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Abstract: In the current auction-based electricity market, the design of utility-scale renewable energy
systems has traditionally been driven by the levelised cost of energy (LCoE). However, the market
is gradually moving towards a subsidy-free era, which will expose the power plant owners to the
fluctuating prices of electricity. This paper presents a computational approach to account for the
influence of time-varying electricity prices on the design of airborne wind energy (AWE) systems.
The framework combines an analytical performance model, providing the power curve of the system,
with a wind resource characterisation based on ERA5 reanalysis data. The resulting annual energy
production (AEP) model is coupled with a parametric cost model based on reference prototype data
from Ampyx Power B.V. extended by scaling laws. Ultimately, an energy price model using real-life
data from the ENTSO-E platform maintained by the association of EU transmission system operators
was used to estimate the revenue profile. This framework was then used to compare the performance
of systems based on multiple economic metrics within a chosen design space. The simulation results
confirmed the expected behaviour that the electricity produced at lower wind speeds has a higher
value than that produced at higher wind speeds. To account for this electricity price dependency on
wind speeds in the design process, we propose an economic metric defined as the levelised profit of
energy (LPoE). This approach determines the trade-offs between designing a system that minimises
cost and designing a system that maximises value.

Keywords: airborne wind energy; day-ahead electricity market; merit order effect; levelised cost of
energy; levelised profit of energy; value factor; system design

1. Introduction

Although wind energy has the highest share in the global renewable energy mix, it has
far more potential than what is being harnessed today [1,2]. Airborne wind energy (AWE)
is an emerging technology that uses tethered flying devices to harness the wind resource at
higher altitudes (>250 m). Developers worldwide are working on different concepts, some
of which are illustrated in Figure 1.

Figure 1. Some of the commercial airborne wind energy concepts currently being developed [3].

A review of the technology and the different concepts can be found in [4–6]. This
paper was based on the widely adopted concept of converting the pulling force on the
ground using a drum-generator module. For this purpose, the kite is operated in pumping
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cycles, alternating between the reel-out and reel-in phases. During reel-out, the kite is flown
in crosswind manoeuvres to maximise the tensile power transferred to the ground and the
generated electricity. For reel-in, the manoeuvres are discontinued, and the kite is flown
back to the minimal tether length to start the next cycle. The reel-in phase consumes a small
fraction of the generated electricity, so the net cycle power is positive. Although AWE’s
research and development have accelerated over the last decade, none of the developers
have been able to demonstrate the commercial viability of their technology in a relevant
market. For successful diffusion of the technology in a market, the design of an AWE
system should be aligned with this market’s requirements. We recognise that, at its present,
relatively early stage of technology development, the industry can profit significantly from
a system-level framework that captures this interaction and guides the system design to
meet the market’s needs. Few studies have investigated the effect of integrating AWE
systems into the energy system. Malz et al. [7] investigated the added value of AWE
systems in addition to conventional wind turbines. This was performed by evaluating
certain fixed system designs. The optimisation of the design to increase the value was not
investigated.

System design is primarily driven by four factors: (1) the available wind resource,
(2) the performance of the system, (3) the cost of the system, and (4) the value that this
system creates. Performance and costs are technology-dependent, whereas wind resource
and value derivation are market-dependent. It is essential to capture the influence of all
four factors in a single framework.

The revenue of wind farms has long been dependent on government subsidies. As
renewable energy technologies are maturing and becoming less expensive, developers
now require fewer subsidies to build and operate new wind farms [8]. Since introducing
competitive auctions for renewable energy technologies, subsidy-free wind power has
rapidly grown in the European market [9]. In a subsidy-free future, the revenue generated
by wind farms will depend on the DAM. The functioning of a typical liberalised European
electricity market was described in [10–12]. It has been observed that the DAM prices drop
when the amount of power generation through renewables in the grid increases, which is
known as the merit order effect [13,14]. Accordingly, an increase in the renewable electricity
supply reduces the market value of renewable electricity producers, which is known as the
self-cannibalisation effect. Along with developers, the market also suffers from increasing
price fluctuations. Studies such as [15,16] showed how changing the wind turbine design
can help counter this effect. Turbines designed for lower specific powers (the ratio of the
generator size to the rotor swept area) can produce more electricity at lower wind speeds,
leading to higher earnings than turbines designed for higher specific powers. Accordingly,
the wind industry is slowly evolving beyond the conventional approach of cost-driven
design towards exploring various other design metrics [17–19]. This paper addressed
this idea from the perspective of utility-scale AWE systems to reduce the gap between
technology development and market introduction. We investigated if there is a shift in
system design when designing for minimum cost against designing for the maximum value
in the European day-ahead market (DAM) scenario. This was investigated by developing
an integrated system design framework capturing the power, cost, energy, and value
generation capabilities of the AWE systems.

The paper is structured as follows. Section 2 describes the system design framework
and the integral models. Section 3 discusses the results using a case study. Section 4
presents the derived conclusions.

2. System Design Framework

An AWE system can be divided into three major subsystems: kite, tether, and ground
station/generator. Optimising the system design is a multi-disciplinary task involving the
modelling of all relevant physical interactions on the subsystem and component levels.
For example, the tether force affects the structural components of the kite, consequently
influencing the cost, as well as the performance of the system. However, using high-fidelity
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models in a design optimisation framework is computationally prohibitive and generally
unnecessary for the preliminary sizing of systems.

The framework presented in this paper is based on the AWE sizing tool chain devel-
oped by Ampyx Power B.V. [20] extended with the approach described in [21]. A flowchart
of this framework is shown in Figure 2. The design parameters include the properties of the
kite, the tether, and the ground station/generator. The business case parameters include
the wind speed data, electricity price data, project’s lifetime, number of systems, discount
rate, and other financial parameters. The output includes the values of the defined metrics
for each system configuration and the specified business case. A heuristic search can then
find the optimal configuration with respect to the chosen metric.

Business case 
parameters

Metrics

Revenue 
model

Energy price 
model

Cost model

LCoE, VF, LPoE, etc. 

Energy model

Energy price profile 
over time

Energy profile 
over time  

Performance 
model

System design 
parameters

Wing area, 
Rated electrical power, 
Tether properties,
Wing aerodynamic 
characteristics, etc.

Wind resource data,
Electricity price data,
Subsidy scheme,
Project lifetime,
No of systems, etc.

Power curve, mass, etc.

Figure 2. Flowchart of the system design framework.

The following sections describe the different model components of the framework.

2.1. Performance Model

The performance of the AWE system was computed with an analytical model based
on the steady-state aircraft dynamics introduced by Bonnin [22] for the preliminary sizing
of fixed-wing AWE systems. A fast analytical model is generally preferred to a compu-
tationally expensive and more complex higher-fidelity simulation framework for such
purposes. Because the analytical model uses only a limited set of input parameters, a
wide range of system sizes can be investigated without generating for each case the large
set of aerodynamic, control, and structural input parameters required for higher-fidelity
simulations.

A basic theory for estimating the performance of AWE systems was presented by
Loyd [23]. The theory considers a kite in ideal crosswind operation with the tether pointing
in a downwind direction and exerting a pulling force on a drum-generator module on the
ground. The mechanical power transmitted by the reeling tether is calculated as

P = FtVw f , (1)
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where Ft is the pulling force of the kite, Vw is the wind speed, and f is the tether reel-out
factor defined as the ratio of reel-out speed and wind speed. Loyd derived the following
expression for the pulling force.

Ft =
1
2

ρV2
wS

C3
L

C2
D
(1 − f )2, (2)

where 1/2ρV2
w is the dynamic flow pressure, S is the wing surface area, and C3

L/C2
D is

the ratio of the aerodynamic coefficients. The expression illustrates that the pulling force
increases quadratically with increasing wind speed, decreasing quadratically with an
increasing reeling factor, and vanishing at the upper limit f = 1. Loyd showed that the
power defined by Equation (1) is maximised by an optimal reeling factor fopt = 1/3. At
higher wind speeds, the pulling force must be limited to the maximum allowable tether
force Tmax. For this purpose, Equation (2) can be reformulated as a control law to determine
the reeling factor f > fopt as a function of Tmax. Inserting this control law into Equation (1)
gives the maximum mechanical power that can be harvested at higher wind speeds:

Pmax = Ft,maxVW

1 −
√√√√ Ft,max

C3
L

C2
D

1
2 ρV2

wS

. (3)

Loyd’s theory does not account for the cyclic operation of the kite with alternating
reel-out and reel-in phases. The reel-in phases and the associated power consumption are
neglected, as well as effects such as the flight pattern elevation, pattern dimension, gravity,
and tether sag. Luchsinger [24] extended Loyd’s theory to account for the cyclic operation
with tether reel-in losses, the flight pattern elevation, and the effect of the kite mass when
flying ideal circular manoeuvres around the wind vector. A similar approach was used
in the present study, reducing the maximum power defined by Equation (3) by the losses
from various physical effects and limitations:

• Losses due to cyclic operation with reel-in phases;
• Losses due to flight pattern elevation and dimension;
• Effective lift losses due to aircraft roll (compensating for gravity and inertia);
• Drivetrain limits (e.g., limit on maximum mechanical power);
• Design safety factors;
• Component efficiencies (i.e., gearbox, generator, power electronics etc.).

To model these physical effects, it is essential to estimate the kite and tether mass
properly. For this purpose, a mass estimation model was developed using Ampyx Power’s
150 kW prototype as a reference system, extended by a parametric function using the
wing area S, aspect ratio AR, and max. tether force Ft,max. Figure 3 shows the kite mass
as a function of the wing surface area (solid line), assuming a fixed Ft,max-to-S ratio of
3.5 kN/m2 and a fixed-wing AR of 12. The masses of several implemented and planned
prototype kites were added for comparison. The aircraft wing scaling law (dashed line) is
optimistic because it only includes the mass of the wing, omitting the fuselage, tail, and
other electronic and electrical subsystems. The correlation provides a reference to compare
the mass of conventional, untethered aircraft to that of fixed-wing kites for airborne wind
energy harvesting designed for a substantially higher wing loading.
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Figure 3. Masses of AWE systems as a function of the wing surface area. MegAWES [25], Ampyx
Power AP2 and AP3 [20], AP5 low and AP5 high [26], Makani Power M600, MX2 (Oktoberkite), and
M5 [27,28], Haas et al. 2019 [29], and conventional aircraft wing scaling [30].

The average electrical power per cycle and the various efficiencies are defined as [31]

Pe,avg =
PRO,etRO − PRI,etRI

tRO + tRI
, (4)

with

PRO,e = PRO,mηDT, (5)

PRI,e =
PRI,m

ηDTηSto
, (6)

where PRO,m is the average mechanical power generated during reel-out, tRO is the time
duration of the reel-out phase, PRI,m is the average mechanical power consumed during the
reel-in phase, tRI is the time duration of the reel-in phase, ηDT is the drivetrain efficiency,
and ηSto is the storage round-trip efficiency.

An AWE system can be defined with design parameters such as the wing area, aspect
ratio, aerodynamic properties, tether properties, and the drivetrain properties such as the
generator power limit, winch speed, acceleration, etc. For the defined system, the expression
on the right-hand side of Equation (4) was maximised by numerical optimisation for every
wind speed. The optimisation variables are the operational parameters such as the reel-out
length, operating lift coefficient, average pattern elevation, opening cone angle of the
pattern, radius of the pattern, and reel-in speed. This results in the power curve and the
mass of a specified system configuration.

2.2. Energy Model

The energy production of the AWE system was computed from the output of the
performance model and the available wind resource. During the cyclic operation, the kite
covers a height range of approximately 200 to 400 m. The wind speed can vary significantly
due to wind shear and other atmospheric phenomena. Schelbergen et al. [32] presented an
approach to compactly represent statistical wind resource data by a limited set of clustered
wind profile shapes and used these for a fast estimation of the energy production of an
AWE system. The method captures the variation of the wind speed with height experienced
by the kite. The difference in computed energy production, assuming an average pattern
height instead of the fully resolved vertical profile, was found to be insignificant. Since
the framework proposed in the present paper is for preliminary sizing studies, the energy
model was based on average pattern height instead of the full vertical profile. It computes
the generated energy based on the wind speed distribution at the average pattern height
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and the power curve of the system. The annual energy production (AEP) is calculated as
shown in the following equation:

AEP = N × 8760
∫ umax

umin

P(u) f (u)du, (7)

where N is the total number of systems, u is the wind speed at the average pattern height,
P(u) is the power curve, and f (u) is the probability of occurrence of a wind speed u.

The probability distribution of the wind speed was determined from the ERA5 reanal-
ysis data [33]. The European Centre for Medium-Range Weather Forecasts (ECMWF) pro-
vides the dataset. It has a global coverage from 1979 to near real-time and combines model
data and actual observations from around the globe within a consistent dataset. The data
are provided hourly for several atmospheric, land, and sea state parameters. The surface
resolution of the wind speed data in terms of latitude and longitude is 0.25° × 0.25°, which
is equivalent to around 31 km × 31 km. The vertical resolution is 137 atmospheric pressure
levels covering a range from 10 m to 80 km. Location-specific data can be downloaded
through the Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [34].

The larger the dataset, the higher the accuracy of statistical models is. Therefore, for
a particular location (or a business case), it is advisable to use at least five years of wind
speed data with hourly resolution. It was assumed that the annual wind statistics are the
same for every year, and hence, the annual energy production profile was assumed to be
constant throughout the project’s lifetime. If T is the project’s lifetime, then the energy
production over the project’s entire life is given by the product of T and the AEP.

2.3. Cost Model

As stated in Section 1, the four factors driving the system design of AWE are the
wind resource, the system performance, the cost, and the value it creates. The first three
are captured in a single economic metric known as the levelised cost of energy (LCoE).
It is the average net present cost of electricity generation for a system or a plant over its
entire economic lifetime, discounting costs and energy production for the time value of
money [35]. The metric is calculated as

LCoE =
∑T

t=0
CapEx(t)+OpEx(t)

(1+r)t

∑T
t=0

E(t)
(1+r)t

, (8)

where CapEx is the capital expenditure, OpEx the operational expenditure, r the discount
rate, E the energy produced, and t the discrete year counter.

Due to the early stage of technology development, the literature on the cost modelling
of AWE is scarce. What can be concluded is that a generalised cost model for AWE is
impractical because of the diverse architectural choices in the industry. The models for
soft-wing AWE systems proposed in [36,37] are mainly based on conventional wind turbine
component costs translated to AWE systems. The present study was based on a cost
model for a fixed-wing AWE system that was first introduced in [38]. The parametric
approach was primarily based on data provided by Ampyx Power B.V. accounting for
the subsystem- and component-level architectures of the specific AWE system. The cost
references were based on supplier quotes, industry standards, empirical numbers, and
company research [39–41].

Figure 4 shows the components of the cost model consisting of two modules, one for
the computation of the CapEx and the other one for the computation of the OpEx. The
CapEx module comprises an AWE system and balance of plant (BoP) components. The
cost of the AWE system was divided into three main subsystems: (1) the kite, including
the structure, electronics, and integration; (2) the tether; and (3) the ground station, which
includes the drum, tether guidance mechanisms, drivetrain (including the generator, stor-
age components, power electronics, etc.), and the launch and landing platform. The BoP
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is mainly relevant for the farm-level aspects and depends on the onshore, offshore, and
floating business cases. The electrical infrastructure includes cabling, power electronics,
grid connection, etc. Civil infrastructure includes foundations, substations, etc. Installation
costs include the ports, vessels, cranes, labour costs, etc. The OpEx module comprises fixed
and varying costs throughout the project’s lifetime. The fixed costs include the planned
maintenance and replacement costs, and the varying costs include the unplanned failures.

OpEx module

CapEx module

Electrical

Installation

Kite

Ground station

Tether

FarmSystem 

System Balance of Plant

System design 
parameters

Business case 
parameters

System 
energy profile

CapEx, OpEx, LCoE

Civil

Figure 4. Components of the cost model.

Economies of scale and innovation (learning) are important for projecting the costs of
innovative technologies like AWE to the point of their market entry. Learning curves can
be represented by multiple cost-reducing processes such as learning by doing, researching,
using, and scaling. These processes were described in [42]. There have been multiple
studies [43–45] quantifying the learning rates of various energy technologies and their
BoP costs. Different terminologies for learning factors have been used in the literature
depending on the field of study. Experience/learning is generally used for cumulative
production, and scale is used for size. If the cumulative production capacity or size is
doubled, the specific costs reduce by a factor of 2b. The learning rate is defined as 1–2b, and
b is called the learning elasticity.

The model accounts for scale-up benefits in terms of cost per kW of installed power.
This considers the effects such as make–buy optimisation, reducing relative manpower
costs, technological advancements, and others. To take these benefits into account, two
learning elasticities were introduced: a for scale (size) and b for experience (cumulative
production). The learning factors were applied as follows:

C = C0

(
S
S0

)a( Q
Q0

)b
, (9)

where C is the scenario unit cost, C0 is the reference unit cost, S is the scenario size, S0 is
the reference size, Q are the scenario units, and Q0 are the reference units.

The learning elasticities can also be used per subsystem based on the known data
points from the mentioned literature belonging to the relevant industry, such as conven-
tional wind turbines, aviation, solar PV (for BoP), etc.

2.4. Electricity Price Model

As mentioned in the previous section, the only influencing factor not captured by the
LCoE is the value of the generated electricity quantified by the electricity price. Traditionally,
the electricity price has depended on various subsidy schemes described in [46,47]. Two
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of the most commonly used schemes are the feed-in-tariff (FIT) and the feed-in-premium
(FIP). In an FIT scheme, the renewable energy producers are paid a fixed price per unit of
electricity fed into the grid. In an FIP scheme, the producers are paid a fixed premium in
addition to the day-ahead electricity market (DAM) price received per unit of electricity
fed into the grid.

The DAM prices are different for different bidding zones within a country. Most
European countries have one or two bidding zones with very few exceptions [48]. All
power plant owners throughout the bidding zone receive the same electricity prices. The
merit order effect in the DAM shows that electricity prices negatively correlate with wind
power production within that zone. Based on the nature of the local wind resource, every
wind farms will experience a different correlation between their production and the DAM
prices. These local correlations will affect the revenue streams of the wind farm owners.

We developed the data-driven statistical model outlined in Figure 5 to verify and
model the correlation between the DAM price and wind speeds. We used the wind speed
time series data from the ERA5 reanalysis dataset [33] and the DAM price data from
the ENTSOE-E transparency platform [49]. ENTSOE-E is responsible for collecting and
publishing data related to electricity generation, transmission, and consumption in the
European market.

Start

Wind speed 
timeseries data 

DAM price 
timeseries data

Data pre-
processing

If P ≤ 0.05

Best fit-line

Regression 
analysis

End

No

Yes

Pearson 
correlation

Correlation is 

insignificant

Residual analysis

Correlation 

significance test

Figure 5. Flowchart of the correlation modelling method of DAM price and wind speeds.

The data preprocessing consisted of data cleaning, detrending, and removing outliers.
Detrending is necessary to remove any inherent trend in the datasets to avoid spurious
correlations [50]. DAM price data points three standard deviations apart were categorised
as outliers. Since the wind speeds were from a modelled dataset, no data points were
categorised as outliers. Temporal consistency in the datasets was maintained during
these operations. The preprocessed time series datasets were then used to investigate the
correlation between the variables.

The Pearson coefficient was used to evaluate the degree of correlation between wind
speeds and DAM prices. The coefficient indicates the direction and strength of the linear
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relationship between the two statistical variables. With X being the wind speed and Y
being the DAM price, the coefficient is calculated as

Rxy =
cov(X, Y)√

var(X)var(Y)
, (10)

where cov is the covariance and var is the variance of the variables.
A statistical significance test was then performed as a confirmatory test [51]. The

p-value should be smaller than the chosen significance level to confirm the analysis. The
commonly accepted level is 5% and, hence, was used in this model. As a next step, the or-
dinary least-squares method was used to model the relationship between the two variables,
followed by a residual analysis to confirm the linearity of the relationship. The output
of this model gave us the DAM price as a function of the wind speeds p = f (u) for the
specified business case. An FIT-based scenario would mean that the electricity price is
independent of the wind speeds.

2.5. Revenue Model

For a subsidy-based revenue generation scenario, annual revenue can be directly
estimated as the product of the AEP and electricity price. As shown in the previous section,
the DAM price could be modelled as a function of the wind speeds. Therefore, for a
DAM-based revenue generation scenario, annual revenue is modelled as follows:

Annual revenue = N × 8760
∫ umax

umin

f (u)P(u)p(u)du, (11)

where p is the electricity price in EUR/MW h and all the other variables retain their defini-
tion. The model assumes that the yearly wind statistics and the DAM price distribution are
the same each year during the project’s lifetime. Therefore, the annual revenue was also
assumed to be constant over the entire project’s lifetime.

Considering the time-varying electricity price scenario, there is a need for a revenue-
based metric analogous to the LCoE to compare different systems based on their potential
to maximise revenue. The proposed economic metric is the levelised revenue of energy
(LRoE), defined as

LRoE =
∑T

t=0
[p(t)+subsidy(t)]E(t)

(1+r)t

∑T
t=0

E(t)
(1+r)t

, (12)

quantifying the average net present electricity price for a project over its entire economic
lifetime in EUR/MW h. For a better comparison, the LRoE was normalised with the average
market price and denoted as the value factor (VF):

VF =
LRoE

Average DAM price
. (13)

The normalised metric quantifies the difference between the average electricity price
received by a producer in a time-varying electricity price scenario and the total market
average price. For example, a VF of 0.8 means that the system receives 80% of the average
electricity price received by its competitors in the market.

Instead of using the LCoE alone, the LCoE and LRoE should be used to compare
technologies effectively. The difference between the LRoE and LCoE is defined as the
levelised profit of energy (LPoE):

LPoE = LRoE − LCoE. (14)
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To quantify the profitability of a certain investment in project planning, we define the
net present value (NPV):

NPV =
T

∑
t=0

Ct

(1 + r)t , (15)

where C is the net cash flow, i.e., the difference between the revenue and expenditure.
Since the LCoE and LRoE are both discounted to account for the time value of money,

they can also be used to calculate the NPV of the project as:

NPV = E × LPoE, (16)

where E is the discounted value of the total energy produced during its entire economic
lifetime.

Since the LPoE and NPV capture all four factors influencing the economics of AWE,
they are more comprehensive metrics to compare different design choices. In addition to
the NPV, the internal rate of return (IRR) is another economic metric used to estimate the
profitability of a project or an investment. The IRR is the discount rate that makes the NPV
(essentially the LPoE) equal to zero. The IRR can also be used as an alternative metric to
the LPoE. From the perspective of a business case, the decision for a project is generally
based on a target IRR requirement of the investors. In a DAM-based scenario, it is possible
that the market price alone cannot achieve this target IRR. Therefore, an additional subsidy
in the form of an FIP could be necessary to achieve the required IRR.

In addition to the LCoE, these different metrics could be used to evaluate different
system designs based on different objectives. The presented design framework is adaptable
to evaluate different AWE concepts and business cases by modifying the necessary models
and assumptions.

3. Results and Discussion

This section aims to identify system designs that can generate revenue in markets with
time-varying electricity prices without the support of subsidies. This was performed by
applying the presented framework to a particular case study.

3.1. Electricity Price Dependency on Wind Speeds

An offshore location in Germany (54°N 7°E) served as an example to investigate and
illustrate the dependency of the electricity price on the wind speeds. The analysis was
based on a five-year historical dataset (2015 to 2019) with an hourly resolution. The height
at which the wind speed data were evaluated was 350 m. The wind speed data were
obtained from [33] and the electricity price data from [49].

Figures 6 and 7 show the difference between the original and the preprocessed time
series of DAM prices and wind speeds, respectively. The negative wind speed values in
the preprocessed data were caused by detrending the time series. The price data follow
a Gaussian distribution with a mean of EUR 35/MW h and a standard deviation of EUR
14/MW h. The wind speed data follow a Weibull distribution with a mean of 10 m s−1. The
preprocessing removed around 1.4% of the total data points.

The Pearson correlation coefficient for the dataset was −0.33, and the P-value was
close to zero (�0.05). This confirmed the negative correlation between wind speeds and
electricity prices. The result of the regression analysis is shown in Figure 8 as the best-fit
line for the data cloud. On average, an increase in wind speed by 1 m s−1 leads to a drop of
the DAM price by EUR 0.9/MW h.
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Figure 6. Original versus preprocessed DAM price time series from Germany (2015–2019).
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(b) Preprocessed time series dataset.

Figure 7. Original versus preprocessed wind speed time series from the offshore location in Germany
(2015–2019).
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Figure 8. Regression analysis results of the DAM prices and wind speeds from Germany (2015–2019).

The R2 statistic of 0.11 indicates that the model did not fit the data perfectly. However,
the residuals illustrated in Figure 9a,b are normally distributed with a mean of zero, which
validates the linearity of the correlation because the error is spread evenly on both sides of
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the regression line. Therefore, the model effectively captured the required pattern within
the data.

(a) Residuals’ plot. (b) Distribution of residuals.

Figure 9. Residuals’ analysis plots.

A similar analysis was performed on three locations in The Netherlands, Denmark,
and Germany to check if this electricity price dependency on wind speeds can be observed
in multiple European markets. Table 1 shows the statistical analysis results, and all the
estimated parameters were significant (i.e., p-values � 0.05).

Table 1. Statistical model results: electricity price dependency on wind speeds for three different
European locations.

Location Correlation Coefficient Slope of Regression Line

The Netherlands (52.5° N 4.25° E) −0.15 −0.4
Denmark (55° N 8° E) −0.38 −0.9
Germany (53° N 12° E) −0.32 −1.2

The analysis confirmed the general trend in the European electricity markets with
high wind energy penetration that electricity generated at low wind speeds has a higher
value than that generated at high wind speeds.

3.2. System Sizing Case Study

Germany is one of the countries where the electricity price dependency on wind speeds
has been identified to be more prominent. This results from the share of wind energy and
the composition of other sources in the electricity mix. The German onshore location from
Table 1 was chosen for this analysis. Tables 2 and 3 list the design space and business case
parameters input into the framework. The objective of the case study was to investigate if
there was a shift in optimal system design when designing for different techno-economic
metrics such as the LCoE, LRoE, and LPoE, as defined in the previous section.

Table 2. System design parameters.

Design Space Parameter Values Unit

Wing area 80, 120, 160, 200 m2

Max. tether force 200, 300, 400, 500, 600, 700 kN
Rated power 1, 1.5, 2, 2.5 MW
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Table 3. Business case parameters.

Business Case Parameter Value Unit

Avg. wind speed at 350 m 8 m s−1

Avg. DAM price (2015–2019) 35 EUR/MW h
DAM price gradient with
respect to wind speed −1.2 (EUR/MW h)/(m s−1)

Discount rate 10 %
Lifetime of systems 25 Years
Number of systems 30 -

Figure 10 depicts the power curves of four sample configurations from the design
space. Figure 10a characterises a 120 m2 kite coupled to a 1.5 MW generator using tether
force limits of 300 and 500 kN, respectively. The higher tether force limit configuration
reaches the rated power earlier than the one with the lower limit. Note that the kite
structure was designed to withstand the maximum force of the connected tether. Therefore,
though the wing areas are the same, the kite mass for the 500 kN configuration is higher
than for the 300 kN configuration. For better readability, we abbreviate the limiting value of
the tether force by the term Ft,max. Figure 10b characterises 80 and 160 m2 kites coupled to
a 1.5 MW generator using Ft,max of 500 kN. The larger wing area configuration can produce
power at lower wind speeds than the smaller one. When using the same tether material,
Ft,max is directly related to the cross-sectional area of the tether, i.e., the larger the tether
diameter, the higher the force limit is.

The following sections show the trends within the design space concerning the chosen
metrics. The system economics heavily rely on the park size, cumulative production, and
other fundamental cost assumptions. This constrained case study aimed to investigate the
dependencies and not the future commercial potential of the technology. For this reason,
all the presented results were normalised.
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Figure 10. Power curves of four sample configurations from the design space listed in Table 2.
(a) Effect of varying max. tether force for constant wing size.; (b) Effect of varying wing size for
constant max. tether force.

3.3. Levelised Cost of Energy Trends

Figure 11 shows the LCoE computed for all wing area and Ft,max combinations in
the design space for the 2 MW generator size. We observed that each wing area was
associated with a particular Ft,max, which minimises the LCoE. In the case of an 80 m2 kite,
the configuration with Ft,max of 400 kN achieved the minimum LCoE. This also applies to
the other generator configurations in the design space.



Energies 2023, 16, 2075 14 of 19

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

0.6

0.8

1

80 200160120 (m2)

(kN)

Figure 11. LCoE values for the 2 MW onshore business case.

Plotting only the optimal Ft,max configurations minimising the LCoE for each wing
area revealed the LCoE trend for each generator size. This is shown in Figure 12. The
derived trends can be used to identify the optimal wing area and the Ft,max configuration
for specific generator sizes within the chosen business case. For each curve, the optimum
configuration can be found at the minimum extreme value. The trends show that the
optimal combination of the wing area and corresponding Ft,max increases with increasing
generator size. The minimum extreme point for the 1 MW curve is at wing areas below
80 m2; for the 1.5 MW curve, it is at 120 m2; for the 2 MW curve, it is between 120 and
160 m2; for the 2.5 MW curve, it is at 160 m2. Above generator sizes of 2.5 MW, a 200 m2

wing area is suitable.

Figure 12. Minimum LCoE trend for the onshore business case. The labels at the data points quantify
the Ft,max in kN.

Several LCoE values deviated only by 5%. For developers, it is generally desirable
to minimise the risk of scaling up too rapidly and to reduce the development costs. Ac-
cordingly, there can be a trade-off between lower risk (higher LCoE) and higher risk (lower
LCoE). A developer could decide to use the same kite for various generator sizes. The kite
has to be designed to withstand the max. tether force limit within the chosen portfolio.
As an example from Figure 12, if the same 160 m2 kite has to be coupled with generator
sizes ranging from 1 MW–2.5 MW, the kite has to be designed to withstand Ft,max of 700 kN.
Hence, it will be over-designed for the 1 MW configuration. This will affect the LCoE of the
1 MW configuration, which needs re-evaluation.

As discussed in Sections 2.3 and 2.4, the LCoE-driven system design does not include
the effect of the time-varying electricity price. The following section shows its potential
effect on system sizing.
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3.4. Levelised Revenue of Energy and Value Factor Trends

For the chosen business case specified in Table 3, an increase in wind speed by 1 m s−1

entails an average drop of the electricity price by EUR 1.2/MW h. The effect of time-varying
electricity prices on the LRoE of different system designs was assessed by calculating the
value factor as defined in Equation (13). The average LRoE of all investigated designs was
less than the average DAM price of EUR35/MW h. Therefore, the value factor of all designs
was less than 1, which is illustrated in Figure 13. The average value factor was around
91%, meaning that the electricity price received by the AWE systems in the market will be
around 9% lower than the average electricity price received by its competitors.

The variation in the LRoE depends primarily on three aspects: the strength of the
correlation between the DAM price and wind speeds, the frequency of occurrence of lower
wind speeds, and the performance of the AWE system at these lower speeds. Systems with
larger wing areas producing energy even at lower wind speeds are not affected as much as
those with smaller wing areas with a higher cut-in wind speed.
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Figure 13. Maximum value factor trend for the onshore business case. The labels at the data points
quantify the Ft,max in kN.

From Figure 8, it is clear that the systems performing better at lower speeds will
achieve a higher LRoE and, hence, higher value factors. From Figure 10, these are the
systems with larger wing areas and higher Ft,max configurations. This suggests a trade-
off between designing for low wind speeds and a system better suitable for high wind
speeds, emphasising the need to shift from cost-driven system design to value-driven
system design.

3.5. Levelised Profit of Energy Trends

For a subsidy-based scenario, the electricity price is independent of the wind speeds
and the LRoE is identical for all system designs. Therefore, the LPoE-optimised choice will
be the same as the LCoE-optimised choice. However, the same may not apply in the case of
a time-varying electricity price scenario. Figure 14 shows the maximum LPoE trends for
the chosen business case. The negative LPoE values mean that the LRoE of those particular
system designs is lower than their LCoE. The discount rate assumption in this case study
is 10%. Therefore, an LPoE of 0 corresponds to the IRR of 10%. Negative LPoE means the
IRR is below the discount rate, which means that the project is not profitable with that
particular configuration.

For this case study, the LRoE of all system designs was within 6% of the average value.
Therefore, the expected differences between LCoE-optimised and LPoE-optimised systems
are not visible.
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Figure 14. Maximum LPoE trend for the onshore business case.

This case study was based on five years of historic data from 2015 to 2019. The
electricity price and wind speed data do not show a strong negative correlation. Still, it
is also not representative of the typical project lifetime of 25 years. Later years will likely
exhibit a stronger correlation of wind speed and electricity price because of the increasing
wind energy penetration in the European electricity market. Moreover, since the AWE
system designs were not optimised, they showed a high cut-in wind speed and lower
performance at lower wind speeds. These are the two main reasons that a pronounced
design shift regarding the cost and value is not visible in this case study. Both factors are
likely to change in future scenarios, and the value is expected to become more relevant
than just the costs.

With large-scale variable renewable energy penetration, the market mechanism could
also experience a change. Grid stability will have a higher value, which the LCoE does not
capture. Therefore, there is an argument to optimise the systems based on drivers beyond
the LCoE. Design drivers such as value, security of supply, dispatchability, and ancillary
services such as frequency and voltage regulation will also become more relevant in the
future.

4. Conclusions

A subsidy-free future electricity market and large-scale renewable energy penetration
will expose wind farm owners to daily fluctuations in electricity prices. This will increase
uncertainty in revenue generation. The merit order effect, in which the electricity prices
drop with an increase in renewable electricity production, is visible in the day-ahead market.
This paper provided a framework for incorporating the European electricity market’s
influence on AWE system design. The aim was to evaluate if the current design trends
for AWE systems are aligned with the needs that the future electricity market will likely
dictate. The assessment of three locations in Germany, Denmark, and The Netherlands
indicated that an increase in wind speed by 1 m s−1 entails an average drop of the electricity
price by EUR 1/MW h. This dependency will likely increase with the expected penetration
of wind power. It was evident from the presented case study that the system having the
lowest levelised cost of energy (LCoE) is not necessarily the system earning the highest
revenue. For example, the 1.5 MW system design achieved the lowest LCoE with a wing
area of 120 m2 and a maximum allowable tether force of 400 kN. However, for the same
power rating, a system design with a wing area of 200 m2 and a maximum allowable tether
force of 600 kN was able to generate the maximum revenue. It should be noted that the
conclusions regarding the shift in design choices cannot be generalised because they are
based on a highly specific case study. This work primarily showed the need to explore
design drivers that go beyond just costs and capture the market value. The levelised profit
of energy (LPoE) is one such value-based metric proposed in this paper.
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AWE Airborne wind energy
CapEx Capital expenditure
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AEP Annual energy production
LCoE Levelised cost of energy
DAM Day-ahead market
LRoE Levelised revenue of energy
VF Value factor
LPoE Levelised profit of energy
NPV Net present value
IRR Internal rate of return
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