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Abstract: Gas Brayton cycles have been considered the next promising power cycles for microreactors.
Especially the open-air and closed supercritical CO2 (S-CO2) Brayton cycles have received attention
due to their high thermal efficiency and compact component sizes when compared to the steam
Rankine cycle. In this research, the performances of the open-air and closed S-CO2 Brayton cycle at
microreactor power range are compared with polytropic turbomachinery efficiency. When optimizing
the cycle, three different optimization parameters are considered in this paper: maximum efficiency,
maximum cycle specific work, and maximum of the product of both indicators. For the air Brayton
cycle, the maximum of the product of both indicators allows to consider both efficiency and specific
work while optimizing the cycle. However, for the S-CO2 Brayton cycle, the best performing
conditions follow either maximum efficiency or the maximum cycle specific work conditions. In
general, the S-CO2 power cycle should be designed and optimized to maximize the cycle specific
work for commercial-scale application. The results show that the air Brayton cycle can achieve near
45% efficiency when it can couple with a microreactor with a core outlet temperature higher than
700 ◦C. However, the S-CO2 power cycle can still achieve above 30% efficiency when it is coupled
with a microreactor with a core outlet temperature higher than 500 ◦C, whereas the air Brayton cycle
cannot even reach breakeven condition.

Keywords: S-CO2 Brayton cycle; air Brayton cycle; polytropic efficiency

1. Introduction
1.1. Background

Climate crisis due to greenhouse gases is a worldwide problem; therefore, many
countries are planning on reducing the greenhouse gas emission by replacing greenhouse-
gas-emitting power plants with renewable energy sources. Even though renewable energy,
such as wind and solar, has been actively researched, relying only on variable renew-
able energy sources to fulfill the global energy consumption is, nevertheless, unreliable
because of the intermittent nature of the variable renewable energy sources. Therefore,
nuclear energy is also considered as a promising source of energy to reduce greenhouse gas
emission, because nuclear energy can steadily generate electricity and does not emit any
greenhouse gases while generating electricity. Furthermore, with the advent of small mod-
ular reactors (SMRs) and microreactors, nuclear electricity has become more affordable in
the remote isolated regions, where the electricity grid infrastructure is not fully developed
and connected.

Previously, the steam Rankine cycle was widely used as a power conversion cycle for
various types of power plants, including coal-fired and nuclear ones. According to Fleming
et al., the cycle efficiency of the steam Rankine cycle ranges from 35% to 40% for the low
temperature ranges (300 ◦C to 450 ◦C) [1]. However, with the development of technologies,
using only the steam Rankine cycle for heat to electricity is at question. Additionally,
with the development of SMRs, the power conversion system has to be minimized in
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size. Figure 1 shows the turbine and cooler size comparison for steam Rankine cycle,
supercritical CO2 (S-CO2), and helium Brayton cycles. As shown in the figure, the size of
the main components for the gas Brayton cycle is much smaller than those of the steam
Rankine cycle. Thus, applying a gas Brayton cycle as the power conversion system for a
next-generation reactor, especially the microreactor, is more plausible than using the steam
Rankine cycle in the perspective of the size and temperature.
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Currently, microreactors are being actively developed by many private companies,
including Westinghouse and OKLO. eVinci, a microreactor developed by Westinghouse, is
a liquid sodium heat pipe cooled reactor with power output from 200 kWe to 5 MWe. An
open-air Brayton cycle, with an operating temperature of 600 ◦C or higher, is utilized as
a power conversion system, and its innovative design is a combination of space reactor
technologies and commercial nuclear system design [2,3]. Similarly, OKLO is developing
Aurora, a 1.5 MWe liquid sodium heat piped cooled microreactor with an S-CO2 Brayton
cycle as the power conversion system. OKLO is also known for actively engaging regulatory
bodies for the licensing of the reactor [2].

Out of the various working fluids for the gas Brayton cycle, air and S-CO2 were selected
for this research, since this study focuses on the microreactor application. The air Brayton
cycle is an open Brayton cycle, in which air is taken from the ambient atmosphere and
exhausted after expansion in the turbine. The open-air Brayton cycle is already extensively
used by aerospace and power industries, and it is fully matured technology.

On the other hand, the S-CO2 cycle is a closed Brayton, in which the working fluid
circulates in a closed loop. Since the early 2000s, many countries are developing environ-
mentally friendly Generation IV nuclear reactors with high efficiency. Due to limitations
of the steam Rankine cycle, the gas cycles, including the direct or indirect S-CO2 Brayton
cycle, are being researched actively [4]. Rogalev et al. conducted the optimization and
economic analysis of the closed S-CO2 and semi-closed oxy-fuel combustion power cycles
for multiscale power generation, concluding that using an S-CO2 power cycle leads to
a 3.3% increase in the net efficiency in a nuclear power plant with the BREST-OD-300
reactor [5,6]. Additionally, Echogen concluded that the S-CO2 technologies can displace the
steam cycle with lower capital and O&M costs, which can reduce LCOE by 20% [7]. Thus,
the S-CO2 cycle is one of the prospective working fluids for a power conversion system in
commercial nuclear reactors, especially in microreactors. Additionally, the size of the main
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components, including heat exchangers, of the cycle is compact, since CO2 becomes very
dense, which reduces the work required for the compression dramatically [8].

In summary, a gas Brayton cycle will be very likely to be used in conjunction with
the next-generation reactor technologies, because their reactor outlet temperatures will
probably be higher than 450 ◦C. Even though many studies on the S-CO2 cycles have been
conducted as shown in the literature review, they were analyzed economically or in a
different temperature range. In this paper, the performance of the open-air Brayton cycle
and supercritical carbon dioxide (S-CO2) power cycles at various power output levels are
compared for the next-generation nuclear reactor application. The power output range is
targeted for microreactor application, which is from 500 kWe to 10 MWe [9].

1.2. Methods

A simple recuperated cycle layout was selected for both cycles as shown in Figure 2.
Both cycles include an intermediate heat exchanger, turbine, compressor, and recuperator.
The main difference between the open and closed cycle is that the closed cycle needs a
cooler because the heated working fluid in the cycle needs to be cooled to the minimum
temperature of the cycle before the fluid circulates back to the compressor.
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When comparing the performance of the cycles, the efficiencies of the turbine and the
compressor have to be determined. However, the turbomachinery isentropic efficiency can
be varied with the number of stages used in the turbomachinery. Therefore, polytropic
efficiency should be used to compare the open-air and closed S-CO2 Brayton cycles from
lab-scale to microreactor applications. Polytropic efficiency is also called “small-stage
efficiency” [10]. The definition of the polytropic efficiency is given in Figure 3. Let point A
and B be the compressor inlet and outlet points, respectively. By dividing the compression
process by infinitesimal stages, the polytropic efficiency from points A to B can be calculated.
Equations (1) and (3) show the mathematical definition of the compressor’s polytropic
efficiency and isentropic efficiency, respectively.

ηpoly =
∆hpoly,AB

∆hAB
(1)

∆hpoly,AB = lim
N→∞

N

∑
i=1

hs,i (2)

ηisen =
∆hisen,AB

∆hAB
(3)
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The polytropic efficiency of the turbomachinery will be converted to the isentropic
efficiency to be used in the cycle optimization code, which will be discussed in a later
section. With the selected cycle layout and the isentropic efficiencies of the turbomachinery,
the cycle will be optimized. When optimizing each cycle, the optimization parameter
needs to be chosen carefully. In many studies, the cycle is optimized so that the cycle
has the maximum cycle thermal efficiency, because designing the cycle with the highest
cycle efficiency will generate maximum power output with given thermal input. However,
considering the cycle efficiency alone could be misleading when designing the power cycle
for microreactors. For the microreactor application, the total volume of the cycle also has
to be minimized. Even though the cycle efficiency is high, if the volume it occupies is
too large, the cycle cannot be considered as fully optimized. Therefore, the specific work
output, which is the work produced per unit mass of gas flowing in the cycle, should also
be considered as a parameter for the cycle optimization [11]. In this paper, comparative
performance evaluation of simple recuperated open-air and closed S-CO2 Brayton cycle at
various power output levels will be researched using polytropic efficiency. As the cycle
optimization parameters, the cycle thermal efficiency and the cycle specific work will be
considered.

2. Cycle Design
2.1. S-CO2 Brayton Cycle

The simple recuperated Brayton cycle was used for a fair comparison between the
two cycles. The cycle performance was predicted at the turbine inlet temperature (TIT)
500 ◦C, 700 ◦C, and 900 ◦C to represent the sodium-cooled fast reactor (SFR), molten salt
reactor (MSR), and high-temperature gas-cooled reactor (HTGR). To maintain the CO2 at
the supercritical state, the minimum temperature and the maximum pressure were fixed at
20 MPa and 35 ◦C, which is above the critical point of CO2 (7.38 MPa and 31.1 ◦C).

When optimizing the cycle, the pressure drop at the heat exchangers should be con-
sidered. As shown in Figure 2b, the simple recuperated S-CO2 Brayton cycle has three
different heat exchangers: intermediate heat exchanger (IHX), recuperator, and cooler. The
pressure drops of each heat exchanger could vary according to its design. Based on the
previous research, which includes the operating condition and the design values of the
S-CO2 Brayton cycle, the pressure drops at each heat exchanger were selected [12–16]. The
design values of the S-CO2 cycle are given in Table 1.
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Table 1. Design Value for S-CO2 Brayton Cycle.

Design Parameter Value

Maximum Pressure 20 MPa
Maximum Temperature 500, 700, 900 ◦C
Minimum Temperature 35 ◦C

IHX Pressure Drop 2.01%
Recuperator Hot-side Pressure Drop 1.71%
Recuperator Cold-side Pressure Drop 0.5%

Cooler Pressure Drop 2.39%

2.2. Air Brayton Cycle

Similar to the S-CO2 Brayton cycle, the cycle layout for the open-air Brayton cycle is
given in Figure 2a. At the TIT of 500 ◦C, the open-air Brayton cycle has negative power,
because the work consumed by the compressor is greater than the power generated by
the turbine. Thus, TITs of 700 ◦C and 900 ◦C were calculated for the open-air Brayton
cycle [17]. This already indicates that applying the open-air Brayton cycle for a core outlet
temperature equal to or lower than 500 ◦C is not possible. To compare the air and S-CO2
cycles fairly, the minimum temperature of the air Brayton cycle was also fixed to 35 ◦C.
The air Brayton cycle has two heat exchangers, the IHX and the recuperator. Based on
the previous research on the air Brayton cycle, which includes the operating condition
of commercial air Brayton cycle and the design values, the pressure drops of each heat
exchanger were selected [18–20]. Different from the S-CO2 Brayton cycle, the minimum
pressure was fixed to the atmospheric pressure. The design values of the air Brayton cycle
are listed in Table 2.

Table 2. Design Value for air Brayton Cycle.

Design Parameter Value

Minimum Pressure 101.325 kPa
Maximum Temperature 700, 900 ◦C
Minimum Temperature 35 ◦C

IHX Pressure Drop 4.00%
Recuperator Hot-side Pressure Drop 2.00%
Recuperator Cold-side Pressure Drop 2.00%

3. Design of Turbomachinery
3.1. Polytropic Efficiency for Turbomachinery

The performance of the turbomachinery varies with the design parameters, including
flow rate, power, and inlet conditions. However, fully designing the turbomachinery at each
power level is not plausible for this study. Therefore, the polytropic efficiencies of the com-
pressor and the turbines were calculated using empirical correlation. Equations (4) and (5)
are the correlations for the polytropic efficiencies for the compressor and turbine, which
reflect the current state of the art [21]. Figures 4 and 5 represent the compressor and turbine
polytropic efficiency.

ηpoly,comp = 0.878 + 0.030 ln
( .
m
)
− 0.0037PRc (4)

ηpoly,turb = 0.6984d0.0449
sh − PRt − 1

200
(5)

where
.

m and dsh represents the mass flow rate and rotor shroud diameter, respectively.
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The correlations were intentionally developed for the general gas turbine and com-
pressors; therefore, many air Brayton cycle studies were based on the equations. However,
due to dramatic changes in CO2 thermal properties near the critical point, as shown in
Figure 6, the equations, especially for the compressor, need to be validated before appli-
cation. Tables 3 and 4 list the S-CO2 compressor and turbine experimental facility design
values, and Figures 7 and 8 show the comparison of the equation with the S-CO2 compressor
and turbine design values, respectively.
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Table 3. S-CO2 Compressor Experimental Facility Design Values [14,22–26].

Compressor Pressure Ratio
[-]

Mass Flow Rate
[kg/s] Efficiency [%] Shaft Speed

[RPM]

SCIEL 1.8 3.20 ~65 70,000
SNL 1.82 3.53 67.53 75,000

Japan Institute of
Applied Energy ~1.5 1.20 ~60 100,000

IST 1.80 5.46 60.78 75,000
KIER 1.75 3.70 ~65 70,000

KAIST 1.30 1.50 56 40,000
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Table 4. S-CO2 Turbine Experimental Facility Design Values [24,26].

Turbine Pressure Ratio
[-]

Rotor
Diameter [mm] Efficiency [%] Shaft Speed

[RPM]

SNL 1.8 68.1 84.0 75,000
SNL 1.8 68.3 85.0 75,000
IST 1.686 53.0 79.8 75,000

As shown in Figure 8, the deviation between the turbine polytropic efficiency calcu-
lated by Equation (5) and the S-CO2 turbine experimental facility design values was nearly
negligible, with a maximum error of 3.6%. However, as shown in Figure 7, the compressor
polytropic efficiency calculated using Equation (4) and the S-CO2 compressor experimental
facility design values were substantially different. The main reason for the deviation in the
compressor efficiency is the real gas effect of CO2 near the critical point. Figure 6b shows
the thermal properties of CO2 near the turbine operating range. The thermal properties
of CO2 at the turbine inlet condition show near ideal gas behavior. However, the thermal
properties of CO2 near the critical point, or at the compressor inlet condition, show a very
strong real gas effect. Therefore, Equation (5) can be used to predict the S-CO2 turbine
polytropic efficiency, but a new equation is needed for the S-CO2 compressor polytropic
efficiency. Based on the S-CO2 compressor experimental design values, the new equation
for the S-CO2 polytropic efficiency was fitted using MATLAB code. Equation (6) shows
the new equation, and Figure 9 shows the comparison between the new and previous
equations. As the equation is fitted using the operating data points, the R-squared value,
which is widely used to measure the goodness-of-fit, is determined to be 0.77 [27]. A 0.77
R-square value is not an ideal value for the regression analysis, but since not much data
are currently available and the uncertainties of the data are also not negligible, which
leaves small room for improvement from the current correlation, Equation (6) was used for
the following analysis. The polytropic efficiency curve for the S-CO2 compressors can be
improved as more S-CO2 compressor experimental data become available in the future.

ηpoly,comp = 0.8832 + 0.07971 ln
( .
m
)
− 0.2049PRc (6)
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3.2. Conversion from Polytropic Efficiency to Isentropic Efficiency

The turbomachinery polytropic efficiencies should be converted to the isentropic
efficiencies for the cycle optimization code. For the air Brayton cycle, the air was assumed
to be an ideal gas, which follows the ideal gas law. The isentropic efficiency of the air
turbomachinery can be calculated using the following equations:

ηisen,comp =
Isentropic Compressor Work

Real Compressor Work
=

Tisen,out − Tin

Treal,out − Tin
=

PR
γ−1

γ
comp − 1

PR
n−1

n
comp − 1

(7)

ηisen,turb =
1− PR

γ−1
γ ηpoly,turb

turb

1− PR
(γ−1)

γ

turb

(8)

where Tin is the temperature of the air at the inlet, Tisen,out is the temperature of the air at
the exit for isentropic process, and Treal,out is the temperature of the air at the exit for real
process.

For an ideal gas, such as air, Equations (9) and (10) can be used to convert polytropic
turbomachinery efficiency to the isentropic efficiency.

However, Equations (7) and (8) cannot be used to convert the polytropic efficiency to
the isentropic efficiency of S-CO2 turbomachinery, because the ideal gas law used to derive
the equations does not apply to CO2 near the critical point. Thus, instead of the ideal gas
law, PV = ZRT is used, where Z is the compressibility factor.

After rearranging the equations, Equations (9) and (10) show the conversion from
S-CO2 polytropic efficiency to the isentropic efficiency. The detailed derivation of the
equations is given in Appendix A.

(
n− 1

n

)
=

1
ηpoly,comp

(γ− 1)
γ

+ P

(
1− 1

ηpoly,comp

)( 1
P
− βT

)
− βP

(
∂h
∂P

)
T(

∂h
∂T

)
P

 (9)

(
n− 1

n

)
= ηpoly,turb

(γ− 1)
γ

+
(

1− ηpoly,turb

)( 1
P
− βT

)
− βP

(
∂h
∂P

)
T(

∂h
∂T

)
P

 (10)

where βP = 1
T + 1

Z

(
∂Z
∂T

)
P

and βT = 1
P −

1
Z

(
∂Z
∂P

)
T

.

4. Cycle Optimization

For the cycle optimization, KAIST-CCD (closed-cycle design) and KAIST-OCD (open-
cycle design), which are the MATLAB based in-house codes, were used [28,29]. The
thermal properties of CO2 and air were calculated using NIST-REFPROP database version
10.0 [30]. Figure 10 shows the flowchart of the KAIST-CCD and OCD codes, respectively.
The design parameters given in the previous sections, including the pressure drops and
turbomachinery isentropic efficiencies, were included in the code input. In the cycle
optimization codes, the turbine pressure ratio range was given as a variable, and cycle
output, such as cycle efficiency, turbine work, and cycle specific work, are calculated at
each turbine pressure drop. The examples of the KAIST-CCD and KAIST-OCD code results
are given in Figures 11 and 12, respectively, in which the red points on the plots represent
the cycle optimization point with the maximum cycle efficiency.
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To increase the cycle efficiency, the recuperated heat between the high-pressure side
of the turbine and the low-pressure side of the compressor outlet has to be maximized.
For an S-CO2 cycle, it is well known that due to the significant changes in specific heat of
S-CO2 in a recuperator, an inner pinch problem can occur. If the inner pinch problem is
not considered when designing a recuperated cycle, a non-physical cycle design can be
obtained by assuming physically non-realizable recuperator effectiveness. In KAIST-CCD
code, an algorithm using an artificial neural network is already built in to avoid the inner
pinch problem while optimizing the cycle [31].

In this study, the modified version of KAIST-CCD and KAIST-OCD were used to
optimize the gas Brayton cycles at different power outputs. The main difference between
the original code and the modified code is that the isentropic efficiency was used for the
turbomachinery, where the polytropic efficiency was converted to the isentropic efficiency
in the modified code. In other words, the turbomachinery isentropic efficiencies were fixed
for the original codes, whereas the isentropic efficiencies were varied as the turbine pressure
ratio changed in the modified versions, because the inlet conditions of the turbomachinery
have to be reflected while the polytropic efficiency is converted to the isentropic efficiency
using Equations (7)–(10). Thus, at different turbine pressure ratios, the inlet condition of
the compressor varies, resulting in a change in the isentropic efficiency. Figure 13 shows
the flowchart for the modified optimization code used in this paper.

With the initial guess for the turbomachinery polytropic efficiencies and design param-
eters selected in Tables 1 and 2, the modified KAIST-CCD and OCD were used to calculate
the cycle parameters. Based on the calculated cycle parameters, the turbomachinery rotor
sizes and rotational speed were calculated using Balje’s ns − ds (specific speedspecific
diameter) diagram [31]. Equations (11) and (12) show the definition for the specific speed
and specific diameter, respectively.

ns =
ω
√

V

(gHad)
3
4

(11)

ds =
D(gHad)

1
4

√
V

(12)
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where ω is the rotational speed, D is rotor diameter, V is the volumetric flow rate, g is the
gravitational acceleration, and Had is the adiabatic head.
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Using the ns − ds diagram, the isentropic efficiency of the turbomachinery can be
calculated [32]. Conversely, with the isentropic efficiency calculated in the optimization
code, the rotor diameter and the rotational speed were calculated using the diagrams
and Equations (11) and (12). With the calculated rotor diameter, pressure ratio, and mass
flow rate of the cycle, Equations (4)–(6) were used to calculate the polytropic efficiencies
again. Then, the turbomachinery polytropic efficiencies were converted to the isentropic
efficiencies to be used in the code. These processes were repeated until the cycle thermal
efficiency converged with the convergence criteria of 10−4. The optimization parameter
could be either the cycle efficiency or the cycle specific work. Therefore, the maximum
efficiency optimization and the maximum cycle specific work optimization were compared.
Furthermore, the new cycle optimization mode, at which the product of the cycle efficiency
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and the specific work are maximized, was also evaluated. The new cycle optimization
mode will be called the mixed mode.

5. Results and Discussion
5.1. Open-Air Brayton Cycle

This section shows the result of the open-air simple recuperated Brayton cycle opti-
mization results with three different optimization modes: maximum efficiency, maximum
cycle specific work, and maximum mix mode. At each different power output, the modi-
fied KAIST-OCD code optimizes the cycle based on the selected optimization mode. An
example of the modified KAIST-OCD cycle optimization code results at a specific power
output is given in Figures 14–16. Based on Equations (7) and (8), the polytropic efficiencies
of the compressor and the turbine were converted to the isentropic efficiencies as shown in
Figure 14.
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Using these turbomachinery isentropic efficiencies at each turbine pressure ratio,
the cycle efficiency, cycle specific work, and the mix mode were calculated as shown in
Figure 15, where the red points on the plots represent the maximum point of corresponding
parameters. Figure 16 shows the cycle efficiency plotted over the cycle specific work, where
the red, black, and green points represent the point at which the cycle efficiency, cycle
specific work, and the mix mode were maximized, respectively. If the cycle is optimized
with the maximum cycle efficiency, the cycle specific work is relatively lower than the cycle
optimized with the maximum cycle specific work. Thus, the cycle maximized with the
maximum mix mode contemplates both efficiency and specific work, causing the optimized
point to have relatively high cycle efficiency and cycle specific work together.

Figures 17–19 show the results of the simple recuperated open-air Brayton cycle
optimization results. As expected, the optimized cycle efficiency was dependent on the
optimization mode. The cycle optimized at the maximum cycle specific work gave the
lowest cycle efficiency among the three different optimization modes. The cycle optimized
at the maximum mix mode considered both efficiency and the specific work, resulting in
an intermediate cycle efficiency.
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5.2. Closed S-CO2 Brayton Cycle

This section shows the results of the closed S-CO2 simple recuperated Brayton cycle
optimization with three different optimization modes. An example of the modified KAIST-
CCD cycle optimization code at a specific power output is given in Figures 20–22. The
turbine pressure ratio was limited to 2.58, at which the cycle minimum pressure or the
compressor inlet pressure was still above 7.40 MPa. Based on Equations (9) and (10), the
polytropic efficiencies of the compressor and the turbine were converted to the isentropic
efficiencies. When compared to the isentropic efficiency of the open-air Brayton cycle given
in Figure 14, the shape of the S-CO2 compressor isentropic efficiency curve converted
from the polytropic efficiency seems to be very different and counterintuitive. The main
reason for the behavior seems to originate from the strong real gas effect of CO2 near the
critical point. As shown in the previous equations, the compressibility factor, Z, cannot
be ignored in the calculation. Thus, when the compressibility factor is considered, the
isentropic efficiency near the critical pressure is affected substantially.
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Using these turbomachinery isentropic efficiencies at each turbine pressure ratio,
the cycle efficiency, cycle specific work, and the mix mode were calculated as shown in
Figure 21, where the red points on the plots represent the maximum point of corresponding
parameters. Figure 22 shows the cycle efficiency plotted over the cycle specific work, where
the red, black, and green points represent the point at which the cycle efficiency, cycle
specific work, and the mix mode, respectively, were maximized. Similar to the open-air
Brayton cycle, if the cycle is optimized with the maximum cycle efficiency, the cycle specific
work is relatively lower than that in the cycle optimized with the maximum cycle specific
work. However, the cycle optimized with the mix mode is almost the same as the cycle
optimized with the specific work. The same trend continues in Figures 23–25.
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Figure 25. (a) Turbine isentropic efficiency, (b) Turbine rotor diameter, and (c) Rotational speed of
S-CO2 Brayton cycle.

Figure 23a shows the S-CO2 simple recuperated Brayton cycle efficiency over various
power output levels. At the cycle maximum temperature of 500 ◦C with optimization at
the maximum efficiency, the cycle efficiency showed a smooth curve. However, at the
cycle maximum temperature of 700 ◦C and 900 ◦C, the cycle efficiencies with maximum
efficiency mode had inflection points at 5.54 MWe and 3.19 MWe, respectively. The reason
for the rapid change in the cycle efficiency is the abrupt change in the optimized turbine
pressure ratio. At 5.54 MWe, the cycle was optimized at the turbine pressure ratio of 2.15.
However, at 5.81 MWe, the cycle was optimized at the turbine pressure ratio of 2.53, as
shown in Figure 26. This abrupt change in the optimized turbine pressure ratio causes the
inflection in the cycle efficiency curve for the maximum cycle temperature of 700 ◦C and
900 ◦C.
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The S-CO2 cycle efficiency at the mixed optimization mode is mainly dominated by
either efficiency or cycle specific work depending on the power levels. At the maximum
temperature of 500 ◦C and 700 ◦C, the cycle efficiencies of the mix mode followed the cycle
efficiency of the maximum efficiency mode for power output less than 2 MWe. As the
power output increased, the cycle optimized with the mixed mode now coincided with the
maximum cycle specific work. The main reason for such a phenomenon can be explained
with Figure 27.
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Figure 27. Cycle Efficiency along the cycle Specific Work at low and high power levels.

Figure 27 shows the cycle efficiency of the S-CO2 cycle along its cycle specific work. At
the low power level, the point of the maximum efficiency occurs at the maximum specific
work. Thus, the mix mode, where the efficiency and the specific work of the cycle are
considered simultaneously, is mostly dominated by the maximum efficiency conditions.
On the other hand, at the high power level, which is closer to commercial-scale application,
the points of the maximum efficiency and the maximum specific work are obviously
distinguishable. However, the change in the cycle efficiency is relatively smaller than the
change in the specific work, causing the mix mode to coincide with the maximum specific
work. Hence, for larger-scale commercial application, the S-CO2 cycle’s best performing
conditions are the maximum specific work conditions.

5.3. Comparison of Air and S-CO2 Brayton Cycles

Figures 28–30 compare the cycle efficiency and turbomachinery efficiencies of air and
S-CO2 simple recuperated cycles. It is again noted that 500 ◦C TIT is not shown for the
air Brayton cycle case, since the net work is negative for the low-TIT condition. Therefore,
only the S-CO2 cycle is shown for the 500 ◦C TIT condition. For the maximum-efficiency
mode, the air Brayton cycle had higher cycle efficiency than the S-CO2 Brayton cycle. As
shown in Figure 30, the compressor efficiencies used in the air cycle were much higher than
those used in the S-CO2 cycle. If Equation (6) is updated with more S-CO2 compressor data,
the cycle efficiency with the maximum efficiency mode could be improved. Contrary to
the maximum efficiency mode, the cycle efficiencies of the S-CO2 cycle with the maximum
specific work mode have higher than those of the air Brayton cycle, which suggests that
the S-CO2 cycle can generate more power per unit mass flow rate than the air Brayton
cycle. For the maximum mix mode, both the cycle efficiency and the cycle specific work
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were considered during the optimization process. As Figure 28c represents, the cycle
efficiency of the air Brayton cycle for the maximum mix mode was in between the cycle
efficiency calculated using the maximum efficiency and the maximum specific work mode.
However, for the S-CO2 cycle, the maximum mix mode preliminarily follows the maximum
efficiency mode at the low power level and follows the maximum specific work mode at
the high power levels. Therefore, when designing an S-CO2 power cycle for commercial
application, optimizing with the cycle specific work is recommended, whereas the mix
mode is recommended for the air Brayton cycle.
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6. Conclusions

In this study, the comparative performance of the open-air and closed S-CO2 simple
recuperated Brayton cycle were compared using the turbomachinery’s polytropic effi-
ciency. For the open-air Brayton cycle, the polytropic efficiencies were calculated using
Equations (4) and (5). However, the compressor polytropic efficiency calculated from the
equation actually deviated from the S-CO2 compressor facility design values. Therefore, a
new compressor polytropic equation was developed with the S-CO2 compressor experi-
mental facility data as shown in Equation (6).

Using the modified KAIST CCD and OCD codes, the cycle performances were com-
pared with three different optimization modes: maximum efficiency; maximum cycle
specific work; and maximum mix mode, which considers both efficiency and specific work
in the optimization process. The cycle efficiencies of the air Brayton cycle were higher for
TIT above 700 ◦C than those of the S-CO2 Brayton cycle when the cycles were optimized for
maximum efficiency. However, when the cycles were compared with the maximum cycle
specific work optimization mode, the S-CO2 cycle outperformed the air cycle. Since the
S-CO2 compressor efficiency was fitted with experimental data mostly obtained at lab scale,
the S-CO2 compressor efficiency was generally lower than the air compressor efficiency.

The results also show that the air Brayton cycle can achieve near 45% efficiency
when it can couple with a microreactor with a core outlet temperature higher than 700 ◦C.
Nevertheless, since the reduction in compression work is quite substantial for the S-CO2
cycle, still it can perform better than the air cycle when specific work is maximized. For
instance, the S-CO2 power cycle can still achieve above 30% efficiency when it is coupled
with a microreactor with a core outlet temperature higher than 500 ◦C, while the air Brayton
cycle cannot even reach breakeven condition. If more S-CO2 compressor experiment
data become available, better cycle performance is also expected for the S-CO2 cycle with
improved compressor performance prediction.

For the open-air Brayton cycle, the maximum mix mode allowed to obtain balanced
cycle operating conditions, whereas the maximum mix mode actually followed the max-
imum specific work mode for the closed S-CO2 Brayton cycle for higher power output
application. Therefore, the mix mode should be used when designing the air Brayton cycle
to include the effect of both the maximum efficiency and specific work. On the other hand,
for the S-CO2 cycle, the specific work should be maximized when the cycle is designed for
commercial-scale high power output systems.
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Nomenclature

Symbol Description Unit
η Efficiency %
∆h Enthalpy change J

kg
.

m Mass Flow Rate kg
s

PR Pressure Ratio -
dsh Rotor shroud Diameter mm
ns Specific Speed -
ds Specific diameter -
T Temperature ◦C
P Pressure MPa
γ Isentropic Coefficient -
n Polytropic Coefficient -
Z Compressibility Factor -
D Rotor Diameter m
ω Rotational Speed s−1

V Volumetric Flow Rate m3

s
g Gravitational Acceleration m

s2

Had Adiabatic Head m
Subscripts
Poly Polytropic -
S Stage -
Isen Isentropic -
t, turb Turbine -
c, comp Compressor -

Appendix A

For an ideal process,
PVγ = const.

PV = ZRT ⇒ V =
ZRT

P
, where Z = compressibility f actor

P
(

ZRT
P

)γ

= P1−γZγTγ = (1− γ) ln P + γ ln Z + γ ln T = const.

Differentiating,
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Converting turbine polytropic efficiency to the isentropic efficiency.
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Isentropic Work output
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Converting compressor polytropic efficiency to the isentropic efficiency.
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