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Abstract: With the increasing interdependence among energies (e.g., electricity, natural gas and heat)
and the development of a decentralised energy system, a novel retail pricing scheme in the multi-
energy market is demanded. Therefore, the problem of designing a customised multi-energy pricing
scheme for energy retailers is investigated in this paper. In particular, the proposed pricing scheme is
formulated as a bilevel optimisation problem. At the upper level, the energy retailer (leader) aims
to maximise its profit. Microgrids (followers) equipped with energy converters, storage, renewable
energy sources (RES) and demand response (DR) programs are located at the lower level and minimise
their operational costs. Three hybrid algorithms combining metaheuristic algorithms (i.e., particle
swarm optimisation (PSO), genetic algorithm (GA) and simulated annealing (SA)) with the mixed-
integer linear program (MILP) are developed to solve the proposed bilevel problem. Numerical
results verify the feasibility and effectiveness of the proposed model and solution algorithms. We find
that GA outperforms other solution algorithms to obtain a higher retailer’s profit through comparison.
In addition, the proposed customised pricing scheme could benefit the retailer’s profitability and net
profit margin compared to the widely adopted uniform pricing scheme due to the reduction in the
overall energy purchasing costs in the wholesale markets. Lastly, the negative correlations between
the rated capacity and power of the energy storage and both retailer’s profit and the microgrid’s
operational cost are illustrated.

Keywords: customised pricing scheme; multi-energy market; bilevel optimisation model; metaheuristic
algorithms

1. Introduction
1.1. Background

Emerging smart grid technologies in the energy system have introduced new opportu-
nities and challenges to both energy suppliers and customers [1]. Local market participants,
such as microgrids and local energy communities, have been accelerating the pace of de-
veloping distributed energy resources (DERs), which has resulted in the increasing trend
in developing integrated local energy systems, including electricity, natural gas and heat
energy, and the expanding differences among the microgrids [2]. In this regard, the tra-
ditional retail pricing strategy of energy retailers, which offers uniform energy tariffs to
customers regardless of their differences, cannot fully unlock the potential benefits of DERs
and achieve the potential profit [3]. Therefore, energy retailers would need to consider
the interdependence among different energy types from the demand side to make robust
and reliable retail pricing decisions. Furthermore, energy retailers also need to take the
differences among local customers into consideration to offer customised retail prices to
each customer. This calls for a novel customised multi-energy pricing scheme capable of
capturing the multi-energy interdependence and characteristics of differentiated customers
to be developed for the retail energy markets.
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1.2. Literature Review

Retail energy pricing is an important research problem and has been extensively stud-
ied in the literature. Ref. [4] systematically investigates and summarises the existence of
retail pricing schemes, which demonstrates that the real-time pricing (RTP) strategy can
well utilise the demand-side management flexibility over the static pricing strategy, such
as the time-of-use (TOU) scheme. Ref. [5] presents a dynamic, real-time energy pricing
mechanism to accurately distribute power for the electric vehicles (EVs) charging process
fairly when the microgrids are congested. A retail RTP scheme in the presence of hydrogen
storage systems and EVs, compared with TOU and fixed pricing schemes, is proposed in
Ref. [6]. The bi-objective problem is formulated, in which the average profit needs to be
maximised, while the profit deviation should be minimised. The Pareto optimal solution is
obtained by the epsilon constraint method and fuzzy satisfying approach. The numerical
results show the privilege of the RTP scheme regarding the obtained profit of the retailer.
Ref. [7] develops a conditional value at risk (CVaR)-based retail electricity pricing scheme
to reduce the impact of risk caused by the uncertainties from RES generation and estimated
wholesale electricity prices. An energy management and pricing method for the commu-
nity energy retailer incorporating smart building consumers is investigated in Ref. [8].
The numerical results, which are solved by the bilevel chance-constrained programming
approach, show that the proposed approach can benefit both retailers and customers. Lastly,
Ref. [9] proposes a bilevel game-theoretic model for multiple strategic retailers’ decision-
making problems, which include the retail prices in the retail market, bid prices in the
day-ahead wholesale market, and the bid/offer prices in the local power exchange market.
The problem is formulated as an equilibrium problem with the equilibrium constraints
(EPEC) problem, which is solved by the diagonalisation algorithm.

The majority of the existing literature focuses on developing a retail pricing strategy
in the electricity market, whereas only few studies analyse the retail pricing problem in
a multi-energy context. In addition, since the development of a multi-energy pricing
scheme consists of energy suppliers (e.g., retailers) and customers (e.g., microgrids and
aggregators), a bilevel optimisation model, which can well present the intrinsic hierarchical
structure of the energy system, has been widely adopted in the literature. For instance,
Ref. [10] proposes a bilevel optimal retail pricing scheme for the retailer and multi-energy
buildings to perform the price-based DR programs. A bilevel stochastic RTP model in
the framework of the Markov decision process is formulated for the multi-energy system
in Ref. [11]. A novel distributed online multi-agent reinforcement learning algorithm
is developed to solve the proposed model. Ref. [12] proposes a bilevel multi-energy
trading model between the multi-energy service provider and consumer by setting the
optimal energy pricing scheme and energy economic dispatch at the upper level. Optimal
consuming patterns of different energies are obtained for the multi-energy consumer in the
lower-level problem. Ref. [13] develops an integrated energy service provider (IESP) as a
retailer to effectively set energy prices and energy management in the multi-energy market.
The impact of DR and wholesale prices’ uncertainties is considered in the proposed two-
stage stochastic hierarchical framework. The day-ahead energy pricing and management
method considering multi-energy DR programs for IESP in regional integrated energy
systems is addressed in Ref. [14]. The bilevel Stackelberg game optimisation model is
established and shows that the pricing scheme benefits both the energy supplier (i.e., IESP)
and consumer. The pricing behaviour of multi-energy players who can trade electricity,
natural gas and heat energy to maximise their profits and reduce their operational risk
is studied in Ref. [15]. The bilevel approach is applied to model the decision-making
conflict of the multi-energy players with other energy players participating in the multi-
energy system.

The bilevel optimisation model is typically solved by analytical mathematical methods,
such as the Karush–Kuhn–Tucker (KKT)-based reformulations in the literature [10,12–15].
However, the premise of applying those methods may include the convexity of the lower-
level problem. For the bilevel model, whose lower-level problem is proved as non-convex,
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such as including integer variables, traditional mathematical approaches cannot solve
it effectively. Therefore, many metaheuristic algorithms, such as PSO, GA and SA, are
introduced in the literature to overcome the non-convexity of the lower-level problem [16].
For instance, Ref. [17] develops a hierarchical market framework to apply real-time retail
pricing between an energy supplier and multi-energy microgrids, where a hybrid solution
method combining PSO and the branch and bound algorithm is proposed. In Ref. [18], a dy-
namic pricing profile is developed for utilising distributed energy storage and overcoming
the intermittency from renewable generation. A novel non-cooperative Stackelberg game
is proposed to formulate the pricing problem, in which the upper-level problem is solved
by the PSO algorithm, and linear programming is applied at the lower level. In addition,
Ref. [19] presents a bilevel price decision model for a load-serving entity to manage multiple
multi-energy microgrids with DR. The microgrids’ operation problems are formulated at
the lower level and solved by a MILP program. A GA algorithm is applied to find the
optimal price decisions for the load-serving entity at the upper level. A real-time pricing
strategy is proposed in Ref. [20] to effectively adjust the power balance between the supply
and demand and manage the microgrid’s internal energy dispatch. The pricing strategy is
formulated as a bilevel programming model, where the supplier’s price decision making at
the upper level is solved by the GA algorithm. Ref. [21] develops a SA-based price control
algorithm to solve the non-convex real-time pricing problem, which can reduce the peak-
to-average load ratio and retailer’s cost through DR management in smart grid systems.
Ref. [22] proposes a bilevel Stackelberg game to model hierarchical interactions between
one profit-seeking energy retailer and multiple cost-minimising energy customers. A GA
algorithm is developed to solve the bilevel model. Lastly, Ref. [23] proposes a bilevel model,
where data-driven appliance-level customer behaviour learning models are developed
at the lower level. The resulting hybrid optimisation–machine learning bilevel model is
solved by GA.

The retail pricing schemes mentioned in the above literature are classified into the
uniform pricing scheme, where the decision maker optimises the pricing decisions without
considering the different characteristics among underlying energy customers, such as the
demand-side load profile and the specifications of the equipped DERs, such as energy
converters and storage. Therefore, the elasticity on the demand-side management of each
energy customer cannot be fully utilised under the uniform pricing scheme. To conquer the
deficiency of the widely used uniform pricing scheme, a novel customised energy pricing
scheme should be developed that takes the unique characteristics of each customer into con-
sideration. It is designed to motivate the potential flexibility of demand-side management
to benefit market participants, such as energy retailers. However, only few studies address
the customised retail energy pricing problem in the literature. For instance, Ref. [24] devel-
ops a bilevel model for optimal differential pricing considering different customer groups
characterised by different price sensitivities. Ref. [25] proposes a customised TOU elec-
tricity pricing scheme for different residential users depending on their load-consumption
profiles, which is established based on the bilevel optimisation framework. The problem
of customising TOU electricity retail prices based on load profile analysis by applying a
clustering algorithm is addressed in Ref. [26]. Similarly, a realistic multiple dynamic pricing
scheme for the segmented customers based on the different identification of load patterns is
proposed in Ref. [3], which demonstrates the effectiveness of the clustering-based approach.
Furthermore, the electricity retailer could achieve better profit gain under the proposed
multiple pricing scheme. Ref. [27] presents a personalised RTP scheme using a bilevel
model to improve the management of different electricity consumption, including both
traditional and renewable energies. Ref. [28] proposes a bilateral energy-trading structure
to coordinate the hierarchical personalised electricity pricing model between the energy
trading agent and energy prosumers.

The above reviewed literature is compared and summarised in Table 1. Although the
above studies provide valuable insights regarding the customised retail pricing scheme,
they are limited to electricity markets. Therefore, to the best of our knowledge, there
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is no existing research studying the customised multi-energy pricing problem. To fill the
research gap following the above analysis, in this paper, we propose a novel customised
multi-energy pricing scheme for an energy retailer that manages multiple microgrids in the
multi-energy market.

Table 1. Literature comparison. 3: Yes; 7: No; –: Not applicable.

Literature Uniform
Pricing

Customised
Pricing

Electricity
Market

Multi-Energy
Market

Bilevel
Model

KKT-Based
Approach

Metaheuristic-Based
Approach

[5–7] 3 7 3 7 7 – –
[8,9] 3 7 3 7 3 3 7

[10,12–15] 3 7 7 3 3 3 7

[11] 3 7 7 3 3 7 7

[17–19] 3 7 7 3 3 7 3

[20–23] 3 7 3 7 3 7 3

[24] 7 3 3 7 3 7 3

[25] 7 3 3 7 3 3 7

[26–28] 7 3 3 7 3 7 7

[3] 7 3 3 7 7 – –

1.3. Contributions

The main contributions of this paper are summarised as follows:

• A bilevel optimisation model is developed to formulate the novel customised pricing
scheme for an energy retailer that manages multiple microgrids in the multi-energy
market. In particular, a retailer’s profit maximisation problem is considered at the up-
per level. The energy management for each microgrid is detailed, and the operational
cost minimisation is formulated at the lower level.

• The detailed energy management model for each microgrid equipped with energy con-
verters (i.e., combined heat and power (CHP) and heat pump), electrical and thermal
storage, RES (i.e., solar and wind) and DR programs (i.e., load curtailment and shift-
ing) is formulated as a MILP program at the lower level. Specifically, load curtailment
refers to the reduction in energy consumption, while in the load-shifting program,
the electricity demand can be rescheduled and shifted to other scheduling hours.

• Three hybrid metaheuristic algorithms (i.e., PSO, GA and SA) combined with the
conventional MILP program are developed to solve the proposed bilevel problem.
The hybrid solution algorithms conquer the non-convexity of the lower level problems,
which are proved difficult to solve with traditional mathematical methods, such as
KKT-based solution methods. In numerical analyses, we test the performance of
the three algorithms. The comparison between the customised and uniform pricing
schemes is illustrated in detail. In addition, the effect of the rated capacity and power
of electrical and thermal storage on the energy retailer’s pricing decisions, profit,
and microgrids’ operational costs is thoroughly investigated.

1.4. Paper Organisation

The remainder of this paper is organised as follows. In Section 2, the proposed bilevel
model is discussed in detail. Section 3 describes the three hybrid metaheuristic algorithms
combined with the MILP program. The numerical results are presented in Section 4. Finally,
the conclusion is drawn in Section 5.

2. Model Formulation

This section shows the formulation of the proposed bilevel optimisation model. In par-
ticular, Section 2.1 presents an overview of the bilevel MILP model. The customised
multi-energy pricing problem is described in Section 2.2. Lastly, the lower and upper level
model formulations are discussed in Sections 2.3 and 2.4, respectively.
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2.1. Bilevel MILP Model Overview

Bilevel optimisation refers to one of the categories of optimisation that copes with
the problem with a hierarchical structure in nature, which includes two decision makers
(i.e., leader and follower) located at the upper and lower levels, respectively. The bilevel
model is formulated by an optimisation problem (lower level) embedded into another
problem (upper level). The problem originates from the game theory in economics and
was introduced by Heinrich Freiherr von Stackelberg in 1934 [29]. The decision variables
of a bilevel model can be continuous and discrete. Since formulating the customised
multi-energy pricing problem involves integer variables in the lower-level problem, in this
section, an overview of the bilevel MILP model is introduced as follows.

The general form of a bilevel MILP model with a single leader and multiple indepen-
dent followers is shown below:

max
x∈X

F(x, y1, ...yM)

Subject to:

G(x, y1, ...yM) ≤ 0

yi ∈ arg min
y′i∈Yi

{
fi(x, y′i) : gi(x, y′i) ≤ 0, y′j ∈ Z, ∀j ∈ Ji

}
, ∀i ∈ M

where X ⊂ Rn and Yi ⊂ Rmi are the feasible solution sets for both upper and lower
level problems. The set of followers {1, ..., M} is denoted as M. n and mi indicate the
number of decision variables for the leader and the follower i ∈ M. F(x, y1, ...yM) and
fi(x, yi), ∀i ∈ M represent the objective functions for the upper and lower level prob-
lems. On the other hand, the upper and lower level constraint functions are indicated as
G(x, y1, ...yM) and gi(x, yi), ∀i ∈ M, respectively. Notice that Ji is the set of indices that
the corresponding {yj, ∀j ∈ Ji} are integer variables.

If x ∈ X denotes the vector of the leader’s decision variables, the feasible solution
and rational reaction sets of each follower i can be represented as Yi(x) = {yi ∈ Yi :
gi(x, yi) ≤ 0, y′j ∈ Z, ∀j ∈ Ji} and Ωi(x) =

{
yi ∈ Yi : arg miny′i∈Yi(x){ fi(x, y′i)}

}
. Fi-

nally, the bilevel MILP feasible set, which is also called the inducible region, is pre-
sented as IR =

{
(x, y1, ..., yM) : G(x, y1, ...yM) ≤ 0, x ∈ X, yi ∈ Ωi(x), ∀i ∈ M

}
. The opti-

mal solution of the bilevel model is denoted as (x∗, y∗1 , ..., y∗M) ∈ arg max{F(x, y1, ...yM) :
(x, y1, ..., yM) ∈ IR}.

2.2. Customised Multi-Energy Pricing Problem Description

In the proposed multi-energy market, which is shown in Figure 1, multiple microgrids
are managed by a single energy retailer that purchases electricity and natural gas from the
upstream wholesale markets. The microgrids are allocated with CHP, heat pump, electrical
and thermal storage, RES and DR programs, which operate their energy management sys-
tems. Therefore, given the ability of microgrids to generate and transfer energy, the energy
retailer can also purchase the electricity from the managed microgrids and sell it back to
the wholesale market to make a profit. In addition, the detailed framework of the proposed
bilevel model is presented in Figure 2. Particularly, at the upper level, to maximise the
profit, the energy retailer optimises the retail pricing decisions based on the proposed
customised multi-energy pricing scheme within the scheduling hours T = {1, ..., T} and
announces them a day ahead to each microgrid i, respectively. After receiving the corre-
sponding retail energy prices, each microgrid i reacts by minimising its operational cost
and reports the volume of energy to be exchanged (buy or sell) to the retailer. As a result,
each microgrid’s optimal customised retail pricing scheme and energy management are
obtained. The detailed model formulations for both the lower and upper levels are shown
in Sections 2.3 and 2.4 below.
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Wholesale electricity market Wholesale natural gas market

Energy Retailer

Energy converters1  
Energy storage1 

Demand response1  
Renewable energies1 

Demand1

Energy convertersN 
Energy storageN 

Demand responseN  
Renewable energiesN 

DemandN

Microgrid 1 Microgrid N

Wholesale natural gas
price & quantity

Wholesale
electricity price

& quantity

Exported
electricity
price &
quantity

Retail electricity/natural
gas price & quantity for

microgrid 1

Exported
electricity
price &

quantity for
microgrid 1

Retail electricity/natural
gas price & quantity for

mircrogrid N

Exported
electricity
price &

quantity for
microgrid N

Wholesale energy markets

Retail energy market

Figure 1. Structure of the multi-energy market.

2.3. Follower-Side/Lower-Level Problem

It is assumed that the microgrids inMmanaged by the energy retailer operate inde-
pendently at the lower level. In this section, the detailed lower-level formulations for the
microgrid i ∈ M are shown as follows.

2.3.1. Lower-Level Objective Function

The lower-level objective function (1) shows the total operational costs of the microgrid
i. In particular, the first group of elements presents the energy exchange between the
microgrid i and the retailer. pt

i and gt
i denote the amount of electricity and natural gas that

the microgrid i purchases from the retailer. pexport,t
i represents the amount of electricity

that the microgrid i exports to the retailer. πretail,t
ele,i and πretail,t

gas,i denote the retail electricity
and natural gas prices that the energy retailer announces to the microgrid i. Notice that
the price of electricity sold by the microgrid i back to the retailer is proportional to the
retail electricity price, denoted as αi. The second and third groups of elements describe
the CHP and heat pump costs, respectively, including operation and maintenance costs
cCHP

i ,cpump
i , start-up cost cst

CHP,i,c
st
pump,i and shut-down cost csd

CHP,i,c
sd
pump,i. The fourth group

of elements represents the electrical and thermal storage costs, which are denoted as cES
i
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and cTS
i . The last group of elements shows the costs of the load curtailment program for all

energies, which are denoted as cele,t
curtail,i, cgas,t

curtail,i, and cheat,t
curtail,i.

min
ΞLi

fi = ∑
t∈T

{[
pt

i π
retail,t
ele,i − pexport,t

i αiπ
retail,t
ele,i + gt

i π
retail,t
gas,i

]
+
[
cCHP

i gCHP,t
i + cst

CHP,iδ
st,t
i

+csd
CHP,iδ

sd,t
i

]
+
[
cpump

i ppump,t
i + cst

pump,tθ
st,t
i + csd

pump,iθ
sd,t
i

]
+
[
cES

i (pc,t
i + pd,t

i )

+cTS
i (qc,t

i + qd,t
i )
]
+
[
dele,t

curtail,iρ
t
ele,ic

ele
curtail,i + dgas,t

curtail,iρ
t
gas,ic

gas
curtail,i + dheat,t

curtail,iρ
t
heat,ic

heat
curtail,i

]}
(1)

Leader: The energy retailer
Objective function: Maximisation of the profit
Decision variables: Customised electricity and natural gas retail
    prices for each microgrid 
Constraints: 

Electricity and natural gas volume bonding constraints
Electricity and natural gas retail price bonding constraints
Average retail price equality constraints

Follower: Microgrid  
Objective function: Minimisation of the operational cost
Decision variables: 

Sell/purchase energy to/from the retailer
Energy input/output of the CHP and heat pump
Charging/discharging of ES and TS
Results of DR programs
Electricity from RES

Constraints: 
CHP and heat pump operational constraints
ES and TS operational constraints
DR and RES constraints
Electricity exchange and energy balance constraints

Upper level problem

Lower level problem

Input: Wholesale electricity and natural gas prices

Input: CHP, heat pump, ES, TS, DR, and RES parameters

Customised
retail prices

Energy needed/exported

The customised multi-energy pricing scheme
Optimal energy management of each microgrid

Figure 2. Framework diagram of the proposed bilevel model.

2.3.2. CHP Operational Constraints

The CHP unit, which converts natural gas into electricity and heat, is formulated
in (2a)–(2m) inspired by Ref. [30]. The energy conversion constraints of the CHP are
denoted in (2a) and (2b). gCHP,t

i represents the amount of natural gas consumed by the
CHP. pCHP,t

i and qCHP,t
i denote the amount of electricity and heat generated by the CHP.

The energy conversion efficiencies for different energies are denoted as ηCHP
i and ηe2h

i ,
respectively. The limitation of the CHP electricity output is shown in (2c), where δt

i denotes
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the CHP operational status. (2d)–(2g) represent the ramp-up and ramp-down power
constraints of the CHP electricity output. The initial status of the CHP is denoted as δinit

i .
pCHP,init

i represents the last amount of CHP generated electricity during the last scheduling
hours. pRU

i and pRD
i show the maximum amount of ramp-up and ramp-down electricity.

In addition, the start-up and shut-down actions of the CHP are described in (2h)–(2l), where
δst,t

i and δsd,t
i denote the CHP start-up and shut-down statuses. Lastly, (2m) presents the

binary variables that appear in the CHP operation:

pCHP,t
i = ηCHP

i gCHP,t
i , ∀t ∈ T (2a)

qCHP,t
i = ηe2h

i pCHP,t
i , ∀t ∈ T (2b)

pCHP,min
i δt

i ≤ pCHP,t
i ≤ pCHP,max

i δt
i , ∀t ∈ T (2c)

pCHP,t
i − pCHP,init

i ≤ pRU
i , t = 1 (2d)

pCHP,t
i − pCHP,t−1

i ≤ pRU
i , ∀t ∈ T \ {1} (2e)

pCHP,init
i − pCHP,t

i ≤ pRD
i , t = 1 (2f)

pCHP,t−1
i − pCHP,t

i ≤ pRD
i , ∀t ∈ T \ {1} (2g)

δt
i − δinit

i ≤ δst,t
i , t = 1 (2h)

δt
i − δt−1

i ≤ δst,t
i , ∀t ∈ T \ {1} (2i)

δinit
i − δt

i ≤ δsd,t
i , t = 1 (2j)

δt−1
i − δt

i ≤ δsd,t
i , ∀t ∈ T \ {1} (2k)

δst,t
i + δsd,t

i ≤ 1, ∀t ∈ T (2l)

δt
i , δst,t

i , δsd,t
i ∈ {0, 1}, ∀t ∈ T (2m)

2.3.3. Heat Pump Operational Constraints

The heat pump generates heat energy by consuming electricity. Equation (3a) is the
energy conversion constraint. ppump,t

i and qpump,t
i denote the amount of electricity consumed

and the amount of heat generated by operating the heat pump. η
pump
i denotes the energy

conversion efficiency. The amount of generated heat is bounded in (3b), where the heat
pump operational status is presented as θt

i . The ramp-up and ramp-down constraints

of the heat pump are depicted in (3c)–(3f), where qpump,init
i denotes the final amount of

heat generated by the heat pump in the last scheduling hours. The maximum amount
of ramp-up and ramp-down heat are represented as qRU

i and qRD
i , respectively. (3g)–(3k)

define the heat pump start-up and shut-down actions, whose corresponding start-up and
down statuses are denoted as θst,t

i and θsd,t
i . The binary variables in this operation are

shown in (3l):

qpump,t
i = η

pump
i ppump,t

i , ∀t ∈ T (3a)

qpump,min
i θt

i ≤ qpump,t
i ≤ qpump,max

i θt
i , ∀t ∈ T (3b)

qpump,t
i − qpump,init

i ≤ qRU
i , t = 1 (3c)

qpump,t
i − qpump,t−1

i ≤ qRU
i , ∀t ∈ T \ {1} (3d)

qpump,init
i − qpump,t

i ≤ qRD
i , t = 1 (3e)

qpump,t−1
i − qpump,t

i ≤ qRD
i , ∀t ∈ T \ {1} (3f)

θt
i − θinit

i ≤ θst,t
i , t = 1 (3g)

θt
i − θt−1

i ≤ θst,t
i , ∀t ∈ T \ {1} (3h)

θinit
i − θt

i ≤ θsd,t
i , t = 1 (3i)

θt−1
i − θt

i ≤ θsd,t
i , ∀t ∈ T \ {1} (3j)
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θst,t
i + θsd,t

i ≤ 1, ∀t ∈ T (3k)

θt
i , θst,t

i , θsd,t
i ∈ {0, 1}, ∀t ∈ T (3l)

2.3.4. Electrical Storage (ES) Operational Constraints

Constraints (4a) and (4b) describe the change of the ES energy level EES,t
i considering

charging rate ηES,c
i , discharging rate ηES,d

i , and self-discharging rate εES
i . pc,t

i and pd,t
i denote

the amount of charged and discharged electricity. (4c) limits the energy level of the ES in
each scheduling hour. In addition, for operational purposes, (4d) ensures that the energy
level of the ES stays unchanged after the scheduling hours. EES,T

i and EES,init
i denote the

final and initial energy level of the ES. The charging and discharging power are bounded in
(4e)–(4h), where γc,t

i and γd,t
i represent the charging and discharging statuses:

EES,t
i = EES,init

i + ηES,c
i pc,t

i −
1

ηES,d
i

pd,t
i − εES

i , t = 1 (4a)

EES,t
i = EES,t−1

i + ηES,c
i pc,t

i −
1

ηES,d
i

pd,t
i − εES

i , ∀t ∈ T \ {1} (4b)

EES,min
i ≤ EES,t

i ≤ EES,max
i , ∀t ∈ T (4c)

EES,T
i = EES,init

i (4d)

γc,t
i pc,min

i ≤ pc,t
i ≤ γc,t

i pc,max
i , ∀t ∈ T (4e)

γd,t
i pd,min

i ≤ pd,t
i ≤ γd,t

i pd,max
i , ∀t ∈ T (4f)

γc,t
i + γd,t

i ≤ 1, ∀t ∈ T (4g)

γc,t
i , γd,t

i ∈ {0, 1}, ∀t ∈ T (4h)

2.3.5. Thermal Storage (TS) Operational Constraints

The operational constraints of TS are similar to ES. Specifically, the TS energy level is
represented in (5a) and (5b), where ETS,t

i , ηTS,c
i , ηTS,d

i and εTS
i denote the TS energy level,

charging rate, discharging rate and self-discharging rate, respectively. qc,t
i and qd,t

i present
the amount of charged and discharged heat. The TS energy level in each scheduling hour is
bounded in (5c). The initial and final energy levels ETS,T

i , ETS,init
i of the TS are imposed to

be equal in (5d). Constraints (5e)–(5h) constrain the charging and discharging power of the
TS, where ζc,t

i and ζd,t
i represent the TS charging and discharging statuses:

ETS,t
i = ETS,init

i + ηTS,c
i qc,t

i −
1

ηTS,d
i

qd,t
i − εTS

i , t = 1 (5a)

ETS,t
i = ETS,t−1

i + ηTS,c
i qc,t

i −
1

ηTS,d
i

qd,t
i − εTS

i , ∀t ∈ T \ {1} (5b)

ETS,min
i ≤ ETS,t

i ≤ ETS,max
i , ∀t ∈ T (5c)

ETS,T
i = ETS,init

i (5d)

ζc,t
i qc,min

i ≤ qc,t
i ≤ ζc,t

i qc,max
i , ∀t ∈ T (5e)

ζd,t
i qd,min

i ≤ qd,t
i ≤ ζd,t

i qd,max
i , ∀t ∈ T (5f)

ζc,t
i + ζd,t

i ≤ 1, ∀t ∈ T (5g)

ζc,t
i , ζd,t

i ∈ {0, 1}, ∀t ∈ T (5h)

2.3.6. DR Programs Constraints

Two types of DR programs are considered in microgrid i, which are load curtailment
(LC) and load shifting (LS), which are formulated in (6a)–(6c) and (6d)–(6h), respectively.
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Both formulations of the DR programs are inspired by Ref. [30]. The detailed description
and formulation are shown below.

Load curtailment:

It is assumed that the electricity, natural gas, and heat demand can all be curtailed during
the scheduling hours, and the curtailment rates are denoted as ρt

ele,i, ρt
gas,i, ρt

heat,i, respectively.
The bounding constraints for the three types of energies are presented in (6a)–(6c). Notice that
the curtailable energy demand in each scheduling hour is predetermined by the energy
retailer and represented as dele,t

curtail , dgas,t
curtail and dheat,t

curtail :

ρmin
ele,i ≤ ρt

ele,i ≤ ρmax
ele,i , ∀t ∈ T (6a)

ρmin
gas,i ≤ ρt

gas,i ≤ ρmax
gas,i, ∀t ∈ T (6b)

ρmin
heat,i ≤ ρt

heat,i ≤ ρmax
heat,i, ∀t ∈ T (6c)

Load shifting:

We assume there are households in Ai that participate in the load-shifting program.
Each household has the load-adjustable time window Dai , which is represented in (6d). µt

ai
denotes the household’s operational status. The start and stop times of the load-shifting
program for each household ai are denoted as Tstart

ai
and Tstop

ai . Constraint (6e) imposes
that there is no shiftable load available in the scheduling hours outside of the adjustable
time window. The shiftable load dt

ai
in each scheduling hour is flexible but bounded in

(6f). Finally, (6g) makes sure the overall electricity consumption Eai is not affected by the
load-shifting program:

Tstop
ai

∑
t=Tstart

ai

µt
ai
= Dai , ∀ai ∈ Ai (6d)

Tstart
ai
−1

∑
t=1

µt
ai
+

T

∑
t=Tstop

ai +1

µt
ai
= 0, ∀ai ∈ Ai (6e)

dmin
ai

µt
ai
≤ dt

ai
≤ dmax

ai
µt

ai
, ∀ai ∈ Ai, ∀t ∈ T (6f)

Tstop
ai

∑
t=Tstart

ai

dt
ai
= Eai , ∀ai ∈ Ai (6g)

µt
ai
∈ {0, 1}, ∀ai ∈ Ai, ∀t ∈ T (6h)

2.3.7. RES Constraints

Two renewable energies, solar and wind power, which are generated by photovoltaics
(PV) and wind turbines (WT) are considered in this paper. To reduce the effect of the
uncertainties of the renewable energies in nature, the bounding constraints of the forecast of
PV pPV,t

i and wind powers pwind,t
i in each scheduling hour are introduced in (7a) and (7b):

pPV,t,min
i ≤ pPV,t

i ≤ pPV,t,max
i , ∀t ∈ T (7a)

pwind,t,min
i ≤ pwind,t

i ≤ pwind,t,max
i , ∀t ∈ T (7b)

In addition, inspired by Ref. [31], the spinning reserve constraint (7c) is implemented
to further maintain and secure the operation of microgrids and the power system. It
presents that the maximum power supply of the microgrid i must be sufficient to provide
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at least (1 + τspin) times load demand in each scheduling hour. τspin denotes the spinning
reserve ratio:

pCHP,max
i δt

i + pd,t
i − pc,t

i + pt
i − pexport,t

i − ppump,t
i + pPV,t

i

+ pwind,t
i ≥ (1 + τspin)

[
dele,t

i + ∑
ai∈Ai

dt
ai
+ dele,t

curtail,i(1− ρt
ele,i)

]
, ∀t ∈ T (7c)

2.3.8. Microgrid Electricity Exchange Constraints

The electricity imported to and exported from the microgrid i are constrained in
(8a) and (8b), where the importing and exporting statuses are denoted as ψt

i and ψ
export,t
i ,

respectively. Additionally, (8c) imposes that electricity import and export cannot happen
simultaneously:

ψt
i pmin,t

i ≤ pt
i ≤ ψt

i pmax,t
i , ∀t ∈ T (8a)

ψ
export,t
i pmin,t

export,i ≤ pexport,t
i ≤ ψ

export,t
i pmax,t

export,i, ∀t ∈ T (8b)

ψt
i + ψ

export,t
i ≤ 1, ∀t ∈ T (8c)

ψt
i , ψ

export,t
i ∈ {0, 1}, ∀t ∈ T (8d)

2.3.9. Energy Balance Constraints

The demand and supply balance constraint for each type of energy in the multi-energy
system must be satisfied at every scheduling hour. Constraints (9a)–(9c) represent the
energy balance constraints of electricity, natural gas, and heat, respectively. dele,t

i , dgas,t
i ,

and dheat,t
i denote the critical/base demand for each type of energy:

pd,t
i + pt

i + pCHP,t
i + pPV,t

i + pwind,t
i = dele,t

i + pexport,t
i + ppump,t

i + pc,t
i

+ ∑
ai∈Ai

dt
ai
+ dele,t

curtail,i(1− ρt
ele,i), ∀t ∈ T (9a)

gt
i = dgas,t

i + gCHP,t
i + dgas,t

curtail,i(1− ρt
gas,i), ∀t ∈ T (9b)

qd,t
i + qCHP,t

i + qpump,t
i = dheat,t

i + qc,t
i + dheat,t

curtail,i(1− ρt
heat,i), ∀t ∈ T (9c)

The decision variables of the lower-level problem for the microgrid i are
ΞLi = {pt

i , gt
i , pCHP,t

i , pexport,t
i , ppump,t

i , gCHP,t
i , qCHP,t

i , qpump,t
i , δt

i , δst,t
i , δsd,t

i , θt
i , θst,t

i , θsd,t
i , ψt

i ,
ψ

export,t
i , EES,t

i , pc,t
i , pd,t

i , γc,t
i , γd,t

i , ETS,t
i , qc,t

i , qd,t
i , ζc,t

i , ζd,t
i , ρt

ele,i, ρt
gas,i, ρt

heat,i, µt
ai

, dt
ai

, pPV,t
i ,

pwind,t
i }. Notice that the lower-level problem of each microgrid forms a MILP prob-

lem, which can be solved efficiently by off-the-shelf commercial solvers, such as CPLEX
and GUROBI.

2.4. Leader-Side/Upper-Level Problem

We assume that the energy retailer manages multiple multi-energy microgrids by
adopting the proposed customised multi-energy pricing scheme. The profit maximisation
problem of the retailer is formulated at the upper level and shown as follows:

max
ΞU

F = ∑
t∈T

{
∑

i∈M

(
πretail,t

ele,i pt
i − αiπ

retail,t
ele,i pexport,t

i

)
− πt

ele ∑
i∈M

(
pt

i − pexport,t
i

)

+ ∑
i∈M

(
πretail,t

gas,i − πt
gas

)
gt

i

}
(10a)
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subject to

pmin
total ≤ ∑

i∈M

(
pt

i − pexport,t
i

)
≤ pmax

total , ∀t ∈ T (10b)

gmin
total ≤ ∑

i∈M
gt

i ≤ gmax
total , ∀t ∈ T (10c)

πretail,min
ele,i ≤ πretail,t

ele,i ≤ πretail,max
ele,i , ∀i ∈ M, ∀t ∈ T (10d)

πretail,min
gas,i ≤ πretail,t

gas,i ≤ πretail,max
gas,i , ∀i ∈ M, ∀t ∈ T (10e)

∑t∈T πretail,t
ele,i

T
= AVGele, ∀i ∈ M (10f)

∑t∈T πretail,t
gas,i

T
= AVGgas, ∀i ∈ M (10g)

The decision variables of the upper-level problem are ΞU = {πretail,t
ele,i , πretail,t

gas,i }, which
denote the retail electricity and natural gas prices for each microgrid i ∈ M at each schedul-
ing hour. The objective function (10a) depicts the overall profit of the retailer. πt

ele and
πt

gas denote the wholesale electricity and natural gas prices. In particular, the first group
of elements in (10a) represents the revenue obtained from all microgrids by exchanging
electricity. The electricity purchasing cost from, or the selling revenue to, the wholesale
electricity market is described in the second group of elements. The last group of elements
denotes the profit of selling natural gas to the microgrids. Constraints (10b) and (10c) limit
the amount of electricity and natural gas exchange between the energy retailer and whole-
sale markets. The retail electricity and natural gas prices customised for each microgrid
are bounded in (10d) and (10e). Constraints (10f) and (10g), which are inspired by Ref. [3],
impose the average retail electricity and natural gas prices within the scheduling hours to
be equal to the predetermined constants AVGele and AVGgas. Notice that the two equal-
ity constraints ensure a sufficient number of low price scheduling hours. Without these
constraints, in principle, the retailer could always choose the maximum retail prices to
maximise its profit. As a result, the constraints provide a fair retail price image among
microgrids, which are also crucial for the retailer’s market share in the long term [32].

3. Solution Methods

The proposed bilevel model includes many binary decision variables in the lower-level
problems, which make it extremely hard to solve by conventional analytical methods, such
as KKT reformulation-related methods. To overcome the non-convexity of the model, we
propose three categories of metaheuristic algorithms that simulate the behaviours of the
energy retailer at the upper level to find an optimal solution efficiently, which are as follows:
swarm-based, PSO; evolution-based, GA; and physics-based, SA. Therefore, the three
metaheuristic algorithms combined with the lower-level MILP solver form different hybrid
solution algorithms, which are illustrated in detail below.

3.1. PSO-Based Algorithm

The PSO algorithm is a swarm-based metaheuristic method that simulates the social
behaviour of the movement of organisms in a bird flock or fish school [33]. Namely,
when birds search randomly for food, for instance, all birds in the flock are able to share
their knowledge and discovery to help the entire flock find the best location for hunting.
Figure 3 shows the flowchart of the proposed PSO-based algorithm. Essentially, each
particle contains two properties: position and velocity. During each iteration, the global
best position of all particles and the best previously visited position of each particle are
found by evaluating the fitness function of each particle. Each particle’s position and
velocity are updated via the equations as follows:

vy+1
n = wvy

n + c1ry
1(xp,y

n − xy
n) + c2ry

2(xg,y − xy
n) (11a)
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xy+1
n = xy

n + vy+1
n (11b)

where the superscript y indicates the number of iterations, w denotes the inertia weight,
c1 and c2 represent cognitive constant and social constant, respectively, and r1 and r2 are
uniformly distributed random numbers in [0, 1]. Notice that if any element in the updated
particle position is out of the boundary set by (10d) and (10e), the nearest boundary is
assigned to the element [34].

PSO Initialisation

For every particle, solve each follower's
lower-level problem and return the

solution back to the leader

Evaluate the fitness function for each
particle and obtain the local and global

best solutions. 

Update the velocity of each particle

Update the position of each particle

Yes

No

Is the termination condition satisfied?Stop

Start

Figure 3. Flowchart of the PSO-based algorithm.

The detailed process of the PSO-based decision-making algorithm is shown in Algorithm 1.
In particular, the maximum iteration, total number of particles NPSO and each particle’s
position x and velocity v need to be initialised. Notice that each particle’s position denotes
the energy retailer’s customised pricing decision for the next 24 h. Steps 3–7 show the
interaction between the energy retailer and microgrids and are interpreted as follows. First,
the energy retailer announces the customised electricity and natural gas prices for each
microgrid for the next 24 h in step 4. Then, each microgrid solves its energy-management
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problem based on the received energy prices from the retailer and obtains the optimal
solution, which is returned back to the energy retailer in step 5. In step 6, after receiving
the optimal energy management solutions from all microgrids, the energy retailer solves its
profit maximisation problem and evaluates the current pricing decisions using the fitness
function based on the penalisation method proposed by [35,36]. Notice that the penalised
fitness function formulation can not only be used for the PSO-based algorithm but also be
applied to GA- and SA-based algorithms since the constraint-handling technique can be
generalised in metaheuristic algorithms. When the predefined termination condition is
not satisfied, the global best position of all particles xg,y and the personal best previously
visited position of each particle xp,y

n are recorded in steps 11 and 12. Each particle’s position
and velocity are then updated by applying (11a) and (11b) in step 13. The algorithm iterates
until the termination condition is reached and outputs the optimal solutions for the energy
retailer and each microgrid.

Algorithm 1 PSO-based algorithm.

1: Initialisation: Total number of particles NPSO. Maximum iteration. Each particle’s
position x and velocity v.

2: Each particle’s position denotes the strategy of the leader (i.e., energy retailer).
3: for nPSO = 1 to NPSO do
4: The energy retailer announces customised electricity and natural gas prices for each

microgrid for the next 24 h.
5: After receiving the prices, each microgrid nPSO reacts to the leader’s strategy by

solving the energy management problem and obtaining the optimal solutions, which
are returned back to the energy retailer.

6: The energy retailer solves the profit maximisation problem and evaluates it using the
fitness function after receiving the optimal solutions from all microgrids.

7: end for
8: if The termination condition is satisfied then
9: The algorithm terminates and returns the outputs.

10: else
11: Record the global best position of all particles as xg,y.
12: Record the best previously visited position of the particle nPSO as xp,y

nPSO .
13: Update each particle’s velocity and position by using (11a) and (11b)
14: end if
15: Repeat steps 3–14 until the termination condition is reached.

3.2. GA-Based Algorithm

GA algorithm is an evolution-based computational method inspired by genetics and
natural selection [37]. The flowchart of the GA-based algorithm is shown in Figure 4. In par-
ticular, after evaluating the population of the current generation, the elite chromosome
with the best fitness value is inherited by the next generation. Furthermore, the selection
process, such as the roulette wheel, tournament and random selection, is applied to choose
other chromosomes for the next generation. The chromosomes of the successive generation
are finally generated by crossover and mutation processes [22]. Algorithm 2 explains the
process of the solution algorithm. Firstly, the maximum iteration and population of chromo-
somes NGA are initialised. Similar to the PSO-based algorithm, each chromosome indicates
the energy retailer’s pricing decisions, and steps 3–7 show the retailer and microgrids’
interactions. Then, the next generation of chromosomes is created by applying selection,
crossover and mutation in step 11. Specifically, the stochastic uniform selection method is
used to choose the next generation of chromosomes. The scattered crossover function is
applied by creating a random binary vector and selecting the genes from the first parent
chromosome when the entry is 1 and from the second parent chromosome when the entry
is 0. Lastly, the Gaussian mutation is utilised to explore the search space, which adds a
random number taken from the Gaussian distribution with a mean 0 to each gene of the
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chromosome. The algorithm is stopped when repeating steps 3–12 until the termination
condition is satisfied.

Start

GA Initialisation

For every chromosome, solve each
follower's lower-level problem and

return the solution back to the leader 

Evaluate the fitness function for each
chromosome

Is the termination condition satisfied?

Elitism and Selection

Crossover

Mutation

No

Stop
Yes

Figure 4. Flowchart of the GA-based algorithm.
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Algorithm 2 GA-based algorithm.

1: Initialisation: Maximum iteration. Population of NGA chromosomes.
2: Each chromosome indicates the strategy of the leader (i.e., energy retailer).
3: for nGA = 1 to NGA do
4: The energy retailer announces customised electricity and natural gas prices for each

microgrid for the next 24 h.
5: After receiving the prices, each microgrid nGA reacts to the leader’s strategy by

solving the energy management problem and obtaining the optimal solutions, which
are returned back to the energy retailer.

6: The energy retailer solves the profit maximisation problem and evaluates it using the
fitness function after receiving the optimal solutions from all microgrids.

7: end for
8: if The termination condition is satisfied then
9: The algorithm terminates and returns the outputs.

10: else
11: The next generation of chromosomes is produced by selection, crossover and muta-

tion.
12: end if
13: Repeat steps 3–12 until the termination condition is reached.

3.3. SA-Based Algorithm

Simulated annealing is a physics-based probabilistic approach that emulates the stan-
dard annealing process used in metallurgy to improve the properties of solids. Essentially,
after the solid is heated up by a significantly high temperature, the atoms gain the energy
to explore their stable states. The optimal state of each atom can be then found following
the annealing process. As a result, the solid is recrystallised and improves its ductility.
Similarly, the simulated annealing algorithm is applied to find the optimal solution by
cooling the heated atoms in the search space. Figure 5 shows the flowchart of the SA-based
algorithm. In particular, it uses the Metropolis algorithm to generate the next trial atoms
by randomly perturbing the current ones. If the fitness value of the trial atom is greater
than the current fitness value, the trial atom replaces the current atom in the next iteration.
Otherwise, the trial atom can still be accepted by the acceptance criterion, which is based
on the Boltzmann distribution shown in (12a) [38]:

Pry
nSA = exp (∆nSA /Ty) (12a)

where ∆nSA represents the difference of fitness values between the trial atom and current
atom nSA. The temperature in the current iteration is denoted as Ty. Notice that when the
temperature is significantly high, the SA algorithm can accept the worse solution, which
is particularly beneficial in search space exploration. As the temperature drops in every
iteration, the acceptance criterion Pry

nSA also decreases, which leads to the lower possibility
of accepting the worse solution. The SA algorithm can be considered to be the hill climbing
algorithm when the temperature is significantly low (e.g., 1), which takes advantage of the
efficient local search method.
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Start

SA Initialisation

For every atom, solve each follower's lower-
level problem. Return the solution back to the

leader and evaluate the fitness function

Generate trial atoms and evaluate the fitness
function

Accept the trial atoms?

Update the current atoms

Lower temperature

Is the termination condition satisfied?

Stop

Yes

No

Yes

No

Figure 5. Flowchart of the SA-based algorithm.
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Algorithm 3 shows the proposed SA-based algorithm to solve the bilevel model.
The maximum iteration, total number of atoms, and initial and final temperature are
initialised in step 1. Steps 2–7 are similar to Algorithms 1 and 2, which present the
interactions between the retailer and microgrids. In step 8, the energy retailer proposes
a trial energy prices decision for each current price strategy and collects the evaluation
by repeating steps 5 and 6. If the fitness value from the trial prices is higher than the
current ones, the retailer replaces the current prices with the trial prices in the next iteration.
Otherwise, the retailer decides the accept or refuse the trial prices based on the acceptance
criterion (12a). This decision process is illustrated in steps 9–12. The temperature decreases
in every iteration in step 13. The algorithm repeats steps 8–16 until the termination condition
is fulfilled.

Algorithm 3 SA-based algorithm.

1: Initialisation: Maximum iteration. Population of atoms NSA. Initial and final tempera-
ture.

2: Each atom indicates the strategy of the leader (i.e., energy retailer).
3: for nSA = 1 to NSA do
4: The energy retailer announces customised electricity and natural gas prices for each

microgrid for the next 24 h.
5: After receiving the prices, each microgrid nSA reacts to the leader’s strategy by

solving the energy management problem and obtaining the optimal solutions, which
are returned back to the energy retailer.

6: The energy retailer solves the profit maximisation problem and evaluates it using the
fitness function after receiving the optimal solutions from all microgrids.

7: end for
8: For each current energy prices strategy, the energy retailer generates trial energy prices

and repeats steps 5 and 6.
9: The energy retailer decides to accept the trial energy prices against the current ones by

comparing the fitness values and acceptance criterion (12a).
10: if Trial energy prices are accepted then
11: The current energy prices are replaced by the trial prices in the next iteration.
12: end if
13: Decrease the temperature parameter.
14: if The termination condition is satisfied then
15: The algorithm terminates and returns the outputs.
16: else
17: Repeat steps 8–16 until the termination condition is reached.
18: end if

4. Numerical Results

The section discusses the results of numerical analyses to illustrate the feasibility and
effectiveness of the proposed bilevel model and the solution algorithms. In particular,
Section 4.1 describes the setup for the experiments. The three aforementioned metaheuristic
algorithms for solving the proposed bilevel model are compared and analysed in Section 4.2.
Moreover, the performance results of the proposed customised and the uniform multi-
energy pricing schemes are investigated in Section 4.3. Lastly, Section 4.4 presents the
effect of the rated capacity and power of the ES and TS on the retailer’s profit and the
microgrids’ operations.

4.1. Experimental Setup

In this section, we consider three different microgrids (i.e., microgrid 1, microgrid 2
and microgrid 3) that are managed by the energy retailer. Each microgrid’s base demand
and the configurations of its facilities (i.e., the capacity and rated power of ES and TS) are
differentiated from others. The base electricity, natural gas, and heat demand for each
microgrid come from the PJM dataset [39], United Kingdom Department of Education Gas
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dataset [40], and Open Power System Data [41], respectively, which are shown in Table A1.
Each microgrid’s ES and TS parameter setups are shown in Tables 2 and 3. Besides the
ES and TS parameter setup, other facilities, such as CHP, heat pump, and load-shifting
programs, share the same parameters among microgrids, shown in Tables A2, A3 and A5.
The minimum power of RES is zero, while the maximum power for each scheduling hour is
shown in Table A4, which originated from [42,43]. The wholesale electricity and natural gas
prices come from [44], which are presented in Table A6. In addition, the curtailable load and
costs of electricity, natural gas and heat are 300 MWh, 100 kcf and 350 MBtu, and $70/MWh,
$20/kcf and $60/MBtu, respectively. The minimum and maximum curtailment rates are 0
and 0.4. For each microgrid, the minimum and maximum electricity purchased from and
exported to the energy retailer are 0 MWh and 5000 MWh, respectively. For the energy
retailer, the minimum and maximum retail electricity prices are $60/MWh and $110/MWh,
and $15/kcf and $60/kcf for the natural gas prices. The electricity price that each microgrid
sells back to the energy retailer is set to be 90% of the current retail price. The average retail
electricity and natural gas prices are predetermined as $90/MWh and $40/kcf.

Table 2. ES parameters. – : Not applicable.

Parameter Microgrid 1 Microgrid 2 Microgrid 3

Charging rate – 0.95 0.95
Discharging rate – 0.95 0.95

Self-discharging rate (MWh) – 0.002 0.002
Initial energy level (MWh) – 250 500

Minimum energy level (MWh) – 50 100
Rated Capacity (MWh) – 500 1000

Minimum charging/discharging power (MW/h) – 20 30
Rated charging/discharging power (MW/h) – 200 300

Operation & maintenance cost ($/MWh) – 3.5 3.5

Table 3. TS parameters. – : Not applicable.

Parameter Microgrid 1 Microgrid 2 Microgrid 3

Charging rate – 0.95 0.95
Discharging rate – 0.95 0.95

Self-discharging rate (MBtu) – 0.004 0.004
Initial energy level (MBtu) – 300 650

Minimum energy level (MBtu) – 60 130
Rated Capacity (MBtu) – 600 1300

Minimum charging/discharging power (MBtu/h) – 20 43
Rated charging/discharging power (MBtu/h) – 200 430

Operation & maintenance cost ($/MBtu) – 3.5 3.5

All three hybrid algorithms are written in MATLAB R2022b and run on Windows 11
Pro 64-bit with 12 cores CPU @ 3.6 GHz and 32 GB of RAM. The coupled MILP problem
is solved by Gurobi Optimiser (version 10.0.0) using the branch and bound algorithm.
Each iteration for all three hybrid algorithms consists of upper-level operations and 600
(200 individuals × 3 microgrids) lower-level MILP problems, which takes about 60 s
to complete.

For the hybrid solution algorithms, we consider 100 iterations for a single run, which
includes a population of 200 individuals (price signals). In particular, for the PSO-based
algorithm, the inertia weight is 1.1. The cognitive and social constants are both 1.49. For the
GA-based algorithm, the best 10 elite chromosomes are survived to the next generation.
In the SA-based algorithm, the initial and final temperatures are 100 and 1 degrees. Notice
that all parameters are set after a mass of experiments, considering the balance between the
quality of results and computation burden.
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4.2. Solution Algorithms Comparison

The principal focus of this section is the numerical comparison among the aforemen-
tioned hybrid solution methods, i.e., PSO, GA and SA coupled with MILP algorithms.
In this experiment, the three hybrid algorithms run 25 times independently for both pro-
posed customised and uniform pricing models. The detailed statistical analysis of the
results of the energy retailer’s profit is shown in Table 4. For the customised pricing scheme,
the GA-based algorithm presents outstanding performance along with others, obtaining
higher minimum, maximum, median and average values of the retailer’s profit. Further-
more, the standard deviation and interquartile range (IQR) that measures the spread of
the middle 50% of the data are the lowest using the GA-based algorithm, which indicate
less data dispersion. On the other hand, for the uniform pricing scheme, although the
standard deviation of SA-based results is the lowest among others, the GA algorithm
still reveals significantly high values in all minimum, maximum, median and average
statistical measurements. In summary, the GA-based algorithm is verified to provide the
best performance for both customised and uniform pricing models, considering the value
and stability of the results it can achieve. Therefore, the GA-based hybrid algorithm is
applied to solve customised and uniform pricing models in the following experiments.

Table 4. Statistical results of three hybrid solution algorithms.

Scheme Algorithm Minimum
($)

Maximum
($) Median ($) Average ($) Standard

Deviation IQR

Customised
PSO 1,747,893.23 3,237,259.44 2,637,117.20 2,661,933.25 305,700.17 304,077.64
GA 2,793,836.04 3,621,174.98 3,226,859.38 3,235,457.87 188,685.73 262,036.86
SA 2,157,779.58 3,253,958.04 2,652,633.36 2,794,698.37 313,398.40 534,933.18

Uniform
PSO 2,229,066.83 3,454,961.22 2,868,594.24 2,873,363.22 335,318.00 477,855.56
GA 2,785,634.97 3,852,188.64 3,160,983.13 3,206,485.96 252,908.66 274,699.89
SA 2,555,064.32 3,268,070.40 2,862,418.32 2,890,620.58 199,545.25 323,634.31

4.3. Customised and Uniform Multi-Energy Pricing Schemes

This section presents the difference between the performance of customised and
uniform pricing schemes. Notice that the results come from the GA-based algorithm, which
runs 25 times independently in the previous section. The cost and revenue of the retailer, net
profit margin and each microgrid’s cost are calculated based on the run, which generates the
median value of the retailer’s profit. The two pricing schemes are compared in Table 5. It
reveals that the energy retailer can make more profit under the customised pricing scheme
measured by both the average (+0.90%) and median (+2.08%) profit value. This is because
the customised retail prices are tailored to each microgrid with different characteristics
and load patterns, which makes the retailer’s pricing decisions more flexible. In addition,
Table 6 shows the microgrids’ energy management results under the two pricing schemes.
Specifically, except for the operational cost, all other values in Table 6 are the sum of the
particular result over the 24 scheduling hours. Notice that the amount of the microgrids’
purchased energy is identical to the amount of energy the retailer bids from the wholesale
markets. It turns out that the retailer purchases 7.93% less electricity and buys 3.84% more
natural gas under the customised pricing scheme because natural gas is cheaper than
electricity. Since the retailer costs less to purchase energy from the wholesale markets and
gains the ability to customise the pricing strategy for each microgrid, the retailer’s profit
is increased compared to that under the uniform pricing scheme. Moreover, because the
customised pricing scheme obtains higher profit with relatively less revenue, the retailer’s
net profit margin, which measures the amount of profit the retailer obtains per dollar of
revenue gained, is 1.01% larger compared to the uniform pricing scheme. As a result,
the proposed customised pricing scheme is superior to the uniform pricing scheme and
beneficial for the retailer to acquire more profit and a higher net profit margin.
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Table 5. Results of retailer under customised and uniform pricing schemes.

Pricing
Scheme

Average
Profit of

Retailer ($)

Median
Profit of

Retailer ($)

Cost of
Retailer ($)

Revenue of
Retailer ($)

Net Profit
Margin

Customised 3,235,457.87 3,226,859.38 8,745,212.30 11,972,071.68 26.95%
Uniform 3,206,485.96 3,160,983.13 8,811,088.55 12,187,869.46 25.94%

Table 6. Microgrids energy management results under customised and uniform pricing schemes. – :
Not applicable.

Customised Uniform

Microgrid 1 Microgrid 2 Microgrid 3 Microgrid 1 Microgrid 2 Microgrid 3

Operational cost ($) 5,443,053.70 4,657,522.95 5,157,586.89 5,394,078.29 4,589,881.26 5,166,624.95
Purchased electricity (MWh) 24,118.78 23,275.57 20,984.30 28,006.46 22,121.82 24136.56
Purchased natural gas (kcf) 61,866.34 49,612.87 65,119.02 56,340.05 53,270.56 60460.13
Electricity demand (MWh) 27,949.10 23,022.80 25,180.26 28,189.10 23,072.72 25180.26
Natural gas demand (kcf) 11,844.79 8712.00 11,365.13 11,964.79 8832.00 11,365.13

Heat demand (MBtu) 26,293.81 24,378.08 27,594.91 26,453.64 24,529.00 27,591.80
CHP-generated electricity (MWh) 15,006.47 12,270.26 16,126.17 13,312.58 13,331.57 14728.50
Heat pump-generated heat (MBtu) 11,287.34 12,191.04 11,673.69 13,141.06 11,308.42 12988.86

ES charging power (MW/h) – 1215.50 1682.92 – 1600.00 2294.51
ES discharging power (MW/h) – 1096.94 1518.79 – 1443.95 2070.75
TS charging power (MBtu/h) – 852.64 2101.07 – 1137.42 1286.82

TS discharging power (MBtu/h) – 769.42 1896.13 – 1026.43 1161.26

Each microgrid’s energy demand under the customised pricing scheme is less than or
equal to the demand under the uniform pricing scheme. This can show the effectiveness of
the load curtailment program. Moreover, the CHP is heavily used as a cheaper alternative
to generate electricity under the customised pricing scheme. On the contrary, the heat
pump is less implemented since more heat demand is satisfied by the CHP. Additionally,
because the rated capacity and power of the ES and TS in microgrid 3 are significantly
larger than those in microgrid 2, the microgrid’s ES and TS charging and discharging power
is remarkably greater than those of microgrid 2 under both pricing schemes.

4.4. Effect of ES and TS Rated Capacity and Power

One of the objectives in this section is to identify the effect of rated capacity and power
of the ES and TS on the profit of the energy retailer. We consider three different scenarios to
illustrate these effects. The identical base energy load demand (i.e., the base energy demand
in microgrid 1) is applied for all three microgrids. In the first scenario (Scenario 1), each
microgrid has differentiated ES and TS configurations (shown in Table 2 and 3). Notice that
microgrid 1 does not equip either ES or TS. The rated capacity and power of ES and TS for
microgrid 2 are 500 MWh and 200 MW/h, 600 MBtu and 200 MBtu/h. For microgrid 3,
the rated capacity and power of ES and TS are 1000 MWh and 300 MW/h, and 1300 MBtu
and 430 MBtu/h. In the second scenario (Scenario 2), none of the three microgrids are
equipped with ES and TS. On the other hand, all three microgrids in the third scenario
(Scenario 3) own the same configurations of ES and TS, which are the same as those of
microgrid 3 in Scenario 1. Additionally, we analyse the retailer’s profit and microgrids’
operational costs over 15 independent runs for each scenario to obtain reliable results.
The average and median values of the retailer’s profit with each scenario are listed in
Table 7. Scenario 1 represents a realistic context in which all three microgrids are equipped
with different ES and TS configuration setups. On the other hand, Scenarios 2 and 3 can be
considered as two extreme cases with the least and the greatest resource of ES and TS. It
turns out that the retailer can make the highest profit in Scenario 2 since the underlying
microgrids lack the ability to manage their energy by ES and TS. Therefore, the retailer can
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take advantage of this demand response deficiency. In contrast, microgrids in Scenario 3
own the highest rated capacity and power of ES and TS, which provide the most capability
to manage their energy. As a result, it leads to the retailer making the least profit over the
three scenarios.

Table 7. Profit of retailer with different scenarios.

Scenario 1 Scenario 2 Scenario 3

Average of profit ($) 3,434,862.90 3,667,999.43 3,247,324.34
Median of profit ($) 3,433,100.16 3,656,147.99 3,248,191.95

To analyse the ES and TS energy management and the effect of their rated capacity and
power on the operational cost of microgrids, we select the median value of the proposed
bilevel problem solution in Scenario 1. Figures 6–8 display the operational results of load
demand, CHP, heat pump, ES, TS, DR, renewable energies, and electricity exchange for each
microgrid categorised by types of energy (i.e., electricity, natural gas and heat). The positive
value of each energy indicates the energy supply for the load demand, and the negative
value states the demand for each energy. In particular, the ES and TS operational results
for microgrids 2 and 3 are shown in Tables 8 and 9. Microgrid 2 charges the ES with rated
power in hours 2, 4, 6, 12, 13, 21 and 22 when the retail electricity prices are below the
predetermined average price of $90/MWh. This can manage the energy usage for further
use and reduce the potential cost. In contrast, ES is discharged with rated power in hours 1,
3, 5, 7, 17, 19, 20, and 23 when retail prices are above average to substitute the relatively
expensive electricity source. On the other hand, since CHP and the heat pump are the
primary heat source, the TS charging and discharging decisions depend on both retail
electricity and natural gas prices. Analogous decisions are made by the microgrid 3.
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Table 6. Microgrids energy management results under customised and uniform pricing schemes. – :
Not applicable

Customised Uniform

Microgrid 1 Microgrid 2 Microgrid 3 Microgrid 1 Microgrid 2 Microgrid 3

Operational
cost ($) 5443053.70 4657522.95 5157586.89 5394078.29 4589881.26 5166624.95

Purchased
electricity

(MWh)
24118.78 23275.57 20984.30 28006.46 22121.82 24136.56

Purchased
natural gas (kcf) 61866.34 49612.87 65119.02 56340.05 53270.56 60460.13

Electricity
demand (MWh) 27949.10 23022.80 25180.26 28189.10 23072.72 25180.26

Natural gas
demand (kcf) 11844.79 8712.00 11365.13 11964.79 8832.00 11365.13

Heat demand
(MBtu) 26293.81 24378.08 27594.91 26453.64 24529.00 27591.80

CHP-generated
electricity

(MWh)
15006.47 12270.26 16126.17 13312.58 13331.57 14728.50

Heat pump-
generated heat

(MBtu)
11287.34 12191.04 11673.69 13141.06 11308.42 12988.86

ES charging
power (MW/h) – 1215.50 1682.92 – 1600.00 2294.51

ES discharging
power (MW/h) – 1096.94 1518.79 – 1443.95 2070.75

TS charging
power

(MBtu/h)
– 852.64 2101.07 – 1137.42 1286.82

TS discharging
power

(MBtu/h)
– 769.42 1896.13 – 1026.43 1161.26
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Figure 6. Operational results of microgrid 1.Figure 6. Operational results of microgrid 1.
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Table 7. Profit of retailer with different scenarios.
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Median of profit ($) 3433100.16 3656147.99 3248191.95
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Table 7. Profit of retailer with different scenarios.

Scenario 1 Scenario 2 Scenario 3

Average of profit ($) 3434862.90 3667999.43 3247324.34

Median of profit ($) 3433100.16 3656147.99 3248191.95
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In addition, Tables 8 and 9 indicate that increasing the rated capacity and power
from microgrids 2 to 3 boosts ES and TS usage. Specifically, the total ES charging and
discharging power in microgrid 2 are 1432.14 MW/h and 1292.46 MW/h, which are less
than 1800.00 MW/h and 1624.45 MW/h in microgrid 3. A similar pattern happens to TS
energy management (i.e., 1050.57 MBtu/h and 948.05 MBtu/h compared to 1264.09 MBtu/h
and 1140.75 MBtu/h). Moreover, Table 10 shows the operational cost of three different
microgrids. With ES and TS, microgrids 2 and 3 can reduce operational costs by 2.02% and
4.14% compared to microgrid 1, respectively. Furthermore, following the rise of ES and TS
usage from microgrid 2 to 3, the operational costs of microgrids decrease notably. This is
because microgrids with higher rated capacity and power of ES and TS are more capable of
managing energy and reducing the potential cost.

Table 8. ES and TS results for microgrid 2. – : Not applicable

Time (h)

Retail
Electricity

Price
($/MWh)

ES Energy
Level

(MWh)

ES
Charging

Power
(MW/h)

ES
Discharging

Power
(MW/h)

Retail
Natural

Gas Price
($/kcf)

TS Energy
Level

(MBtu)

TS
Charging

Power
(MBtu/h)

TS
Discharging

Power
(MBtu/h)

1 100.01 50.00 0.00 190.00 41.30 163.89 0.00 129.30
2 73.72 240.00 200.00 0.00 33.06 220.01 59.08 0.00
3 106.93 76.02 0.00 155.78 33.51 410.00 200.00 0.00
4 68.81 266.02 200.00 0.00 20.26 600.00 200.00 0.00
5 105.15 55.49 0.00 200.00 44.33 600.00 0.00 0.00
6 65.89 245.49 200.00 0.00 41.39 514.83 0.00 80.91
7 99.23 120.01 0.00 119.20 31.70 471.08 0.00 41.56
8 91.80 120.01 0.00 0.00 42.80 408.90 0.00 59.07
9 80.04 120.01 0.00 0.00 55.36 408.89 0.00 0.00

10 85.11 120.01 0.00 0.00 44.86 363.23 0.00 43.38
11 89.07 120.00 0.00 0.00 27.63 363.22 0.00 0.00
12 66.12 310.00 200.00 0.00 40.06 387.41 25.46 0.00
13 74.45 500.00 200.00 0.00 28.80 577.33 199.93 0.00
14 106.84 500.00 0.00 0.00 21.27 600.00 23.87 0.00
15 98.33 500.00 0.00 0.00 38.25 600.00 0.00 0.00
16 98.75 499.99 0.00 0.00 34.21 599.99 0.00 0.00
17 104.40 357.63 0.00 135.24 47.71 438.23 0.00 153.67
18 94.22 357.63 0.00 0.00 39.77 340.75 0.00 92.61
19 109.85 254.05 0.00 98.40 26.59 246.44 0.00 89.58
20 103.01 50.00 0.00 193.85 51.12 185.41 0.00 57.97
21 66.43 240.00 200.00 0.00 53.62 320.54 142.24 0.00
22 86.17 270.53 32.14 0.00 54.54 320.53 0.00 0.00
23 109.31 60.00 0.00 200.00 56.92 110.00 0.00 200.00
24 76.35 250.00 200.00 0.00 50.99 300.00 200.00 0.00

Total: – – 1432.14 1292.46 – – 1050.57 948.05
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Table 9. ES and TS results for microgrid 3. – : Not applicable

Time (h)

Retail
Electricity

Price
($/MWh)

ES Energy
Level

(MWh)

ES
Charging

Power
(MW/h)

ES
Discharging

Power
(MW/h)

Retail
Natural

Gas Price
($/kcf)

TS Energy
Level

(MBtu)

TS
Charging

Power
(MBtu/h)

TS
Discharging

Power
(MBtu/h)

1 72.75 785.00 300.00 0.00 45.98 556.00 0.00 89.30
2 105.28 469.21 0.00 300.00 49.69 449.34 0.00 101.32
3 102.46 245.64 0.00 212.39 50.22 449.34 0.00 0.00
4 105.44 245.63 0.00 0.00 35.79 677.53 240.20 0.00
5 109.89 245.63 0.00 0.00 31.66 677.52 0.00 0.00
6 102.56 245.63 0.00 0.00 29.20 467.25 0.00 199.75
7 102.04 100.00 0.00 138.34 54.17 130.01 0.00 320.38
8 83.42 100.00 0.00 0.00 27.65 130.01 0.00 0.00
9 62.57 385.00 300.00 0.00 42.99 130.00 0.00 0.00

10 67.83 670.00 300.00 0.00 54.99 130.00 0.00 0.00
11 106.24 354.20 0.00 300.00 33.50 171.21 43.38 0.00
12 94.18 354.20 0.00 0.00 18.17 291.18 126.29 0.00
13 64.51 639.20 300.00 0.00 57.00 421.18 136.84 0.00
14 106.82 639.20 0.00 0.00 31.65 541.81 126.99 0.00
15 89.62 639.20 0.00 0.00 29.78 582.66 43.00 0.00
16 81.47 639.19 0.00 0.00 55.27 582.66 0.00 0.00
17 61.14 924.19 300.00 0.00 49.24 582.65 0.00 0.00
18 89.72 924.19 0.00 0.00 25.13 582.65 0.00 0.00
19 105.77 608.40 0.00 300.00 53.40 130.01 0.00 430.00
20 62.25 893.40 300.00 0.00 44.58 130.01 0.00 0.00
21 100.28 577.61 0.00 300.00 42.99 130.00 0.00 0.00
22 94.81 577.60 0.00 0.00 40.82 130.00 0.00 0.00
23 96.90 500.00 0.00 73.72 35.15 309.00 188.42 0.00
24 92.04 500.00 0.00 0.00 20.99 650.00 358.95 0.00

Total: – – 1800.00 1624.45 – – 1264.09 1140.75

Table 10. Operational costs of microgrids.

Microgrid 1 Microgrid 2 Microgrid 3

Operational cost ($) 5,431,648.01 5,323,884.54 5,215,699.40

5. Conclusions

In this study, a customised multi-energy pricing scheme is proposed for an energy
retailer that manages multiple microgrids equipped with energy converters, storage, RES
and DR programs. The proposed pricing problem is formulated as a bilevel optimisation
model. The energy retailer is the leader at the upper level to maximise profit. Each multi-
energy microgrid acting as a follower minimises the operational cost at the lower level.
In addition, three hybrid metaheuristic algorithms (i.e., PSO, GA and SA) coordinated
with the MILP program are developed to solve the model efficiently. Through numerical
analyses, the GA-based hybrid solution algorithm is proved to have the best performance
against others. The customised pricing scheme presents superiority compared to the
uniform pricing scheme. In addition, since increasing the rated capacity and power of the
ES and TS can improve the microgrids’ energy management capability, the retailer’s profit
and microgrids’ operational costs reduce accordingly.

For future work, we would like to develop a machine learning or data-driven model
at the lower level to present the interaction between the upper-level energy retailer’s price
signals and the lower-level microgrids’ energy management decisions. The method will
benefit real-world applications due to the existence of imperfect information of lower-level
agents, such as microgrids and aggregators (that is, their operation models may not be
known by retailers). In addition, we will consider developing an approximation and
numerical approach for solving the bilevel model with the binary variables in the lower-
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level problem. The comparison between the approach and the aforementioned hybrid
metaheuristic algorithms will also be studied. Furthermore, since environmental factors,
such as carbon cost/budget, are increasingly implemented by different organisations
(e.g., microgrids or local energy communities) as required by retailers and governments, it
could affect retailers’ pricing decisions. Therefore, the objective functions and constraints
of the bilevel model will consider such environmental factors in our future work. Lastly, we
will investigate our modelling alternatives, such as cooperative game theory and bargaining
mechanism, to model the interactions between the retailer and customers/microgrids.
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Nomenclature

Abbreviations and Indices
RES Renewable energy sources
DR Demand response
PSO Particle swarm optimisation
GA Genetic algorithm
SA Simulated annealing
MILP Mixed-integer linear program
DERs Distributed energy resources
RTP Real-time pricing
TOU Time of use
EVs Electric vehicles
CVaR Conditional value at risk
EPEC Equilibrium problem with equilibrium constraints
IESP Integrated energy service provider
KKT Karush–Kuhn–Tucker
CHP Combined heat and power
ES, TS Electrical storage, thermal storage
LC, LS Load curtailment, load shifting
PV, WT Photovoltaic, wind turbine
i Index of microgrids
a Index of households participating in load-shifting program
t Index of time periods
Sets
M Set of microgrids
T Set of scheduling hours
A Set of households participating in load-shifting program
Parameters
αi Proportion that the electricity price sold by the microgrid i back to the retailer against the

retail price.
cCHP

i , cpump
i Operation and maintenance costs for CHP and heat pump in microgrid i.

cst
CHP,i, csd

CHP,i, cst
pump,i, csd

pump,i Start-up and shut-down costs of CHP and heat pump in microgrid i.
cES

i , cTS
i Electrical and thermal storage costs.

cele,t
curtail,i, cgas,t

curtail,i, cheat,t
curtail,i Load curtailment cost of electricity, natural gas and heat in microgrid i.

ηCHP
i , ηe2h

i Natural gas to electricity and electricity to heat conversion efficiency of the CHP in
microgrid i.
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pCHP,min
i , pCHP,max

i Minimum and maximum electricity volume generated by the CHP in microgrid i.
pCHP,init

i , δinit
i Initial electricity volume and status of the CHP in microgrid i.

pRU
i , pRD

i Ramp-up and ramp-down limits of the CHP in microgrid i.
η

pump
i Electricity to heat conversion efficiency of the Heat pump in microgrid i.

qpump,min
i , qpump,max

i Minimum and maximum heat volume generated by the heat pump in microgrid i.
qpump,init

i , θinit
i Initial heat volume and status of the heat pump in microgrid i.

qRU
i , qRD

i Ramp-up and ramp-down limits of the heat pump in microgrid i.
EES,init

i Initial energy level of ES in microgrid i.
ηES,c

i , ηES,d
i , εES

i ES charging, discharging and self-discharging rate in microgrid i.
EES,min

i , EES,max
i Minimum and maximum of the ES energy level in microgrid i.

pc,min
i , pc,mac

i , pd,min, pd,max
i Minimum and maximum of the ES charging and discharging volume in microgrid i.

ETS,init
i Initial energy level of TS in microgrid i.

ηTS,c
i , ηTS,d

i , εTS
i TS charging, discharging and self-discharging rate in microgrid i.

ETS,min
i , ETS,max

i Minimum and maximum of the TS energy level in microgrid i.
qc,min

i , qc,mac
i , qd,min, qd,max

i Minimum and maximum of the TS charging and discharging volume in microgrid i.
ρmin

ele,i, ρmax
ele,i Minimum and maximum electricity curtailment rate in microgrid i.

ρmin
gas,i, ρmax

gas,i Minimum and maximum natural gas curtailment rate in microgrid i.
ρmin

heat,i, ρmax
heat,i Minimum and maximum heat curtailment rate in microgrid i.

Dai Shiftable load adjustable time window of the household a in microgrid i.
Tstart

ai
, Tstop

ai Start and stop time of the load-shifting program of the household a in microgrid i.
dmin

ai
, dmax

ai
Minimum and maximum of the shiftable load of the household a in microgrid i.

Eai Total electricity consumption of the household a in microgrid i during the load shifting
program.

pPV,t,min
i , pPV,t,max

i Minimum and maximum of the PV-generated electricity volume in microgrid i at time t.
pwind,t,min

i , pwind,t,max
i Minimum and maximum of the wind turbine-generated electricity volume in microgrid i

at time t.
τspin Spinning reserve ratio.
pmin,t

i , pmax,t
i Minimum and maximum of electricity volume that the microgrid i purchased from the

retailer at time t.
pmin,t

export,i, pmax,t
export,i Minimum and maximum of electricity volume that the microgrid i sold to the retailer

at time t.
pmin

total , pmax
total , gmin

total , gmax
total Total electricity and natural gas volume that the retailer purchased from the wholesale

energy markets.
πretail,min

ele,i , πretail,max
ele,i Minimum and maximum of retail electricity price for microgrid i.

πretail,min
gas,i , πretail,max

gas,i Minimum and maximum of retail natural gas price for microgrid i.
AVGele, AVGgas Average retail electricity and natural gas price over the scheduling hours.
Variables
pt

i , gt
i Electricity and natural gas volume that the microgrid i purchased from the retailer at time t.

pexport,t
i Electricity volume that the microgrid i exports to the retailer at time t.

πretail,t
ele,i , πretail,t

gas,i Retail electricity and natural gas price for the microgrid i at time t.

pCHP,t
i , qCHP,t

i Electricity and heat volume generated by the CHP in microgrid i at time t.
gCHP,t

i Natural gas volume that consumed by the CHP in microgrid i at time t.
δt

i , δst,t
i , δsd,t

i CHP operational, start-up and shut-down status in microgrid i at time t.
ppump,t

i , qpump,t
i Electricity consumed and heat generated by the heat pump in microgrid i at time t.

θt
i , θst,t

i , θsd,t
i Heat pump operational, start-up and shut-down status in microgrid i at time t.

EES,t
i ES energy level in microgrid i at time t.

pc,t
i , pd,t

i ES charging and discharging volume in microgrid i at time t.
γc,t

i , γd,t
i ES charging and discharging status in microgrid i at time t.

EES,T
i The final energy level of the ES in microgrid i.

ETS,t
i TS energy level in microgrid i at time t.

qc,t
i , qd,t

i TS charging and discharging volume in microgrid i at time t.
ζc,t

i , ζd,t
i TS charging and discharging status in microgrid i at time t.

ETS,T
i The final energy level of the TS in microgrid i.
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ρt
ele,i, ρt

gas,i, ρt
heat,i Electricity, natural gas and heat curtailment rate in microgrid i at time t.

µt
ai

Operational status of the household a in microgrid i at time t.
dt

ai
Shiftable load of the household a in microgrid i at time t.

pPV,t
i , pwind,t

i Electricity generated by PV and wind turbine in microgrid i at time t.
ψt

i , ψ
export,t
i Electricity importing and exporting status in microgrid i at time t.

Appendix A. Input Data

Table A1. Base energy demand for microgrid 1–3.

Microgrid 1 Microgrid 2 Microgrid 3
Time (h) Electricity

(MWh)
Natural

Gas (kcf)
Heat

(MBtu)
Electricity

(MWh)
Natural

Gas (kcf)
Heat

(MBtu)
Electricity

(MWh)
Natural

Gas (kcf)
Heat

(MBtu)

1 842.92 387.74 519.30 504.00 210.00 554.40 622.31 311.16 715.66
2 828.44 381.08 531.32 499.20 208.00 549.12 596.93 298.46 686.46
3 820.95 377.64 578.56 504.00 210.00 554.40 580.13 290.06 667.14
4 831.32 382.41 698.73 499.20 208.00 549.12 580.06 290.03 667.07
5 861.44 396.26 972.46 508.80 212.00 559.68 597.68 298.84 687.33
6 924.58 425.31 1176.48 518.40 216.00 570.24 629.41 314.71 723.82
7 939.25 432.06 1137.13 528.00 220.00 580.80 677.44 338.72 779.05
8 981.48 451.48 1091.99 696.00 290.00 765.60 725.28 362.64 834.07
9 956.98 440.21 1032.92 835.20 348.00 918.72 770.57 385.29 886.16

10 937.68 431.33 979.94 936.00 390.00 1029.60 825.62 412.81 949.46
11 935.63 430.39 936.56 998.40 416.00 1098.24 879.69 439.85 1011.64
12 919.00 422.74 911.10 1008.00 420.00 1108.80 928.89 464.45 1068.23
13 916.53 421.60 900.55 1003.20 418.00 1103.52 968.60 484.30 1113.89
14 934.69 429.96 910.40 998.40 416.00 1098.24 998.55 499.28 1148.33
15 961.06 442.09 929.05 1008.00 420.00 1108.80 1018.46 509.23 1171.23
16 1002.37 461.09 968.73 1017.60 424.00 1119.36 1034.82 517.41 1190.04
17 1075.71 494.83 1004.19 1070.40 446.00 1177.44 1038.35 519.17 1194.10
18 1090.57 501.66 1017.83 1027.20 428.00 1129.92 1016.55 508.27 1169.03
19 1074.07 494.07 1016.88 619.20 258.00 681.12 978.60 489.30 1125.39
20 1046.70 481.48 985.27 614.40 256.00 675.84 943.57 471.79 1085.11
21 1011.72 465.39 887.76 590.40 246.00 649.44 900.10 450.05 1035.12
22 968.94 445.71 686.22 489.60 204.00 538.56 831.58 415.79 956.32
23 885.73 407.44 541.79 470.40 196.00 517.44 762.76 381.38 877.18
24 871.34 400.82 578.48 508.80 212.00 559.68 704.32 352.16 809.97

Table A2. CHP parameters.

Parameter Value

Gas-to-power conversion rate 0.3
Power-to-heat conversion rate 1

Minimum power output (MW/h) 40
Maximum power output (MW/h) 1200

Ramp-up rate (MW/h) 600
Ramp-down rate (MW/h) 600

Operation & maintenance cost ($/kcf) 15
Start-up & shut-down cost ($) 3.48
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Table A3. Heat pump parameters.

Parameter Value

Power-to-heat conversion rate 0.9
Minimum heat output (MBtu/h) 20
Maximum heat output (MBtu/h) 1200

Ramp-up rate (MBtu/h) 600
Ramp-down rate (MBtu/h) 600

Operation & maintenance cost ($/MW) 2
Start-up & shut-down cost ($) 3

Table A4. Maximum power of RES.

Time (h) PV Power (MW/h) Wind Power (MW/h)

1 0.00 0.00
2 0.00 0.00
3 0.00 0.00
4 0.00 0.00
5 0.00 0.00
6 6.43 0.00
7 35.50 0.00
8 67.44 5.98
9 80.50 41.53
10 114.05 77.96
11 127.20 135.86
12 63.41 165.05
13 47.74 94.61
14 48.03 145.59
15 39.42 71.58
16 34.44 88.22
17 13.96 45.99
18 1.92 41.53
19 0.00 18.38
20 0.00 13.05
21 0.00 2.55
22 0.00 1.55
23 0.00 0.56
24 0.00 0.00

Table A5. Load-shifting program parameters.

Shiftable
Load

Total Energy
(MWh)

Min. Power
(MW/h)

Max. Power
(MW/h)

Time
Window (h) Duration (h)

Task 1 250 25 150 2-18 5
Task 2 110 5 50 2-20 8
Task 3 180 20 80 5-22 6
Task 4 150 10 60 3-21 12
Task 5 200 15 100 8-22 10

Tasks 1–5 can be assigned to many appliances, such as dishwashers, electric vehicles and water heaters.
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Table A6. Wholesale electricity and natural gas prices.

Time (h) Electricity Price ($/MWh) Natural Gas Price ($/kcf)

1 67.09 16.93
2 66.89 16.60
3 67.64 15.75
4 68.64 16.85
5 69.54 20.54
6 70.16 21.30
7 71.34 22.15
8 71.04 22.60
9 71.41 23.77
10 71.61 23.73
11 71.23 23.93
12 71.17 23.75
13 70.88 20.25
14 71.10 20.25
15 71.52 20.48
16 72.27 24.50
17 72.82 24.65
18 73.15 25.00
19 72.56 24.60
20 71.19 24.43
21 70.42 20.53
22 70.16 17.98
23 69.36 17.88
24 66.92 17.18
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