, the country enforced a new
electricity tariff for residential consumers in 2018. This study thus leverages change in 2018–2020 by
collecting and analyzing the electricity consumption data of 73 households in the Eastern Province of
Saudi Arabia. The energy consumption is modeled based on the households’ attributes (e.g., dwelling
type, ownership, number of residents, rooms, ventilation type, etc.) and applied tariffs using a
machine learning technique. The extreme learning machine (ELM) is employed in solving the
overfitting problem due to low-volume data. The correlation matrix is also constructed to determine
the relationship between the household attributes. The ELM model developed in this study extracts
the correlation between the input variables in determining energy consumption and also predicts
the energy consumption related to low consumption data. The findings indicated that the electricity
consumption between the pre-revised tariff year and the revised tariff enforcement year saw a
reduction which was consistent in the subsequent years. This was also validated by the paired sample
t-test, which showed a significant decrease in electricity consumption for the study period. The
analysis also revealed that several household attributes had a relatively high impact on the reduction
in the electricity consumption level following the revised tariffs, whereas the majority of the attributes
had a moderate impact. In addition to these key findings, the demonstrated pathway adopted in this
study is itself a methodological contribution that provides critical information about the sensitivity of
the impacts of tariffs on energy consumption with respect to different household attributes. Economic
factors being the critical stress need to be blended with existing energy consciousness for positive
changes in favor of energy-saving behavior of the household members. The study does not attempt
to represent the population of concern, but demonstrates a methodology that would help unleash
inherent energy consciousness in favor of sustainable and energy-efficient behavior.

Keywords: energy consumption; energy conscious behavior; extreme learning machine; electricity
tariff

1. Introduction

The per capita electricity energy consumption in the residential sector in Gulf Cooper-
ation Council countries, including Saudi Arabia is rapidly increasing [1]. The volume of
consumption is placing significant stress on the current production capacity of electricity
while challenging its ability to cope with augmented future demand [2]. Residential energy
demand can be attributed to several factors, notably heavy subsidies in conjunction with
harsh weather conditions, which are seen as the primary cause, and growth in the country’s
population and prosperity, leading to rapid urbanization and contributing to rising energy
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demand and its volume of consumption [3–8]. Of all the sectors in Saudi Arabia, residen-
tial buildings take a large share of the country’s energy supply, whereby roughly half of
the entire country’s electricity consumption goes to the sector [9]. Buildings increasingly
require more energy, particularly in the summer months, due to the demand for heavy air
conditioning [6,10]. To address the growth in energy demand and maintain energy security,
several energy-efficiency and conservation initiatives have been established by relevant
agencies [1,11].

For example, in recent years, public awareness among the Saudi population on achiev-
ing energy conservation is on the rise, facilitated by various public campaigns and pro-
grams [12]. These include information campaigns aiming to positively influence customer
purchasing decisions by ensuring that they are well informed about the energy efficiency
levels of appliances available in the market. [3]. Moreover, standards related to the use
of insulation material in new commercial construction projects have been formulated to
facilitate the drive to conserve energy [11]. However, the effectiveness of such initiatives on
actual conservation practice and their behavior is yet to be known. While these efforts have
been successful in educating the Saudi public, these initiatives have nonetheless not been
targeted at individual household members. In response to this, Nahiduzzaman et al. [2]
undertook research aiming at informing household members about the significance of
energy conservation and the effective means of achieving it through simple behavioral
changes. If applied in conjunction, these measures will serve to raise public awareness on
energy conservation, promoting energy- and environment-conscious culture.

The building sector in Saudi Arabia is critical as residential buildings account for more
than half of the domestic electricity consumption. The low tariff has been one of the pivotal
factors responsible for high residential consumption. However, due to the realization of this
fact and mounting economic stress on the national economy, the electricity tariff was raised
in December 2015 and January 2018 to reduce the governmental subsidies [13]. In addition,
a few sporadic initiatives, notably campaigns, exhibitions, messages for university students,
posters, cultural and artistic activities in schools, etc., have been launched to improve
energy conservation awareness and address the heightening residential energy demand.
Nevertheless, these initiatives have been top-down in nature and have not considered the
nature of the relationship between consumer behavior and electricity tariff [2].

Past studies have shown that energy subsidies encourage lavish energy consump-
tion [5,8]. A restructured subsidy system not only has a positive effect on energy con-
sumption and thus the environment, but also significantly impacts the country’s econ-
omy [14]. Fewer subsidies will curb the wasteful consumption observed among households
by making them more cost-conscious regarding the consequence of their poor decisions.
Accordingly, this study examines how a recently revised electricity tariff structure (im-
plemented in 2018) has altered consumption patterns among Saudi Arabian households
against the backdrop of the various awareness campaigns launched by the government.
This is achieved by retrieving and analyzing electricity consumption data of 73 households.
In effect, this change in energy policy, in conjunction with the campaigns, serves as a means
of assessing the extent to which economic factors and energy conservation awareness
activate the underlying energy consciousness possessed by household members.

Against this backdrop, analyzing the subsequent years after the enforcement of the
new tariff structure in 2018, this study attempts to assess the persistence of the behavioral
change resulting from the change in electricity tariff. In other words, this study focuses
on the nature of the “catalytic” effect of the governmental regulation-based intervention
in further enhancing the current energy consciousness among the residents. Thus, the
study investigates the effectiveness in addition to the persistence of the behavioral change
precipitated by the energy policy intervention imposed by the government. The study also
develops a novel machine learning-based model to predict the electricity consumption
in Saudi households based on key characteristics such as floor area, number of house-
hold members, etc. The employed prediction model is the extreme learning machine
(ELM) technique, which is proposed in this study based on its ability to solve problems
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related to overfitting in certain learning-based techniques that suffer from low-volume
data processing. Moreover, the application of a sensitivity analysis approach based on a
correlation matrix of input variables that can provide accurate pre-processing of data is
another significant contribution of this study. Thus, the study seeks to address the following
questions: (i) Did the revised electricity tariff structure lead to a positive or negative change
in household consumption patterns? (ii) Did the changes in consumption patterns persist?

This study represents an extension of the study by Nahiduzzaman et al. [2], which
investigated the role of the change agent in influencing pro-environmental behavior. How-
ever, the present study differs in several key respects. First, whereas the previous study
investigated the change in consumer behavior based on direct intervention through change
agents, the present study investigates consumer behavior due to increased electricity prices.
Second, a scientific attempt is made to understand whether the new tariff structure will
positively stimulate the inherent pro-environmental behavior towards conservation. The
present study is a novel contribution since no previous study has examined how two fac-
tors, i.e., (i) reform in electricity price structure and (ii) the presence of pro-environmental
behavior, influence the households’ conservative patterns. Furthermore, the behavioral
shift as a consequence of external economic factors explored in the present study provides
a unique contribution to the literature, as it represents the first study of its kind to analyze
how electricity price changes impact the consumption habits of households in a country
situated in the Middle East and North Africa (MENA) region. While a number of past
studies have examined the impact of the revised electricity tariff structure on household
consumption [15,16], the geographical focus of these was different. Therefore, the findings
of this study will help inform sustainable energy-conservative policies.

Extracting the correlation between the input variables in determining the energy
consumption and presenting it in the form of a correlation matrix is one of the innovations
of this study. In addition, the development of an ELM model that has a high ability
to process high-volume data and is able to predict energy consumption related to low-
consumption data without over-fitting problems is considered one of the other innovations
of this paper.

The remainder of this paper is organized as follows. In Section 2, a detailed literature
review is given to highlight economic and non-economic factors impacting energy conscious
behavior. Section 3 describes the energy sector of study area (i.e., Saudi Arabia) and the
implemented energy efficiency regulations, including efficiency labeling and electricity
tariffs. The developed methodology is proposed in Section 4 based on statistical analysis
and the ELM. The data gathered are investigated based on the methods proposed in
Section 5. In this section, an ELM is trained and used to model the consumption data with
respect to the attributes of the households. Moreover, based on the developed ELM model
and correlation analysis, sensitivity analysis is carried out in this section to determine
the impacts of the attributes on the changes in the electricity consumption by new tariffs.
Section 6 provides a comprehensive discussion on the analysis. Section 7 concludes the
paper and highlights the findings of the paper.

2. Literature Review

During the past years, research in environmental behavior has identified a vast ar-
ray of factors that influence energy consciousness [17]. Researchers have highlighted the
significance of taking both the internal and external variables into account when explain-
ing energy consciousness attitudes [18–21]. Internal variables, studied by psychologists,
consider factors that are internal to the individual, such as values and attitudes, while
external factors, typically examined by economists, consider the environment of the indi-
vidual and include factors such as income and prices [18,22]. Researchers have regarded
energy consciousness as an effective means of achieving ecological sustainability due to its
ease of implementation and effectiveness in mitigating environmental impacts [23]. The
following sections summarize previous research efforts that have studied the influence of
non-economic and economic factors in motivating energy consciousness.
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2.1. Non-Economic Factors

Providing households with information about energy consumption can be an effective
tool for promoting behaviors aimed at achieving energy savings. It has been established
that energy-conscious household members who possess knowledge related to the envi-
ronment are more likely to achieve household savings [24–26]. For example, supplying
households with information on achieving energy conservation, also known as antecedent
information [27], has proven effective. In [28], the researchers investigated the effectiveness
of using “video modeling programs” along with feedback in realizing energy consump-
tion reductions. Researchers have also used feedback information to encourage energy
consciousness. For instance, [29] evaluated how customized consumption feedback in con-
junction with other information affected energy-related behavior and energy reduction in
low-income households. These studies demonstrate the power of tailor-made information
in triggering a positive change in consumption behavior among households.

Combining interventions has also been shown to effectively encourage households
to conserve energy [30]. For example, [31] investigated the effectiveness of employing
incentives and minimal justification techniques towards encouraging energy-conservative
behavior of households. Similarly, [30] employed a combination of interventions to examine
their effect on direct and indirect energy consumption, energy behavior, and household
knowledge. These studies stress the significance of information in conjunction with mixed
approaches toward reforming household members’ energy consumption behavior.

Public awareness campaigns are also an effective intervention for encouraging energy-
conservative behavior. However, public awareness on matters of energy consumption
is low in Saudi Arabia. To study the public appreciation of their electricity bills, [12]
developed a questionnaire survey administered among several respondents. The survey
result revealed that a majority of the respondents were unaware of the Saudi electricity
block tariff system. Further, when asked if they read their electricity bill carefully, nearly
half the respondents reported that they did not read their bills (ibid.).

2.2. Economic Factors

While the previous section underscored the importance of information and adopting
a combination of approaches to encourage households to conserve energy, this section
summarizes past works showing how economic incentives can inspire positive energy
conservation behavior among households. Altering behavior is not a straightforward
process. According to [32], as most of the energy-related behaviors of individuals are
habitual, changing these behaviors can pose a challenge without the action of external
factors. The economic incentive is one example of an external factor that can positively
alter the behavior of individuals by encouraging them to consume less energy. Numerous
past studies support this observation. For example, ([33], p. 2) found economic factors
influenced environmental attitudes. Chen et al. [34] found that bill-consciousness positively
predicted the intention to conserve energy. Past research has also reported differences in
the level of energy consciousness engagement based on gender. For example, [23] found
that women were more inclined to behave environmentally than their male counterparts
with similar economic status. Silvi and Padilla [35] concluded that individuals with energy
consciousness were more prone to respond positively to external factors such as economic
constraints. Notably, the study suggests that one approach to limiting excessive consump-
tion is raising block tariffs. In another study by Parzonko et al. [36], it was seen that energy
consciousness actions that were either legally imposed or the ones that resulted in financial
benefits were more likely to be adopted.

Electricity pricing is one of the most effective tools in influencing the household’s
behavior [37,38] that can cap the pace of consumption increase. Studies show that imple-
menting the increasing block tariffs has significantly reduced the residential electricity
consumption in the high-income group in China based on regional and household observa-
tions [39]. For instance, [15] administered a survey to household members and found that
more than half of the households had been encouraged to lower their energy consumption
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in response to tiered electricity pricing (TEP). Reiss and White [16] found that an unan-
nounced rise in the electricity price was sufficient to prompt a curtailment in the average
electricity consumption in households over a short period of time. However, other studies
have shown that several factors have to be at play to affect positive change among house-
holds. For example, ([40], p. 1) found that greater public awareness of the tiered pricing of
household electricity in combination with other factors strongly influenced reforming the
inefficient electricity consumption pattern of households. A nationwide study in Nepal
showed that the implementation of a peak-demand tariff has a positive impact on rural
electrification. It improves the load factor at the system level and the load distribution at
the household level [41].

In their review of the different sets of factors influencing electricity consumption in
households, [42,43] found that the contextual factor having the most significant impact on
household energy consumption was the energy price. Past works have also demonstrated
that electricity price reforms can have uneven effects between and within households.
For instance, ([44], p. 9) concluded that households at different income levels displayed
different attitudes in response to price reforms. In Turkey, ([45], p. 21) found that low-
income households found it harder to adapt to electricity price reforms. Price reforms
can also have varying impacts among different genders, as illustrated by ([46], p. 1). It
was concluded that energy-saving awareness increased more among women than men
following the implementation of TEP.

3. Study Area: Saudi Arabia

Two governmental bodies are primarily responsible for the energy sector of the country,
including the Ministry of Water and Electricity (MOWE) and the Ministry of Petroleum
and Mineral Resources (MOPM) [47]. The responsibility of MOWE includes establishing
policies for the electricity sector and overseeing the sector’s private investment. Another
agency, the Saudi Electric Company (SEC), has restructured the electricity tariff in a bid
to lower energy demand. Further, MOWE, in an attempt to lower peak demand, has
established limits for the maximum amount of electricity that can be delivered to large
power consumers [48]. The National Energy Efficiency Program (NEEP) introduced a
range of programs to curb energy consumption [11]. The notable programs include energy
labeling for electrical appliances, energy auditing of various types of facilities, and raising
energy efficiency awareness, which are discussed in the following subsections.

3.1. Energy Efficiency Regulations

Saudi Arabia has emphasized the significance of energy efficiency [5,49]; For example,
the Saudi Arabian Standards Organization (SASO) developed standards pertaining to the
utilization of insulation material in newly built commercial buildings [48]. Moreover, as
of 2014, new construction is expected to have wall and roof thermal insulation installed,
among other conditions, before electrical service from the electricity provider is connected
to the building [5]. Many research studies have highlighted the significant impacts of
thermal insulation and high-efficiency AC units on electricity consumption [1].

3.2. Energy Efficient Labeling

In 2010, the Saudi Standards, Metrology and Quality Organization (SASO), a govern-
mental body, launched an “energy-efficient label” regulation aimed at reducing electrical
energy consumption [12]. This initiative is effective since a considerable amount of energy
can be saved by replacing energy-inefficient appliances with more efficient ones. These
energy efficiency labels are affixed to various appliances and provide consumers with use-
ful information about the appliance’s energy consumption. They thus provide a means of
distinguishing classes of appliances that demand the largest amount of energy. These labels
can display technical information and provide a comparative index to assist consumers in
making more informed purchasing decisions. Figure 1 presents a sample energy efficiency
label [48].
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3.3. Electricity Tariffs/Block Rate Structure

Large subsidies encourage lavish energy consumption [48,50] and serve as a deterrent
to investment in energy efficiency [5]. Large subsidies also impose considerable financial
strain on governments as the cost of electricity generation increases [44]. While the popula-
tion of Saudi Arabia has historically enjoyed large subsidies on electricity, reforms to the
electricity tariff structure during the past several years have been undertaken to moderate
excessive energy consumption. In particular, before 1984, a single flat-rate tariff was applied
to residential and industrial customers, amounting to 0.05 SAR/kWh and 0.07 SAR/kWh,
respectively. The subsequent decades saw the adjustment of the residential consumption
tariff from a single flat-rate tariff to a three-tier tariff, while the industrial consumption tariff
remained fixed. In 1995, the industrial consumption tariff was adjusted to a two-tier tariff
system, with 0.10 SAR/kWh being charged for consumption exceeding 2000 kWh/month.
Simultaneously, the maximum electricity price rate for the residential consumption tariff
was increased from 0.15 SAR/kWh to 0.20 SAR/kWh. In 2000, the residential consumption
tariff was revised to include 11 tiers, with a minimum and maximum electricity price rate
of 0.05 SAR/kWh and 0.38 SAR/kWh, respectively. On the other hand, the industrial
consumption tariff was adjusted to the former single flat-rate tariff system with a rate of
0.12 SAR/kWh. After seven months, the maximum rate of residential consumption tariff
was lowered to 0.26 SAR/KWh, while maintaining the same number of tiers [48]. Table 1
presents a comparison of the old and current residential tariff of Saudi Arabia.

Table 1. Residential tariff [13,51].

Consumption
Categories (kWh)

Residential Tariff (Halalah/kWh)

Before 2016 In 2016 In 2018

1–1000 5 5 18
1001–2000 5 5 18
2001–3000 10 10 18
3001–4000 10 10 18
4001–5000 12 20 18
5001–6000 12 20 18
6001–7000 15 30 30
7001–8000 20 30 30
8001–9000 22 30 30

9001–10,000 24 30 30
Over 10,000 26 30 30
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4. Methodology

The present work is a longitudinal study conducted in Saudi Arabia over four years,
beginning in April 2016 and ending in May 2020. The study assessed and compared the
electricity consumption in households during three key periods:

1. Pre-revised tariff year (2016 and 2017);
2. Revised tariff enforcement year (2018); and
3. Post-revised tariff year (2019 and 2020).

The main reason for dividing the analysis into these periods was to facilitate the
process of analyzing the effectiveness of the newly implemented electricity pricing.

For this study, the unit of analysis was a single household. In total, the researchers
managed to secure the energy consumption data of 73 randomly selected households based
in the Eastern Province of Saudi Arabia. Generally, four major styles of housing units can
be found in Saudi Arabia. These include traditional housing, villas, apartments, and other
housing units [52]. For the present study, the primary housing unit type was apartment
units. Given that the most frequent type of housing unit in the country is apartment
units [53], the present study’s sample constitutes a representative portrayal of a typical
Saudi household. The areas of the dwellings ranged from 51 m2 to more than 400 m2. All
the dwellings were relatively new construction, with the oldest dwellings being six years.
These dwellings incorporated AC units, owing to the hot climate that prevails in the region,
with an average temperature ranging from 30 to 47 ◦C and from 11 to 20 ◦C in summer
and winter seasons, respectively [54]. Various AC-unit configurations were utilized by
the housing units occupied by the households, including split units, window-type, and a
combination of both.

Electricity consumption data for each household participating in the study were
retrieved from a web portal maintained by the electricity provider. Since the original unit
of measurement of the retrieved data was in kWh, it was converted to kWh per capita
by dividing the total kWh by the corresponding number of household members. This
conversion ensured that a uniform measure was employed to compare the households
since the household size varied across the sampled population.

A paired sample t-test was performed using IBM SPSS Statistics 22. This statistical
method was employed to compute the average change in electricity consumption and
the significance of the change between any two given years. A positive or negative value
indicates either an increase or decrease in electricity consumption, respectively, between
the two years. In addition, a machine learning-based model called ELM was developed to
predict the electricity consumption profile based on a household’s attributes.

Various artificial intelligence (AI) techniques can be used to predict usage in power
and energy systems. However, the critical point is to choose the ideal method based on the
intended application and the type of data used. Given that the performance of AI-based
techniques is highly dependent on the type of data used, the method chosen should be
such that it does not suffer from data shortages or high data volumes. The data used in
this study have a small number of samples, making it challenging to model input variables
in the training process. Accordingly, to address this problem, a machine learning-based
technique, i.e., the extreme learning machine (ELM), was proposed in this paper for data
processing and electricity consumption estimation.

The overall algorithm for analyzing the impacts of tariffs on the changes in energy
usage and modeling the consumption data based on the households’ attributes is summa-
rized in Table 2. Each step is discussed in detail in Sections 5 and 6. Implementation of the
extreme learning machine (ELM) techniques to model the data is depicted in the flowchart
given in Figure 7.
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Table 2. Steps to analyze the impacts of tariffs on consumption.

Overall Algorithm

• Dividing the data into three categories based on the tariffs and pre-processing the usage data
• Analyzing the impacts of tariff change based on time-series data
• Calculating the paired sample t-test
• Clustering the data into low, medium, and high usage profiles
• Calculating the probability distribution in consumption clusters
• Calculating the probability distribution in the pairwise changes in usage
• Modeling the consumption data based on attributes of the households
• Nonlinear modeling using extreme learning machine (ELM), i.e., Figure 7
Correlation matrix and sensitivity analysis based on households’ attributes

Extreme Learning Machine (ELM)

The ELM is one of the machine learning applications first introduced in 2006 and
based on modifying the conventional single hidden layer feed-forward neural network [55].
Classification, prediction, and estimating the relationships between input variables and
output targets are essential applications of ELM. Unlike some machine learning procedures
and artificial neural network algorithms, the ELM training process is fast. In addition,
hidden thresholds are randomly selected during the network training course, and the
output weight is evaluated without duplicate calculations. As Figure 2 shows, the ELM has
a simple structure consisting of input, hidden, and output layers [56]. The high performance
of ELM in low-dimensional data processing and non-linear activation are other prominent
features of this method. The ELM training process is based on the gradient descent-based
back-propagation training algorithm [57].
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In the ELM structure, after assigning the network parameters, the output matrix for
calculating the hidden layer for the input weight vectors xi = [xi1, xi2, . . . , xiN ]

T is defined
as follows [57]:

Ñ

∑
i=1

βi fi(xi) =
Ñ

∑
i=1

βi f
(
ai.xj + bj

)
= tj, j = 1, . . . , N (1)

where bi demonstrates the bias of the hidden layer, and i shows the number of hidden layer
neurons. The input and the i-th hidden layer nodes are connected by the weight vectors
ai = [ai1, ai2, . . . , ain]

T . The output layer neurons are also connected to the i-th hidden
neuron by the output weight vectors βi = [βi1, βi2, . . . , βin]

T . In the ELM architecture, f (.)
represent the activation function and computed as:

f
(
ai.xj + bj

)
=

1

1 + e−(ai .xj+bj)
, i = 1, . . . , L, j = 1, . . . , N (2)
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In this formulation, Equation (1) can also be written in the following form [58]:

Hβ = T (3)

with

H =

 f (a1.X1 + b1) · · · f
(
aÑ .X1 + bÑ

)
...

. . .
...

f (a1.XN + b1) · · · f
(
aÑ .XN + bÑ

)


N×N

β =

βT
1
...

βT
N


N×m

T =

 tT
1
...

TT
N


N×m

(4)

where H, β, and T are the hidden layer output matrix, output weight matrix, and the
target matrix, respectively. Finally, the output weight can be computed by employing the
Moore–Penrose generalized inverse of H, as follows [58,59]:

β = H
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5. Study Results

The following section presents the findings of the paired sample t-test. The subsequent
section provides the details of the ELM model.

5.1. Paired Sample t-Test

For the paired sample t-test, several assumptions have to be met. For the household
dataset used in the present study, the electricity consumption represents a continuous
variable, the electricity consumption during the different periods are dependent, and the
dataset is normally distributed. Table 3 presents the electricity consumption difference
between the months of 2016 and 2017, before the revised tariff was enforced (it should be
noted that household electricity consumption records for the months prior to April 2016
were not available and were thus omitted from the study). In general, though mostly not
significant, it can be observed that there was an average increase in electricity consumption
between the years 2016 and 2017 (an average of 47 kWh per capita). Thus, there was a
general increasing trend in household electricity consumption before implementing the
revised tariff.

Table 3. Paired sample t-test for months of 2016 and 2017.

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

mean −2 61 −287 73 16 335 20 190 16 −2 61 −287

p-value 0.977 0.612 0.141 0.713 0.902 0.049 * 0.866 0.032 * 0.767 0.977 0.612 0.141

Note: Units are in kWh per capita per month. * Values are statistically significant. Negative values indicate a
reduction in electricity usage from one month to the next.

Table 4 presents the electricity consumption difference between 2017 (the pre-revised
tariff year) and 2018 (the revised tariff enforcement year). Except for March and October,
all the months saw a reduction in average electricity among the participating households.
Moreover, significant reductions were observed in five months, including May, July, Septem-
ber, November, and December. It represents a dramatic change in household electricity
consumption patterns compared to the previous year. More specifically, there was a near
consistent reduction in the average electricity consumption across most months (namely,
–157 kWh per capita). This finding confirms the impact of the new tariffs on energy con-
sumption reduction. Yet, it is noted that the reduction amount is also influenced by other
factors, including tax rates and prices of different energy fuels.
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Table 4. Paired sample t-test for months of 2017 and 2018.

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

mean −19 −134 12 −2 −208 −97 −544 −121 −411 36 −268 −133

p-value 0.683 0.051 0.795 0.964 0.032 * 0.595 0.004 * 0.411 0.011 * 0.751 0.005 * 0.008 *

Note: Units are in kWh per capita per month. * Values are statistically significant. Negative values indicate a
reduction in electricity usage from one month to the next.

Table 5 presents the electricity consumption difference between 2017 (the pre-revised
tariff year) and 2019 (the post-revised tariff year). This analysis provides insights into the
extent to which the revised tariffs have effectively promoted conservative behaviors a year
after their implementation. As can be observed from the table, a consistent reduction in
electricity consumption has been achieved across all the months (an average decrease of
322 kWh per capita). In addition, except for June, October, and December, the reduction
in electricity consumption was significant, further reinforcing the argument that financial
pressure was an effective strategy for stimulating desirable energy consumption behavior
among households.

Table 5. Paired sample t-test for months of 2017 and 2019.

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

mean −163 −198 −129 −301 −533 −283 −764 −428 −550 −74 −299 −146

p-value 0.003 * 0.009 * 0.018 * 0 * 0 * 0.119 0 * 0.007 * 0.001 * 0.514 0.002 * 0.15

Note: Units are in kWh per capita per month. * Values are statistically significant. Negative values indicate a
reduction in electricity usage from one month to the next.

Figure 3 presents the average per capita electricity consumption trends of the house-
holds across the four years. It is evident from the graph that the overall average per capita
electricity consumption has been steadily decreasing ever since the new tariff pricing was
introduced. The findings indicate positive development in the electricity consumption
pattern of households, with mixed results observed between 2017 and 2018 (where statis-
tically significant drops in electricity consumption were seen in 5 of the 12 months) and
followed by a substantial reduction in electricity consumption in 2019 compared to 2017.
Clearly, a delay is expected to be seen between adopting the new tariffs and the reduction in
consumption. Although this gap between the increase in electricity price and conservative
behavioral change can be viewed as a learning period, it may also be due to the long-run
effects of energy efficiency. While house residents were developing an understanding of
the new tariff structure and realizing its effects in financial terms, per capita consumption
could also be influenced by the minimum energy efficiency standards mandated by the
Saudi Energy Efficiency Center, particularly for thermal insulation and ACs since 2016 [11].
Moreover, the year 2018, when the revised tariff structure was introduced, can be regarded
as the observatory year, when the households had begun to make the necessary adjust-
ments for the future. This is particularly visible in the months after summer in the so-called
observatory period, when there is a reduction in electricity demand.

5.2. Modeling the Consumption Data

An ELM model was developed based on the households’ electricity consumption
data and the households’ attributes (summarized in Table 6) after reducing the size of the
available data by means of a machine learning algorithm. For the study period (starting in
April 2016 and ending in May 2020), there were 50 monthly electricity consumption records
for each household. As noted, the electricity consumption data were divided into three
distinct time intervals, namely, (1) pre-revised tariff year (2016 and 2017), (2) revised tariff
enforcement year (2018), and (3) post-revised tariff year (2019 and 2020).
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Figure 3. Electricity consumption trend: 2016–2020.

Table 6. Attributes of the households.

Attribute Values (Classes)

1 Dwelling Type (a) Apartment, (b) Apartment (shared electricity), (c) Villa (1 floor), (d) Villa (2 floors)

2 Ownership (a) Owner, (b) Tenant

3 No. of Residents (a) 1 to 3, (b) 4 to 6, (c) 7 to 10

4 Year of Construction (a) 2007 and earlier, (b) 2007 to 2010, (c) 2010 to 2014, (d) 2014 and later

5 No. of Rooms (a) 1 or 2, (b) 3 or 4, (c) More than 4

6 Areas of Rooms (m2) (a) 15 to 20, (b) 25 or more

7 Area of House (m2) (a) 51 to 100, (b) 101 to 150, (c) 151 to 200, (d) 201 to 250, (e) 400+

8 Roof Unit (a) Yes, it is a roof unit, (b) No, it is not a roof unit

9 AC System (a) Split, (b) Window AC unit, (c) Both Split and Window AC unit

10 Building Material (insulation) (a) With insulation, (b) Without insulation

11 Building Material (component) (a) 1 component, (b) 2 components

12 Windows Proportion (a) 12.5% or less, (b) 12.5% to 25%, (c) 25% to 50%

13 Glazing (a) Single, (b) Double

14 Ventilation System (a) Mechanical, (b) Natural, (c) No ventilation (N/A)

The modeling of the electricity consumption data entailed a sequence of three steps.
First, the size of the large dataset was reduced. Then, using Linkage Ward’s method, the
hierarchical clustering algorithm was employed to reduce the dataset to representative
cluster centroids [60,61]. In particular, for each household, three different clusters were
assumed in each of the three different time intervals. These three clusters included low,
medium, and high consumption categories. As a result, three representative clusters were
computed for each time interval. Hence, each household was associated with nine electricity
consumption figures instead of all 50 figures, thereby greatly simplifying the computation.
The distribution in the cluster centroids among different class ranges is shown in Figure 4
using histogram presentation for different profiles. Next, the computed clustered electricity
consumption figures were modeled using the ELM procedure.
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Figure 4. Histogram plots of consumer distribution with respect to consumption ranges at different
time intervals: (a) low consumption profile; (b) medium consumption profile; (c) high consump-
tion profile.

It should be noted that qualitative terms (e.g., ownership type) in the dataset were
coded into quantitative values to facilitate the analysis. Table 6 presents a summary of the
various attributes of households. Finally, the correlation between the clusters of electricity
consumption and the building attributes was computed pairwise to assess the mutual
relationship between the variables. The proposed method for modeling the consumptions
and the preliminaries are described in detail in the following section.

The centroids calculated by clustering provide an overview of the variation in elec-
tricity consumption during different periods. The relative deviations can be calculated
as (ETI2 − ETI1)/ETI1 and (ETI3 − ETI1)/ETI1, where ETI1 is the electricity consumption
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in the first time interval (i.e., years 2016–2017), ETI2 is the electricity consumption in the
second time interval (i.e., the year 2018), and ETI3 is the electricity consumption in the third
time interval (i.e., 2019–2020). The relative changes in the electricity consumption pattern
at different time intervals are calculated. Based on that, the distribution in the relative
changes is displayed in Figure 5 using histograms.
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Figure 5. Histogram plots of the distribution in relative changes in electricity consumption compared
to the first time interval (i.e., 2016–2017) in per unit values: (a) low consumption profile; (b) medium
consumption profile; (c) high consumption profile.
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The changes in electricity consumption are computed for the time intervals 2018 and
2019–2020 with respect to the electricity consumption in 2016–2017, based on the variation
plots given in Figure 5. The results are also summarized in Table 7. A negative value
indicates a drop in electricity consumption between two given intervals. Conversely, a
positive value indicates an increase. For example, the low consumption profile of electricity
usage was decreased by more than 50% in 2018 compared to the time interval 2016–2017 in
39% of the cases.

Table 7. Variations in electricity consumption: pairwise comparison between different time intervals.

Low Consumption
Profile

Medium Consumption
Profile

High Consumption
Profile

Time Interval 2018 2019–2020 2018 2019–2020 2018 2019–2020

vs. 2016–2017 2018 2016–2017 2018 2016–2017 2018

Decrease: More than 50% 39.0% 44.4% 14.0% 36.3% 41.6% 8.3% 16.7% 27.8% 8.3%

Decrease: Less than 50% 50.0% 41.6% 50.0% 44.4% 47.2% 47.2% 72.2% 61.1% 50.0%

Increase: Less than 50% 8.3% 8.5% 30.5% 16.6% 8.3% 38.9% 11.1% 11.1% 38.9%

Increase: More than 50% 2.7% 5.5% 5.5% 2.7% 2.7% 5.6% 0 0 2.8%

Similarly, it can be seen that in almost 36% of the cases, the “medium” electricity
consumption profile was decreased by more than 50% in 2018. The change in electricity
consumption is summarized in Figure 6 for different time intervals and usage profiles. In
at least 80% of the cases, electricity consumption decreased compared to 2016–2017.
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Figure 6. Impacts of changes in electricity rates on different consumption profiles.

5.3. Data Modeling and Sensitivity Analysis Using ELM

Based on the clustered consumption profiles at the three different time intervals
(i.e., 2016–2017, 2018, and 2019–2020), a machine learning-based model called ELM [62,63]
was developed to estimate the electricity consumption in a household, based on attributes
listed in Table 6.

The inputs of the ELM model are the attributes of a household in question, whereas
the outputs of the model are the three different electricity consumption levels (i.e., low,
medium, and high) for a specific time interval (i.e., 2016–2017, 2018, and 2019–2020). The
designed ELM model was trained for different time intervals separately to increase the
estimation accuracy. The dataset was divided into two groups: train and test; 70% of the
data was utilized for network training and the remainder for testing the network. The
developed ELM network was employed to estimate the measured values as the targets.
The ELM network performance is evaluated using various indicators such as correlation
coefficient (R) in Equation (6), mean square error (MSE) in Equation (7), and root mean



Energies 2023, 16, 1458 15 of 24

square error (RMSE) in Equation (8). The ideal state for network operation is possible
with maximum R values and minimum values for prediction error, i.e., MSE and RMSE
indicators, defined as follows:

R =
∑N

i=1
(
Xi − X

)(
Yi − Y

)√
∑N

i=1
(
Xi − X

)2
∑N

i=1
(
Yi − Y

)2
(6)

MSE =
1
N

N

∑
i=1

(Xi − Yi)
2 (7)

RMSE =

√√√√ 1
N

N

∑
i=1

(Xi − Yi)
2 (8)

where Xi and Yi are the i-th measured target value and the ELM output, respectively. X
and Y represent the mean of the measured target values and the ELM outputs, respectively.

After designing the ELM network and completing the training process, the network is
saved as a black box containing energy consumption behavioral patterns. Figure 7 shows
the step-by-step implementation process of the ELM technique used in this study.
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Figure 8 presents examples of the predicted energy consumption related to the low
consumption data by the ELM in the form of regression. The results suggest that the ELM
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network can forecast the energy consumption values of low consumption profiles with
acceptable accuracy. Table 8 evaluates the performance of the proposed ELM in predicting
the energy consumption for different usage profiles at different time intervals. These results
confirm the accuracy of the developed ELM model for estimating electricity consumption
levels based on household attributes. It can be seen that the suggested ELM procedure has
high estimation accuracy with low error. Although the developed model can be used to
estimate the electricity consumption for similar households, we employed the trained ELM
for sensitivity analysis by studying the impacts of different characteristics of the households
on their consumption.
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Table 8. Evaluating the performance of the ELM network based on various performance evaluation
indicators.

Year Type R (%) MSE RMSE

2016–2017

Low-use profile 99.92 868.93 29.47

Medium-use profile 99.89 942.52 30.70

High-use profile 99.87 985.25 31.38

2018

Low-use profile 99.94 802.54 28.32

Medium-use profile 99.91 842.15 29.01

High-use profile 99.88 859.08 29.31

2019–2020

Low-use profile 99.96 671.08 25.90

Medium-use profile 99.94 714.58 26.73

High-use profile 99.93 784.95 28.01

Figure 9 shows the energy consumption forecast error for the ELM model at each
time interval in the form of an error histogram. It can be seen that the highest prediction
error is related to the years 2016–2017, and the lowest prediction error is connected to
the predictions made for the years 2019–2020. It should be noted that the trained ELM
network predicts energy consumption values based on learning behavior patterns related
to the input parameters. The results of the predictions have a very high impact on the
correlation between the input variables. Thus, all learning-based methods perform the
process of calculating the desired output by extracting correlations between input variables.
Accordingly, in this part of the paper, a sensitivity analysis of the correlation between
the input variables in determining the energy consumed is presented in Figure 10 as a
correlation matrix.

The impact of the household characteristics on the low, medium, and high consump-
tion profiles is calculated using the developed ELM model, and the results for different
consumption clusters are shown in Table 9. A higher error shows a significant sensitiv-
ity between the electricity consumption level and a particular ELM input (i.e., a specific
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household attribute). The sensitivities of the energy usage profiles regarding the building
attributes are calculated based on the ELM model error mentioned above and are listed in
Table 9.
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The sensitivity analysis determines how the energy consumption patterns are affected
based on the changes in attributes of the building. It helps to find the most effective
attributes to be employed as the tools to control and modify energy usage in similar
buildings. The results can also determine the best combination of features to effectively
reduce the buildings’ energy usage.

The results in Table 9 show that specific attributes have the same impact on the three
usage profiles, low, medium, and high, including the number of residents, area of the
house, roof unit, AC system, building material (insulation and component), and glazing.
In contrast, the other attributes have different impacts on the changes in different usage
profiles. It can also be concluded from Table 9 that the number of residents, building
material (component), and almost the year of construction (i.e., age of the suite) have
a high impact on all the energy usage profiles; i.e., all profiles are susceptible to the
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abovementioned two attributes. In addition to that, the low usage profile is significantly
impacted by the ventilation system and ownership of the suite, and the medium usage
profile is susceptible to windows proportion and building’s age, whereas the high usage
profile is sensitive to the number of rooms and the building’s age. However, the number
of rooms has an insignificant impact on low and medium usage profiles, though the high
usage is very sensitive to this attribute.

Table 9. Sensitivity analysis using the developed ELM: impacts of building attributes on the low,
medium, and high usage clusters.

Attribute Attribute #
Impacts of the Attributes on the Changes in the Electricity

Consumption by New Tariffs

Low Usage Medium Usage High Usage

1 Dwelling Type 1 Low Low Low
2 No. of Rooms 5 Low Low High
3 Areas of Rooms (m2) 6 Low Medium Low
4 Area of House (m2) 7 Medium Medium Medium
5 Being the Roof Unit 8 Medium Medium Medium
6 AC System 9 Medium Medium Medium
7 Building Material (Insulation) 10 Medium Medium Medium
8 Glazing 13 Medium Medium Medium
9 Windows Proportion 12 Medium High Medium

10 Year of Construction (Age) 4 Medium High High
11 Ventilation System 14 High Low Medium
12 Ownership 2 High Medium Low
13 No. of Residents 3 High High High
14 Building Material (component) 11 High High High

Among the attributes with identical impacts, the total area of the house, roof unit,
AC system, building material (insulation), and glazing have a medium effect on all the
energy usage profiles. From another perspective, ownership of the suite and the ventilation
system have distinct impacts on different usage profiles; i.e., the low usage profile is highly
sensitive to specific attributes such as the ventilation system and the ownership of the suite,
whereas the medium- and high-use profiles are affected by the mentioned two attributes to
a medium extent.

6. Discussion

The discussion section reflects and is built on the composite results from three analyses
(see Table 2): (i) impacts of new tariffs and their changes on household per capita energy
consumption through statistical analysis, t-test, and clustering; (ii) impacts of building
specifications on the consumption changes; and (iii) sensitivity analysis using the ELM pre-
diction model and correlation analysis. The results suggest that the electricity consumption
during the pre-revised tariff year (2016 and 2017) followed an upward trend. In contrast
to this initial period, the electricity consumption between the pre-revised tariff year and
the revised tariff enforcement year saw a downward trend, indicating the response of the
households to the electricity price increase. Further reduction was noted when the pre-
revised tariff year was compared to the post-revised tariff year (2019 and 2020), showing
the continuing decline in the consumption behavior of the households. This consistent
reduction in the subsequent years after the enforcement of the revised TEP confirms that the
reductions in electricity consumption among the households were not a chance occurrence.
This assessment is also validated by the paired sample t-test, which showed a significant
decrease in electricity consumption for the study period. It also demonstrates the longevity
effect of the intervention, whereby the household maintains its new conservative habits
long after the intervention has been applied. This has implications for policy formulation
for high energy per capita countries, particularly the Gulf States, which have historically
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enjoyed high energy subsidies leading to extravagant energy consumption. In the first
instance, energy-conservative campaigns in conjunction with agent intervention (the feasi-
bility of which was demonstrated in [2]) are necessary for realizing energy conservation.
However, without an external force in the form of higher electricity prices, the impact
of the intervention is not recognized. The analysis also revealed that several household
attributes had a relatively high impact on the reduction in the electricity consumption level
following the revised tariffs, whereas the majority of the attributes had a moderate impact.
Accordingly, governments should target these attributes to yield optimal results.

Based on the sensitivity of different energy usage profiles to the building’s attributes,
it can be concluded that all profiles are highly sensitive to the number of residents, building
material (component), and the age of the suite. Moreover, all the energy usage profiles are
moderately sensitive to the house’s total area, roof unit, AC system, building material (in-
sulation), and glazing. This finding highlights the significance of educating the household
members in the proper practices for lowering their daily energy consumption. In addition,
the government should strive to remind household members of their critical role in con-
serving energy through simple environmentally conscious behaviors, thus contributing to
the country’s energy security. Furthermore, the low usage profile is significantly sensitive
to the ventilation system and ownership of the suite, whereas the medium usage profile
is highly impacted by the window proportion and the building’s age. Similarly, the high
usage profile is susceptible to the building’s age. Although the number of rooms has an
insignificant impact on low and medium usage profiles, high usage is very sensitive to
this attribute.

Comparison of the electricity bill with the average household income provided further
evidence that the observed reduction was due to energy consciousness and not simply a
consequence of the new tariff structure. More specifically, the average monthly income for
households in the Eastern Region of Saudi Arabia in 2018 was estimated at SAR 14,902. This
represented the highest household income compared to the country’s other administrative
regions [64]. A survey of the trends from 2013 indicates that this income has been on
the rise since 2013 [64]. The average cost of an electricity bill in 2016 and 2017 amounted
to SAR 119.05 (0.05 × 2381 kWh) and SAR 99.95 (0.05 × 1999 kWh), respectively. This
accounted for no more than roughly 1% of the average income. Compared to these pre-new
tariff years, the cost of an average electricity bill in 2018 and 2019 reached SAR 309.78
(0.18 × 1721 kWh) and SAR 254.7 (0.18 × 1415 kWh), respectively. This accounted for no
more than roughly 2% of the average income. While this increase represented a 1% increase
from the years before the new tariff structure was imposed, comparing this figure with a
percentage share of average expenditure of other household expenses (i.e., housing, water,
gas, and fuels), which amount to 22.4%, it is evident that the electricity bill is but a small
fraction of the total household expenditure.

Moreover, the size of the households that participated in the study ranged from one
to three members. The implication of this analysis strongly suggests that the reduction in
consumption was primarily an outcome of latent energy consciousness rather than financial
pressure experienced by the households. This finding is supported by [65], who have noted
that the position taken by the government to remove electricity subsidies, as represented
by the new tariff structure, in this case, has contributed to greater awareness and thus
greater efficiency.

The present study’s findings are aligned with the findings of past works [2,12,48] that
have explored the impact of TEP on the energy consumption patterns of households. For
example, the study by [15] showed that more than half of the households indicated that
they had been encouraged to lower their energy consumption in response to TEP. Similarly,
in [16], it was found that an unannounced rise in electricity price was sufficient to prompt a
curtailment in the average electricity consumption in households during a short period,
showing that users are able to adapt to price changes rapidly. The finding of this latter
study agrees with the present study, which also saw a consistent and significant reduction
in a relatively short period following the enforcement of the revised tariff.
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Analysis of the electricity consumption in the households revealed that economic
incentive in the form of the enforcement of a revised TEP was effective in prompting resi-
dential users to adopt conservative practices, which could be understood as the ”sticks” [66]
regulating conservative behavior. The conclusion that economic factors were necessary to
trigger underlying conservative behavior is validated when the present study is viewed
against the study by [2]. Specifically, this past study was conducted in the same region
as the present study (Eastern Province of Saudi Arabia) and aimed at altering the elec-
tricity consumption behavior of households through education and in the absence of any
economic factor. While the intervention outcome showed an increase in understanding
of conservative behavior and the positive impact such practices had on the environment,
this increased appreciation was not reflected in household consumption. In the conclusion
of the previous paper, it was argued that a multiprong approach would have probably
achieved the desired behavior. The present study’s finding supports that a multiprong
approach is a path forward when it comes to realizing energy consciousness behavior
among households.

The selection of the ELM method for processing the available data and using it in this
study is based on the capabilities presented for this method in recent studies. However,
we also used the multilayer perceptron (MLP) artificial neural network (ANN) to process
the data, and facing the inability of the MLP to process this type of massive data, very
unfavorable results were obtained and thus not included in this paper.

7. Conclusions

Concerning the study results, it appears that the increase in monthly electricity bill,
despite accounting for a negligible fraction of the overall household cost, was relatively
significant enough (1% of the household income pre-new tariff compared to 2% of the
household income post-new tariff implementation) to trigger energy consciousness. In other
words, it appears that households felt that it was possible to contain their consumption
through minor efforts that involved adjustments in their behavior based on the knowledge
acquired through their exposure to the public campaigns and change agent interventions,
as explored in [2]. These findings illustrate that although the reduction in consumption
was observed following the new tariff structure, this reduction cannot be solely attributed
to the increase in electricity price. Instead, dormant energy consciousness, in addition to
acquired knowledge, played a more significant role in yielding the observed results. This
outcome underscores the significance of conveying information on energy conservation to
households toward realizing a more energy-conservative society.

The findings of this study can be used to promote energy consciousness. At the
individual household level, households can alter their use of the HVAC to manage their
electricity consumption. Noteworthy, HVAC systems play a central role in the thermal
comfort of Saudi Arabian families, owing to the harsh climatic condition of the region [9].
HVAC thus constitutes a significant portion of the household electricity bill. Therefore, any
minor adjustment (e.g., a reasonably straightforward behavior achieved by switching off
HVAC units when rooms are unoccupied) to the utilization of the HVAC system will be
followed by a significant reduction in the electricity consumption in the households. The
fact that most households participating in this study were fitted with window-type units
supports the observed significant reduction in electricity consumption.

At the national level, the findings provide compelling evidence for the effectiveness of
policy change toward effectuating positive change among pro-environmentally inclined
individuals/households. This serves as proof and confirms that knowledge and intention
are necessary but not sufficient for positive behavioral change. Instead, the external
environment must also be conducive to change in addition to these two factors. In the
present case, the external environment takes the form of financial pressure on the household.

Thus, these policy changes can be viewed as a pre-phase to energy consciousness.
At this initial stage, household members may not be aware of the environmental benefits
(“knowledge” domain) of energy conservation and its implication on the regional climate.
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Thus, the subsequent stage calls for a planned contextualized intervention to educate
household members on the impacts on the environment resulting from their conservative
behavior. In other words, this stage can be referred to as the “pay less for the environment,”
where they acquire the concept of paying less for electricity for the environment while
underscoring the importance of a higher tariff energy structure. The study findings have
demonstrated that positive changes in conservative behavior observed can be modeled in
other regions with similar climatic conditions through the introduction of sound policy.

Past works have shown that internal and external factors have varying degrees of
impact on prompting energy consciousness among households. The present study explored
how these factors can stimulate sustainable energy-conservative behaviors among house-
holds in Saudi Arabia. The study results found a constant decline in electricity consumption
in Saudi households due to the enforcement of a revised TEP scheme. Analysis of the
data during the pre-revised tariff period indicated that electricity consumption among
households was increasing. This period, therefore, served as a baseline against which to
compare the ensuing years. In the following years, electricity consumption followed a
notably downward trend. This decrease in electricity consumption was largely attributed
to the recently revised TEP. However, it was speculated that the energy conservation
campaigns promoted by the government were also influential in affecting change. The
data show that the households have been receptive to the change in TEP by altering their
energy consumption habits and thereby reflecting their energy consciousness. This is a
testimony to the fact that the revised electricity tariff acts as a catalyst to transform the
energy consciousness into actual energy-saving behavior. Thus, this study establishes and
opens an avenue of opportunity for catalytic intervention in the form of pricing to unleash
the energy consciousness in favor of sustainable energy conservation behavior.
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