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Abstract: One year of high-resolution driving data from a sample of 333 instrumented gasoline
passenger vehicles are used to create a trip inventory of U.S. vehicle travel requirements. A set
of electric vehicles (EVs) is modeled, differing in battery size (kWh), recharging power (kW), and
locations for charging when parked. Each modeled EV’s remaining energy is tracked while traversing
the entire sample’s trip inventory in order to estimate how well each EV meets all U.S. driving
requirements. The capital cost of refueling infrastructure is estimated per car, for gasoline and for
each analyzed combination of charging station locations. We develop three metrics of the ability of
different EV characteristics to meet trip requirements: the percentage of trips successfully met by
each modeled EV, the number of days that the driver must “adapt” EV use to meet more demanding
trip requirements, and the total driver time required for refueling. We also segment the market
of trip patterns per car, finding that 25% to 37% of the vehicle population could meet all their
drivers’ trip needs with a smaller-battery EV combined with community charging. This potential
combination of EVs and charging would enable lower-price EVs and lower-cost recharging power,
and would broaden EV availability to groups for whom today’s EVs and charging configurations are
less accessible.

Keywords: electric vehicle; EV; EV range; charging power; light vehicles; travel requirements; EV
access equity

1. Introduction

As an energy carrier for the vehicle fleet, liquid fuels have the desirable characteristic
of high energy density. From this derive the two primary concerns about the ongoing transi-
tion from liquid fuels to electricity: driving range achieved by a full charge (a concern about
energy storage) and the time required to refill the battery (a concern about charging power).
Another more subtle difference between liquid fuels and electricity is that electricity is
ubiquitous in the developed world, whereas liquid fuels are available only from specialized
retailers with bulk storage, pumping, and environmental controls. For electricity, any
parking spot within a wire run of electric power distribution is a potential refueling station.
This leads to the third primary variable affecting EV trip success: availability of recharging
facilities at locations where the driver parks for other reasons. When multiple charging
locations are available, the driver can follow a strategy of “charge when stopped” rather
than “seek charge when low” [1].

In considering the requirements for electric passenger vehicles to replace liquid-fueled
ones, an interesting though possibly misleading statistic is that on an average day in the
U.S., light vehicles are driven for only one hour and travel on average 35 miles [2]. All
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mass-produced electric battery vehicles store more than enough energy for that average
day (itemized subsequently). One step more advanced, but still a univariate quantification
of EV adequacy, is to determine the number of days for which a given battery capacity (in
kWh) is sufficient for the entire day’s driving [3,4]. A small refinement is to disaggregate
from this mean to a distribution of daily driving patterns by individuals, looking for each
driver’s maximum daily trip distance over one or more years; this per-driver analysis has
found, for example, that an EV with 100 mile (161 km) range could meet 100% of the driving
needs of the least-driving 1

4 of the population (see Figure 7 of [5]). Another approach has
been to calculate an optimal battery size [6]. We posit that the “optimal” size is not a point
but a function of quantitative tradeoffs, such as the number of days per year one would
need to stop to charge en route or substitute another vehicle for a long trip. Thus, this study
will analyze the distribution of observed trips over a full year, then quantify the ability of
different modeled EVs and charging to meet the actual distribution of travel of different
market segments.

1.1. Driving Range Needs

There is limited empirical analysis of the distribution of driver range needs, in part
due to the cost of high time resolution GPS driving data for many vehicles over one or
several years. Studies based on surveys or small samples give varying results. For example,
one study investigating range examined a small set of vehicles sampled for few days each
and suggested that more than 95% of daily driving can be accomplished with 100 miles
of electric range [7]. One large sample study, although it had individual trip resolution,
nevertheless concluded that a small-battery vehicle would be sufficient based on average
daily distances [3]. The U.S. government similarly tabulates average driving per day [2].

Another prior EV study followed 450 leased BMW Mini E vehicles. Among its conclu-
sions was that the limited range (70–100 miles) did not encumber mobility most of the time.
Specifically, 45% of drivers reported using the Mini E for 90–100% of trips. Moreover, charg-
ing overnight at home was reported to be adequate to satisfy most travel needs [8]. More
quantitatively, Pearre et al. [5] examined full-day driving and counted days of insufficient
range. Similar to Steinberg [8], Pearre et al. found that more than half of the fleet could
meet 95% of driving needs with 100 miles range using only overnight home charging [5].

Such studies, reporting the average distance traveled or range to meet “most” trips,
do not capture the car buyers who purchase a vehicle to cover their own needs on all
days. A complete vehicle-purchase-relevant analysis also need not be restricted to home
charging. Thus, we assert the importance of the long-term monitoring of each vehicle
studied to establish requirements based on a trip inventory of all trips over a year for each
vehicle. With such a trip inventory for each driver, the analysis can also answer market
segmentation questions such as “What proportion of drivers will find that a vehicle with
a given range meets 100% of their travel needs in a year?” as well as whole-population
questions such as “How often will a vehicle with given range and charging power fail
to meet U.S. driving needs?” or “If charging is available at most stops, can battery size
be reduced?”

The problems of range limits and speed of recharging have also been addressed tech-
nically, for example, by very high-power charging (350 kW), which attempts to approach
gasoline-fueling speed (but incurs an expensive, heavy hose and awkward plug insertion),
or the plug-in hybrid vehicle (PHEV), which carries a separate liquid fuel system to take
over when the battery is empty. Although stopping for gasoline seems inconvenient to an
EV driver, it is familiar to liquid-fuel vehicle drivers and thus does not yet deter gasoline
car or PHEV purchase [9]. To gain an understanding of the EV transition, we focus here
on battery EVs without liquid fuel, as the more challenging vehicle class and as they rep-
resent 2/3 of today’s plug-in sales, a fraction that is growing over time [10]. We hence use
“gasoline” to refer to any automotive liquid fuels.
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1.2. Approach of This Study

To understand electric vehicle adoption and needed battery and charging capabilities,
we will evaluate under what circumstances EVs can successfully provide the transportation
services now provided by gasoline vehicles. To this end, this study extracts the trips
taken, and the stops already made (as possible charging opportunities), over a year for
333 gasoline vehicles, creating a trip inventory. Then, we model EVs and run them through
exactly the same trips taken by the 333 gasoline cars over one year. When a simulated EV
fails to achieve all the same trips as the gasoline vehicle did—because the battery empties
before reaching the next charging station—it is counted as a negative on our three metrics:
lower trip success, needed range adaptations, or added fueling time to stop at a fast en
route charger. Unlike studies focused on daily driving, which implicitly assume only home
charging, here we tabulate battery drawdown and refill, distinguishing among multiple
trips in a day, each with its own time of departure, travel distance, and stops for daily tasks
with potential charging opportunities, in order to compare availability of charging stations
at one, two, or many parking locations.

1.3. Charging Infrastructure

Society’s shift from liquid fuels to electricity entails, among other things, reconcep-
tualizing vehicle fueling. Today’s vehicle fuels are expensive, inefficient, flammable, and
toxic. These characteristics have led to centralized, commercial fueling where drivers stop
primarily or exclusively to fuel, fill the vehicle in a few minutes, and pay the supplier. In
the emerging practice of electric fueling, fueling is slow but the recharge infrastructure is
widely distributed, mostly at locations where vehicles will be parked for reasons other than
fueling (e.g., home, work, shopping, visiting). In addition, required electric safety features
are inexpensive and built into devices (charging station and vehicle), the fuel is inexpensive
(per mile), and fuel payment may not be a separate transaction or may not even be metered
(e.g., home and some workplaces).

Prior to our primary analysis based on the trip inventory, it is useful to compare
gasoline with electric fueling infrastructure. The U.S. has approximately 287 million light
vehicles, more than one per adult. In 2021, there were 108,790 gasoline stations [11], or one
per 2638 vehicles. The cost to build one station (excluding property) is approximately USD
one million (Building a gasoline station costs from USD 700,000 to 1.4 M (data from [12],
adjusted for inflation to 2022); for the sale of an operating station, mid-range prices are
USD 250,000 to 2 M [13]). Thus, for 2638 vehicles the infrastructure cost is USD 379 per
vehicle served. Since electric refueling is an enhancement to an existing parking space, it is
also useful to compare the cost of a parking space, which varies with neighborhood density
from USD 3978 to 22,630 [14], or less for the 20% of the population in rural areas where the
only improvement needed is to add paving. The parking space is not an added cost to EV
charging, but it is useful to remember the relative cost to enhance that space by adding a
charging station. All costs are shown in Table 1 (rounded).

Table 1. Gasoline versus electric charging equipment in the U.S., compared with parking spaces.
Each has a count and approximate cost. EV station costs are calculated for differing combinations of
charging stations, corresponding to the charging-location analysis in this article (calculations in text).

Cars:Station Station Cost (USD) Station
Cost/Car (USD)

Gasoline 2638:1 1,000,000 379

Parking space 1:8 4000–23,000 32–92 K

EV charging

Home 1:1 1500 1500
H + Work 1:2 1500 + 3000 4500
H + Work + 2 1:4 1500 + 3000 × 3 10,500
Shared DC 30:1 70,000 2333
H + shared DC ≈1:1 1500 + 70,000 ÷ 300 1733
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For the installed cost of AC recharging, we assume USD 1500 to 3000, or more if
significant new wiring is necessary. These figures are for a more mature market with
USD 1500 for home charging, USD 3000 for workplace or parking lot, and USD 70,000
for 150 kW DC charging. The cost comparisons do not include maintenance costs, which
are lowest for AC charging without billing or network authorization (typical of home or
workplace, some shopping), higher for stations with authorization and billing (typical for
en route), and highest for DC charging [1]. (Simple AC charging stations can have over a
10-year lifespan with occasional replacement of the connector, whereas DC stations have
exhibited a more limited lifetime (e.g., 5 years) with frequent maintenance. By using fast
AC charging, up to 120 kW has recently been standardized, at much lower capital and
maintenance cost than DC charging at the same power [15]. Fast AC charging could make
fast en route charging more cost-effective in the future, but neither maintenance costs nor
fast AC charging savings are included in Table 1’s illustrative cost comparison).

Our analysis examines three levels of the locational availability of AC charging stations:
only one for each EV (at home), two per car (home + work), or many per car (most parking
locations). We also analyze one AC charger at home plus a shared fast charger en route,
that is, one AC charger dedicated per EV plus one DC shared by 300 EVs. Finally, the
cost is calculated for only DC chargers, assuming one per 30 users (cars per DC charger
are from [16]). From these assumptions, the station costs per vehicle are compared in
Table 1. We will also analyze charging at all stops of 1

2 h or more, which we estimate to be
four stations per car in the U.S.; of those stops, home and one-shift workplaces typically
provide one dedicated charger per EV. (The U.S. parking space population is approximately
eight per car, but that is overbuilt due to zoning requirements, whereas cities that have
rationalized parking requirements manage with half that number [17]. Also, some low-
usage parking spaces will not merit charging investment.) Thus, we use four charging
stations per car (Home + Work + 2) to estimate cost of chargers at all stops [17]). We will
assume a DC charger at an installed cost of USD 70 K would, if used only for long trips, be
shared among 300 cars [16], so a home AC plus an en route charger divided by 300 cars
would be USD 1500 + 233, notably less than one home plus three dedicated AC chargers.

The higher cost of electric charging equipment in comparison to gasoline stations is
significant but may be justified by the lower cost of fuel and maintenance. To estimate
fuel, an annual 15,000 miles of driving at 27 mpg (about the U.S. fleet average [18]) would
require 555 gallons at USD 3.50, or 4200 kWh at ¢12 (assuming 280 Wh/mile). Maintenance
for a gasoline car is 6 ¢/mile and for an EV, 3 ¢/mile [19]. The lower electricity fuel cost
saves USD 1486 per year, and with maintenance savings, total operating savings would be
USD 1936 per year (USD 1486 + 450). Thus, most configurations of station cost are small
in comparison to operating savings. Table 1’s comparison is illustrative but incomplete
because station installation costs vary greatly by location, and customer per-kWh fees are
much higher for DC stations and for stations requiring authorization, factors not considered
in Table 1.

New parking spaces need not be built for charging stations—it is most efficient to add
charging where EV drivers already park for other purposes. Nevertheless, the parking
space row in Table 1 reminds us that the current cost of parking space per car is far more
than the cost of adding a charging station, more so because U.S. parking space per car is so
overbuilt [17].

The ongoing national efforts for EV charging stations, e.g., in the U.S. [20], further
motivates understanding alternative possible buildouts and the best utilization and value
among the alternatives. To do so, we will quantify trip success against charger availability
in the following analysis, then reconsider the equipment costs in Table 1.

2. Materials and Methods
2.1. Data Sources and Validity

The trip and parking duration analysis is based on a one-second resolution database of
U.S. vehicle use, previously collected in order to study traffic patterns, driver behavior, and
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vehicle emissions [21]. Vehicles were selected for the study by random stratified sampling
from 13 counties in the Atlanta, GA, greater metropolitan area [22]. The sampled area
accounts for roughly half of Georgia’s population. The study participants over-represent
the highest income groups and under-represent the lowest income groups but in other
respects are a good sample of the regional population demographics [23]. Car use in the
Atlanta region and in Georgia is just slightly above contemporaneous U.S. averages, so the
sample is a reasonable one to test if EVs can adequately match the car travel patterns. For
further discussion of the sample, see [5].

For the study, whenever the ignition of one of the instrumented vehicles was turned
on, a GPS receiver and computer in that vehicle would record vehicle position, time, and
several operating variables once per second until the vehicle was again switched off. All
travel during the study period is included in the resulting dataset. Of the total sample,
about 1/3 of the cars were eliminated due to quality checks or an inability to identify home
and work locations. Specifically, to be included, each car required the following:

(i) active for at least 9 months of the sampled year;
(ii) parked at a “home” location at least 35% of the time;
(iii) identified Home and Work (defined in Section 2.2) within 150 miles of Atlanta;
(iv) at least 95% of trips successfully recorded a trip distance greater than zero.

This effort resulted in many terabytes of second-by-second vehicle positions, covering
333 individual cars in 269 households over a period of one to three years.

The analyses reported here are based upon on the portion of these data covering the
calendar year 2004, a leap year of 366 days. Second-by-second data from each vehicle were
pre-processed into individual “trips”. Each trip is defined as a duration of the vehicle’s
ignition being turned on (a trip is from key-on to key-off) and is described by a start time
and location, end time and location, and distance. Our EV model treats stopped times
between trips as potential times for EV recharge, even though the vehicles creating the trip
inventory were gasoline-fueled vehicles.

For this analysis, we assumed that for stops of less than 30 min, the driver would
judge plugging in and recharging not worth the bother for a short charge, so for pairs
of trips with a 30 min or less stop between them, we here concatenate into one trip with
duration and distance summed.

2.2. Home and Work Locations

To analyze how the data on travel patterns inform electric vehicle charging opportuni-
ties, it is important to know when vehicles are at locations that would be more likely to
have charging stations, or ‘Electric Vehicle Supply Equipment’ (EVSE).

First, we identify the most frequent parking locations for each vehicle. “Home” for
each vehicle is identified as a location

(i) that the vehicle is parked for the greatest cumulative number of hours during the year
of the study; and

(ii) any other locations where the vehicle, over the year, spends more than 100 cumulative
hours between 1 am and 5 am.

Criterion (ii) was included in the definition of “Home” to address multi-house families
(vacation homes, driving teens with divorced parents, couples not yet living together,
etc.), as well as cars sold and people who moved during the study. We capitalize “Home”
when referring to the locations meeting this definition. For those vehicles with more than
one Home location, parking at any of them counts as parking at Home. The number
of cumulative nighttime hours for criterion (ii) was selected by trial and error to give
results most consistent with NHTS survey data. When the criterion (ii) cutoff was less than
100 nighttime hours, the vehicles at Home at night dropped. When the criterion was
much more than 100 h, the vehicles parked at Work (defined below) during workdays
fell significantly.
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After identifying Home, we labeled as “Work” the place with the second most hours
parked, excluding stops within 40 m from Home (to account for street or alternative
parking near Home). Since the U.S. has more vehicles than full-time jobs, some “Work”
locations may be school, a hobby or leisure, or another frequent daytime destination, and
not necessarily a workplace. Other locations less frequent than “Work” will be discussed
with charging “Everywhere”. The labels Home and Work may be incorrect for a few cases
such as home-workers or night shift-workers, those with non-stationary job overnights
(contractors, traveling sales), and the unemployed. Nevertheless, because these labels are
used to model where we place EVSEs, the Home and Work labels by definition identify the
most used parking locations. With these provisos, the labels Home and Work will be used
for the following analysis.

The histogram in Figure 1 shows the distribution of time at Home and at Work
(fractions are normalized if the vehicle’s data spanned less than one year). As an example,
the tallest black bar in Figure 1 indicates that about 16% of vehicles are parked at Home
between 60 and 65% of the time. More broadly, a majority (68%) spends between 55%
and 80% of the time parked at Home, with a mean of 70% (As a quick check, consider a
commuting vehicle, for example, that is away from home 8:30 am to 5:30 pm workdays,
and spends 3 h away from home each day of the weekends and holidays, together with a
two-week vacation. Such a vehicle would be spending 71% of the year at Home, the mean
of our sample in Figure 1).
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Figure 1. Distribution of time at Work (grey bars) and time at Home (black). The X-axis gives fractions
of time over the year, so 0.1 means 10% of the time over the year. The leftmost bar is truncated; its
actual height is 0.52. Reprinted by permission, from Pearre [24].

The grey bars in Figure 1 are the fraction of the time parked at Work. A typical full-
time job in the U.S. is just under 2000 h at work, just under 22% of the year. Since not
all jobs are full-time, we expect few vehicles parked at Work more than 22% of the time,
which Figure 1 confirms. The tallest Work bar is leftmost, 52% (cropped in figure). This
bar is for vehicles spending 0 to 0.05 of the time (e.g., less than 36 h per month) at Work.
Our results are compatible with the NHTS result that only 27% of trips are to or from
work [25]. We find the mean time at Work is 8%, with a median of 5%, again reminding
that our identification of “Work” is the most frequent daytime destination for that vehicle,
not necessarily an employer.
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The distribution at Home and at Work is also a function of time of day. The time-of-day
analysis both validates our location labels and reveals driver behavior. We divided each
day in the year into a series of 10 min time spans, counting the cars parked at each location
at each time. These totals are normalized by the number of cars in the study through time,
and then separated into workdays versus weekend or holidays. The list of U.S. federal
holidays was refined based on driving patterns. (Specifically, federal holidays with driving
patterns characteristic of workdays, or conversely, non-holidays with holiday patterns (e.g.,
Friday after Thanksgiving), were correspondingly categorized for analysis in Figure 2).
In Figure 2, these distributions are graphed by their mean, maximum, minimum, and
standard deviation for each 10 min interval.
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Figure 2. Fraction of fleet at Home and Work each hour on workdays (left plot) and on weekends
and holidays (right plot). The means for the year’s data are the black middle line for Home and the
light grey middle line for Work. Reprinted by permission, from Pearre [24].

Figure 2 shows that the number of cars at Home is at maximum and constant from
midnight to 5 am on workdays. On workdays, 35% leave Home and arrive at Work by
9 am. The fraction at Work overnight is 3.5%, corresponding to Labor statistics on night
shift-work [26]. On weekdays, 40% of the fleet is at Work. One tenth of that 40% leave Work
for an hour at lunchtime, and the population at Work declines steadily from 3 pm to 5 pm,
then continues to decline more slowly from 5 pm to 9 pm, with a few continuing to depart
through midnight. On weekends, those at Work rise only to 12% by mid-day.

Overall, Figures 1 and 2 suggest that inferred Home and Work locations are reasonable.
These locations are also corroborated by their correspondence with National statistics and
with the authors’ personal driving experience.

2.3. Translating Electrical Energy into Driving Distance

To understand how EV driving and range capabilities relate to energy requirements,
we estimate energy consumption per distance. The essential measurements of energy
efficiency are given in Table 2, based on EV passenger car data from manufacturer speci-
fications, reviews, or our calculations. The test cycles and representativeness of sources
on the vehicles in Table 2 are not totally comparable, due to the incommensurate testing
standards and our varying sources.
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Table 2. Reported battery capacity, range, calculated energy consumption (Wh/mile), and energy
efficiency (km/kWh) for diverse EVs, including older and newer models. Ranked by battery capacity
in kWh.

Vehicle Usable Battery
Capacity (kWh)

Reported Range
(miles)

Energy Consumption
(Wh/mile)

Energy Efficiency
(km/kWh)

Chevy Volt (2012) 10.4 40 260 6.19
Aptera 2e 13.0 100 130 12.4

Renault Zoe 2013 22 93 236 6.82
Nissan Leaf (2011) 24 71 340 4.73
Tesla S 40 (2012) 40 139 287 5.61

Chevy Bolt (2023) 65 259 251 6.41
Tesla S 85 85 300 283 5.67

Ford Mach-E Rt. 1 (2022) 91 312 291 5.53
GMC Hummer 2022 212 329 644 2.50

The reported or calculated energy consumption of EVs in Table 2 spans from 130 to
644 Wh/mile (metric energy efficiency of 2.50 to 12.4 km/kWh). The very high efficiency
of the Aptera 2e is achieved by a design optimized for aerodynamics and low weight, at
the cost of carrying only two passengers and an unconventional sedan body. Conversely,
the very low efficiency for the GMC Hummer reflects curb weight over 9000 lbs. and drive
power of 1000 hp. Ignoring the outliers, energy consumption of EV sedans is within 230 to
333 Wh/mile. Thus, we will use the midpoint value of 280 Wh/mile (5.75 km/kWh) as a
representative efficiency value to derive range in our EV model, per Equation (1a) or (1b).

R (mi) = E (kWh)/C (0.280 kWh/mile) (1a)

R (km) = E (kWh) × η (5.75 km/kWh) (1b)

where
R is range in the given units,
E is battery energy in kWh,
C is energy consumption in kWh/mile, and
η is energy efficiency in metric units, km/kWh.
We note that this calculation of range is a simplification. Some EVs are more efficient

and some less, per Table 2, and the calculation does not consider temperature, driving
patterns, or differences among EV models. However, a constant conversion was required
to simplify the EV model and to focus on the primary variables that were the target of
this study.

3. EV Model Description

We model a diverse virtual fleet of EVs with a distribution of battery capacities and
recharge powers, spanning recent and current EV product offerings. In operation, the
EV model tracks each battery’s electrical energy (the state of charge) of each modeled
EV for each day as they attempt to match the observed vehicle use patterns in the trip
inventory. The output of the model quantifies the ability of differing EVs to complete the
trip inventory. Thus, successful trip completion is recorded if the battery energy does not
fall to zero during the day’s travel. Distance traveled is converted to reduction in on-board
energy at a constant energy consumption of 280 Wh/mile, as noted above.

An increase in the battery energy level occurs at the stops designated to have charg-
ing, at the charging power in the EV model and over the duration of the stop in the
trip inventory.

3.1. Battery Energy and Recharge Power

The energy capacity of an electric vehicle’s battery is a primary design consideration,
as it is one of the predominant factors determining the distance that an EV can travel
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between charges, and because batteries are expensive and heavy, it also strongly affects the
vehicle cost and weight. To evaluate the relationship between battery size and the ability to
complete trips, the EV model includes 11 values of battery size, from 2.5 kWh to 100 kWh,
which at 280 Wh per mile traveled implies vehicles with driving ranges of between 9 and
357 miles from a full charge. The calculated range, rather than the manufacturers’ claimed
range, is used on the X-axis of the following graphs.

The recharging power is the speed at which the EV can take in energy over time. Max-
imum recharging power is determined by the battery management system, the maximum
power of the power electronics onboard the vehicle and of the plug and circuit connecting
the EV to the grid. The lowest of these power capabilities is limiting and in this discussion
is referred to as the “plug power”. Twelve plug power levels were defined in the EV
model, from 1.2 to 100 kW. The smallest of these, 1.2 kW, is achieved even by a minimal
supply such as the U.S. standard 120 Volts supplying 10 Amps (a minimal EU 230 V, 1φ
at 10A is 2.3 kW). An intermediate value of 10 kW corresponds to conventional North
American household wiring for large appliances (e.g., 240 Volts drawing 42 Amps). Higher
levels between 40 and 50 kW are now available in much of Europe, using the 3φ at 400 V
power common there [27]. The upper end of the modeled range, 100 kW, would require
U.S. industrial utility service such as 120 Amps, 3Φ at 480 Volts. Systems of 50 to 150 kW
power are used for en route charging but are impractical at many locations: in homes, this
power level cannot be secured, and at long-duration parking (work or shopping) it is not
cost-effective compared to 10 kW or 20 kW low-cost AC charging.

3.2. Charging Station Availability by Location

The final variable that will affect EVs’ ability to meet travel needs is the degree to
which charging stations (EVSEs) are available where needed. We model three levels of
buildout, based on EVSEs being available: (i) at Home, (ii) at Home and at Work, and
(iii) at all stops in the trip inventory (Everywhere). The first level of EVSE availability
assumes that vehicles will be able to charge only when they are at Home (as noted, an
assumption from many studies). The second level assumes that vehicles will be able to
charge both at Work and at Home. The third level assumes that vehicles will be able to
charge anywhere they stop, in short, “Everywhere”—although for cost-efficiency some
rarely used parking would not merit charging stations.

As noted previously, stops of less than 30 min of the gasoline vehicles between suc-
cessive trips or trip segments never include charging, whereas stops longer than that are
allowed to be assigned to charge (Home, Work, Everywhere). Thus, a brief stop at a gas
station or coffee shop during a longer trip will not increase an EV’s modeled state of charge.
This reflects the practice some EV drivers express that they plug in opportunistically if the
stop is long enough to bother and if a charger is easily accessible [1].

4. Results
4.1. Success or Failure to Complete Trips

The EV model operates by “running” modeled electric vehicles, with differing battery
size and charging power, through the trip inventory (333 gasoline vehicles over a year).
The battery state of charge of each vehicle is modeled: rising when the vehicle stops where
charging is available, falling as the vehicle covers distance. A count of failure to match
travel needs is incremented whenever the battery drops to empty during a trip. Trip failures
are quantified in two ways: the success fraction is 100% minus trip failure percentage, or
days with a trip failure are “adaptation days”.

As an example, the success fraction for EVs charging at Home only is plotted in
Figure 3. This is the count of trip failures, normalized by each vehicle’s total number of
trips. For the overall adaptation count in Figure 3, each vehicle’s fraction of successful
trips was averaged across the fleet. The modeled EVs’ range is on the X-axis, and the plug
power is on the Y-axis. The surface of all possible EVs is depicted by contour lines, with the
number on each contour being the percentage of successful trips. While plug power up
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to 100 kW was modeled, only those up to 20 kW are displayed in the first several figures.
Twenty kW roughly corresponds to the limits of the most common AC charging connectors:
the U.S. Society of Automotive Engineers (SAE) standard J-1772, in the U.S. and Japan (up
to 19.2 kW at 240 V), or the most common three-phase European plug, the IEC 62196-2
“type 2” (yielding 22 kW at 32 Amp or 11 kW at 16 Amp). Above 20 kW, Figure 3 shows
that plug size has very little effect on failure rate—as seen by the near vertical success
contour lines at the top of the range (thus the graph’s top is cropped in the figure). This is
presumably because Figure 3 is calculated for Home charging only, a situation where a full
charge can typically be reached overnight for all but the slowest plug power connections
and largest batteries. Plug power is more important when charging time is shorter and/or
for batteries that store more energy.
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To help interpret Figure 3, several plug-in vehicles from Table 2 have been marked
with an asterisk and labeled on the figure. For example, the original 2011 Nissan Leaf is at
the graph location corresponding to its 24 kWh battery, per Equation (1a), its 85-mile range
(on the X-axis), and the car’s internal 3.3 kW charger (on the Y-axis). With Home charging
only, that vehicle lies between the 95% and the 97.5% success contour lines. In other words,
this EV, charged only at home, would successfully complete about 96% of the trips in the
trip inventory. By contrast, the asterisk locating a Tesla Model S with an 85 kWh battery
(calculated 303-mile range) and a 9 kW Home charger shows that it would successfully
complete between 99.5% and 99.65% of the trip inventory even if charged only at Home.
Note that the original Chevy Volt, with only 40 miles of all-electric range, accommodates
about 85% of round trips, but being a plug-in hybrid, the 15% “trip failures” mean only
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that the Volt’s built-in gasoline engine then automatically starts in order to complete the
trip (and requires time to refill with gasoline later).

The relationships in Figure 3 are illustrated by following lower and higher success
rate contours. Suppose only a modest goal is desired, 80% of trip success, that is, the EV
makes 80% of trips, but 20% of the time it relies on things like alternative transportation or
added stops to recharge. Figure 3’s 80% contour shows that can be met by a vehicle with
only 30 miles range and 2 kW charge power. Above 2 kW (moving up the 80% line), higher
charge power has little apparent benefit to this vehicle, since range is its main limitation.
By contrast, if the success goal is 99% of all cars’ trips now served by gasoline, following
along the 99% contour, two contrasting vehicle configurations can achieve this: either (1) a
19 kW charger with about 160 miles range or (2) a 2 kW charger and a bigger battery with
250 miles range. The cost tradeoff favors the larger 19 kW charger at an incremental cost
of roughly USD 250–2000, rather than adding 100 miles of range at an incremental retail
cost of USD 6100 (The OEM cost of an EV battery pack in 2021 was USD 157/kWh on a
usable-energy basis [28]. Adding 40% (assembly + vehicle weight support upgrades + retail
markup), yields a consumer cost of USD 220/kWh. Thus, adding 100 mi at 280 Wh/mi
adds about USD 6160 to the cost).

In more general terms, the efficacy of faster charging compared to an enlarged battery
can be seen in Figure 3 as the slope, when tracing up each line of equal trip success: the
steeper the slope, the greater the benefit of a larger battery; the flatter the slope, the greater
the benefit of added charging power.

The surface topography in Figure 3 suggests some further general principles for
charging at Home only. If an EV’s goal is only a majority of gasoline trips (e.g., 80%), a
small battery is adequate and faster Home charging does not make much difference. On
the other hand, to meet a goal of almost all trips, a bigger battery is required. Nevertheless,
a high success fraction, say of 99%, can be met by many different combinations of battery
size and recharge power—specifically in Figure 3, by every combination of X- and Y-axis
values lying along the 99% line.

Another general finding is the non-linearity of trip success. Going from 70% to 80%
trip success requires less than 10 miles added battery. But incrementing only 1/2%, from
99% to 99.5%, requires adding over 100 miles. Disproportionally large increases in battery
size and/or charging speed are needed to reach 100% success. This will be examined with
regard to more charging locations and adaptations as alternatives to very large batteries in
Section 4.3.

The reader should recall that the trip success contour lines in Figure 3 are based on
success for the entire 333 vehicle trip inventory, as will a subsequent analysis of needed
“adaptation days”. However, these definitions of trip success or the need for adaptation
are analogous to designing a car to meet the needs of all drivers. In Section 4.6, we will
subdivide the trip inventory of all 333 cars’ driving requirements to identify what EV
characteristics are needed to meet the needs of different subsets of drivers, that is, we do a
market segmentation.

4.2. Charging Availability and “Trip Chains” from EVSE to EVSE

In the preceding analysis a “trip” was defined as travel from one stopped location to
another one. In evaluating the effects of varying charging station availability (EVSEs at
Home only, Home and Work, or at all stops), the functional definition of a trip is refined
to be travel from a stop with EVSE access to the next. Two trips with no EVSE between
them are a “trip chain.” For example, when we model EVSEs at both Home and Work, the
trip chains possible are from Home to Work, from Work to Home, and from Home back to
Home, in each case ignoring intermediate stops since this model specified that they lack
EVSEs and thus have no charging during those stops.

Figure 4 illustrates the distribution of trip chain lengths in the trip inventory, compar-
ing the three modeled charger locations. The bars indicate the percentage of trip distances
in 5-mile increments. By definition, when charging at Home only, trip chains are longer,
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and when charging Everywhere (at all stops), trips are shorter. The three lines in Figure 4
show the exceedance, that is, the percentage of trip chains longer than the given distance
on the X-axis. For example, with Home charging only (the lightest line in Figure 4), 14% of
trip chains exceed 50 miles. However, if charging is available at every stop, only 4% of trips
exceed 50 miles (black line). Looking at the vertical spread of the three exceedance lines,
and measuring down from “Home only exceedance”, we see that adding Work charging
substantially drops the number of trips (Y-axis) longer than each given distance (X-axis).
Then, additionally adding charging Everywhere decreases it about the same amount again.
Note that Figure 4 is built only from the data on trips; it does not depend on any modeled
EV and chargers.
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Distributions of actual trip distances have long tails. Although the X-axis of Figure 4
is truncated to 150 miles, to meet 100% of trips for all 333 cars, an EV must drive over
1000 miles (1610 km) without recharging (per Figures 3 and 4 in [5]). An EV designed to
meet slightly less than 100% of trips, or a driver adapting their vehicle behavior a few times
per year, can significantly reduce the vehicle’s range requirement. We will quantify this
subsequently. Of course, gasoline vehicles cannot drive 1000 miles without stopping either;
they “adapt” by refueling, not reflected as stops in our trip inventory since gasoline filling
is shorter than 1/2 h.

4.3. Metric for Adjusting to Limited Range and “Adaptation Days” per Year

Because the locations of available EVSEs affect the length and count of trip chains, we
must define a metric insensitive to different EVSE deployments. Rather than a percentage
(trip successes over the total trips each vehicle takes), the next metric is the number
of days per year on which alternative travel arrangements would be necessary. This
metric corresponds to what Pearre et al. [5] refer to as “adaptation days,” giving example
adaptations including

(1) substituting another vehicle (e.g., swap for a gasoline vehicle in the household or rent one);
(2) making an additional or longer stop to recharge during the day or en route;
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(3) delaying some travel (e.g., instead of three side errands after work today, only do two
today and the third tomorrow); or

(4) choosing a different mode of transport (commuter rail, bus, air, etc.).

Of the above adaptations, the current article explicitly models and quantifies adapta-
tions (1) and (2). It also analyzes the use of existing stops in the trip inventory as charging
opportunities when stopped for other purposes and quantifies the resulting improvement
in trip success.

The “adaptation days” metric quantifies potential driver inconvenience, valid to
compare across changes in other variables such as charging locations. The prior Figure 3
results measured in success fraction of Home charging only are presented in Figure 5 using
this measure of adaptation days.
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Again, the axes are vehicle range and charging power, thus each point on the space
represents an EV of given range and charging power. Figure 5 shows, for example, that
the original Nissan Leaf, with 86 miles of range and a 3 kW charge power, would require
driver adaptation 26 times a year, or every other week. As another illustrative example, the
GM Volt would need either its built-in gasoline range extender, or some other adaptation,
about 100 times a year (about twice a week). In contrast, an 85 kWh Tesla Model S would
require adaptations slightly over 3 days a year. All these Figure 5 adaptation counts are
based on charging only at Home.

Figure 6 shows that if EVSEs are available at Work locations as well as Home, fewer
adaptations are needed. This is seen by the lower numbers of adaptation days for the six
example vehicles shown in both figures. It is also seen by the leftward and downward
movement of the adaptation day contour lines in Figure 6 compared to Figure 5.
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If we allow the modeled EVs to charge Everywhere, that is during all stops longer
than 1/2 h, the adaptations required are in Figure 7.
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Figure 7 indicates that for EVs with any levels of range and plug power, charging at
all stops produces another reduction in adaptation days. We can compare the effect of
more AC charging at stops on a less capable EV, the original 2011 Nissan Leaf, versus the
85 kWh Tesla Model S. For the Nissan Leaf, going from charging only at Home to charging
Everywhere reduced adaptations from 26 to just over 12 per year (compare Figure 5 versus
Figure 7). Note this substantial increase in functionality is achieved simply by increasing
availability of low-cost, low-power AC charging stations at stops that the car is making
anyway. A smaller improvement is realized for the fast charging (18 kW) 85 kWh Tesla S,
which goes from just over three to just over two adaptations per year. That is, having more
AC chargers in community locations to charge where drivers stop anyway provides a large
improvement to a small-battery vehicle, while providing a much smaller improvement to a
more expensive large-battery vehicle. We’ll return to this finding in the discussion.

Intuitively, two adaptations per year seems a small inconvenience (depending on the
form of adaptation), whereas 12 and certainly 50 adaptations per year seems unacceptable.
To quantify the comparison of adaptation counts, we can compare the range adaptation
counts in Figures 5–7 with other forms of adaptation. For example, any vehicle (gasoline or
electric) requires a form of “adaptation” in that it must be occasionally taken in for regular
maintenance or repairs. Service visits (excluding collisions) average 1.67 times per year [29].
In addition, gasoline vehicles require 50 trips to the gas station and fuel refills per year
(calculated in the next section). The reader can consider the inconvenience of various EV
range adaptations versus the inconvenience of going to a station to refuel and of taking the
vehicle in for service; here, we offer them as quantitative benchmarks to compare with our
adaptation day counts.

4.4. En Route Charging Time Required to Complete All Trips

Our EV model and trip inventory can also be used to calculate the kWh shortfall on
long trips. In this section, rather than simply counting each day’s unsuccessful trip(s) as
one additional “adaptation day”, here we calculate the kWh shortfall for each of those
unsuccessful trips. From the kWh shortfall and the charging power in kW, we then calculate
the precise time required to recharge the vehicle via an added stop en route and complete
each of those trips. That is, here we quantitatively characterize the adaptation of charging
en route as an addition to travel time not required by the gasoline cars in our trip data.

Fast en route EV charging is similar to gasoline refueling; that is, when more onboard
energy is needed, the trip is interrupted, and one drives to specific locations to refill with
energy. For this analysis, we deviate from this article’s previously discussed charging
behavior, all of which assumed that charging only occurs when the driver is stopped for
other reasons (Home, Work, etc.). In this section, we assume that en route stations are
available along travel corridors (as many countries are installing), and those stations are
used by the model only when a trip drains the battery before reaching the next stop with a
charging station. Thus, the en route recharge is the only adaptation needed, and it adds to
the time required for the trip rather than being counted as a trip failure (More precisely,
for each vehicle, it is the additional amount of energy needed to complete any trips that
emptied the battery, summed through the year. Dividing energy shortfall per year by
the model’s fast-charger power produces a duration, in hours per year, spent at en route
charging stations to complete all trips).

Only Home charging is considered in Figure 8, at both 6 kW and 17 kW. To complete the
time analysis, we also estimate the driver engagement time for plugging and unplugging
the Home charging station. For Home charging, no time is consumed by waiting for the
charge to complete. Based on our own simple stopwatch measures, this is found to be
about 7–8 s to plug in and the same to unplug, or 15 s total per charge event. We simplify
the time consumed calculation by assuming the typical case of one Home charge per
24 h, thus yearly driver engagement time for Home charging is 15 s/day times 365 days, or
1.52 h/year (Alternatively, if one compared time for charging at both Home and Work, that
would increase the daily plug–unplug time but reduce the need for en route charging; we
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did not consider that additional comparison worth additional space here). Most dedicated
Home charging uses an existing reserved space not usable by the public, installed as a
simple added circuit on the home electric system. Thus, there is no authorization, credit
card swipe, etc. This both simplifies the transaction so it can be completed in the mentioned
7–8 s, and also increases the reliability of the charger.
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represent equal numbers of hours per year. The Y-axis gives the en route charging power (averaged
over charging session), while line shading indicates two Home charging power levels—either 17 kW
(black lines) or 6 kW (grey lines). Gasoline vehicles on average spend about 7 h per year for refueling
(calculated in text and shown by the pair of lines third down from the top right, labeled “7”).

Figure 8 shows contour lines through the space corresponding to lines of equal
hours/year for electric vehicle charging time consumed. Note that we are counting hours
to insert and remove the plug daily plus time waiting for en route charging to complete;
time at home or at work is not time separately consumed for charging. Moreover, note
that although the Y-axis units are kW as before, here the axis only labels the kW of en
route charging, whereas all prior graphs showed the kW of normal daily charging. We
do compare the daily power of 6 kW versus 17 kW Home charging via parallel grey
(6 kW) versus black lines (17 kW) along each contour. Note that the power level of the en
route charging has a far greater effect on time required for charging (large increases in time
contours as one looks from the top to bottom of the chart) than does the Home charging
power level (black and grey lines are very close together). To understand the “en route plug
power”, note that during a fast charging session, as the battery fills, the power drops below
that reported by the manufacturer; the Y-axis in Figure 8 represents the average power over
the charging session.

Figure 8 shows, for example, that the driver of a vehicle with 17 kW at-Home charging,
70 kW en route charging, and 250 miles range, would spend about 5 h per year charging.
These five hours are the sum of 3.5 h waiting at 70 kW en route charging stations and
about 1.5 h plugging in and unplugging at home. Note that the less time-consuming
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Home charging accounts for far more charging events and far more total energy added
to the EV than does en route charging. As another comparison in Figure 8, Teslas had a
“double AC charger” that could charge at 19 kW; comparing that vehicle with one using the
supercharger averaging 80 kW, both with a 60 kWh battery, shows a drop from 20 h/year
to under 5 h/year. This substantial improvement quantitatively affirms Tesla Corp’s early
decision to provide fast en route charging in order to sell their EVs.

How should we interpret the charging times in Figure 8—is that a lot of time or a
little? The obvious comparison is with how much time we spend fueling gasoline vehicles.
As we previously showed in Figures 3–7 and the accompanying analysis, Home charging
meets most needs, with “adaptation days” rare for large-battery EVs. Gasoline fueling is
quicker but always occurs away from home and generally requires driving to a station and
waiting during fueling. To calculate total time for gasoline refueling, an average car driving
12,000 miles/year at 27 mpg will consume 444 gallons of gasoline. Gasoline industry
statistics give the average refuel as 8.8 gallons [30], consistent with the research finding that
refueling on average adds 2/3 to the tank [31]. Dividing 444 gallons per year by 8.8 gallons
per refuel is 50 visits to a fueling station. Trips to refuel with gasoline require 5.6 min at
the gas station [32]. Time to drive to the gasoline station averages 5 min [33], of which we
estimate 3 min are additional travel time (Although 5 min is the reported travel time to
fuel, some of those trips are en route to other destinations, while others are trips for the
purpose of refueling. Forty percent of drivers prioritize price in choosing a fueling location
(for them, the 5 min may be all added travel), and another seven percent take a round trip
just to refuel (for them, 10 min). Considering all these cases, 3 min seems a reasonable
approximation for added driving time to achieve a gasoline refill). Thus, total gasoline
fueling time is 50 visits times 8.6 min/visit, or about 7 h per year.

A line marked “7” (third down from the top) has been added to Figure 8 for gasoline
fueling time to compare with EV charging time. Note that the 7 h gasoline contour was
simply drawn for comparison appropriately between 5 and 10 h on the surface, whereas all
the EV lines are derived from the range and charging power of the modeled EV.

The EVs in the upper right of Figure 8 spend less time yearly for fueling than the
7 h yearly of a gasoline vehicle. In addition, many EV users do other activities while
fast charging en route [1] not considered here. Older or more moderately priced EVs, for
example, the original 2011 Nissan leaf with Home and en route charging, would require
25 adaptations (per Figure 5). If those adaptations were via en route charging with the
Leaf’s optional CHAdeMO charger averaging 38 kW, the driver would consume a total
18 h/year charging (Figure 8). Those characteristics of the early EVs, and the scarcity at that
time of fast en route charging, surely contributed to the perception that EVs require drivers
to spend a lot more time refueling than with gasoline. By contrast, drivers of contemporary
2023 EVs, with a range over 200 miles and en route charging power of at least 100 kW, will
spend less time refueling than drivers of gasoline cars (Figure 8). Moreover, those who
regularly plug in during long parking opportunities (Home or Work) verbally report little
or no time required for fueling and state that low time-and-effort fueling is an advantage of
their EV [1]. In sum, vehicle capabilities, trip requirements, and whether other activities are
done while charging, appear to be major determinants of how likely EV drivers perceive
en route charging to be an inconvenience.

4.5. Multi-Vehicle Households

About 60% of U.S. households own more than one vehicle [34]. When these multi-
vehicle households anticipate a long trip or a driving-intensive day, it may be simple to
take a fueled vehicle rather than an EV. This concept was described by Kurani et al. [35] as
a “hybrid household”. Today, with increasing numbers of multi-EV households, one might
similarly choose their household’s large-battery, fast-charging EV for a longer trip. The
fraction of households with multiple-vehicle ownership is given in Table 3, which shows
that our trip inventory sample’s ownership rates are similar to contemporaneous national
averages [34].



Energies 2023, 16, 2104 18 of 23

Table 3. This sample’s proportion of multiple-vehicle ownership, compared with the contemporane-
ous U.S. national average per NHTS [34]. Reprinted by permission, from Pearre [24].

One Car Two Cars Three or More

National Avg 34.2% 40.5% 25.2%
Trip Inventory Sample 37.9% 45.2% 16.9%

The model realistically required that vehicle exchanges would only happen when both
vehicles were at home. For simplicity, we modeled Home charging only, thus the only trip
chains are Home–to–Home. We refer to this form of range adaptation as intra-household
vehicle substitution, or vehicle swapping for short. For each of the 167 multi-vehicle
households, potential EV swaps were extracted, based on a sequence of three times:

(i) finding times when all household vehicles were in use (T1);
(ii) identifying the following swap opportunity—with two vehicles at Home (T2);
(iii) finding the preceding swap opportunity for those two vehicles (T0); and
(iv) assigning to the EV the shorter Home–to–Home trip chains between T0 and T2.

To rephrase this scenario from the household drivers’ perspective, the multi-vehicle
model simulates drivers swapping a non-range-constrained vehicle for the modeled EV for
long trips. In the resulting set of trips, we count adaptation days. The results are in Figure 9,
which may be compared with Figure 5. Figure 5 was without intra-household vehicle
substitution, and Figure 9 is with it. Figure 9 does not count intra-household substitution
as an “adaptation”; if it did, Figure 9 would be exactly the same as Figure 5.
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Figure 9. Adaptation days per year among households with multiple vehicles, where the EV is used
for the shorter trip, and an available household gasoline vehicle (or a long-range EV) is swapped for
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Intra-household vehicle substitution significantly reduces adaptations required (com-
pare Figure 9 with Figure 5). This is with only a Home charger—no fast en route charging
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and no charging at other locations. For example, in multi-vehicle households with only
Home charging, an EV with either a 250-mile range and 10 kW charger, or a 300-mile range
with only a 4 kW Home charger, requires one or fewer adaptations per year (see the “1”
line in Figure 9). Without swapping, these EVs require about four adaptation days per year.
Swapping does not lower the adaptations to zero because on some days, a few outlying
households had all their vehicles’ daily driving exceed the EV’s range.

4.6. Segmentation of the EV Market—Need for a Moderate-Capability EV

Recently, more attention has been paid to improving EV usability for underserved,
low-income, and urban communities. The lowest income households drive half as many
VMT as high-income households, and urban households drive less than rural ones [36].
Several studies have shown that a smaller-battery vehicle can meet all household needs
for a significant fraction of households [5,37,38]. This paper’s data further elucidate this
suggestion. Table 4 gives eight example EVs (varying in battery kWh and charging kW),
examples that span a range of actual vehicles (per Table 2). Note that this paper’s prior
metrics show trip success or hours spent charging across the entire database of 333 trip
patterns. The shortfall of that approach is to ignore that each individual only requires
their own specific set of trips; no one individual requires meeting trips of all 333 drivers
in our trip inventory. Following that logic, this section segments the set of the 333 cars’
trip inventory, dividing into users with similar needs. Previously, Kempton suggested
such segmentation, giving as illustrative examples for EV segments, one EV of 240 km
range (250 miles) and one of 1000 km (620 miles), but these numbers lacked quantitative
justification [37]. A more quantitative approach to market segment has been taken in newer
studies such as [38] and is refined in this paper for Table 4. Here, we tabulate the number
of households for which those EV characteristics and availability of chargers meet every
single trip taken in the year.

Table 4. Percentage of households that never require adaptations, given the EVs’ attributes (rows)
and comparing across charging locations (columns under “Households meeting all yearly trips”).

EV Attributes Households Meeting All Yearly Trips (%)
Battery (kWh) and

Charging (kW)
Range
(miles) Range (km) Charging

Home Only
Charging Home

and Work
Charging

Everywhere
Intra-House
Substitution

10.4 and 2 37 60 0.4 0.4 1.3 11.8
24 and 3.3 86 138 4.8 4.8 8.1 27.2
40 and 3.3 143 230 11.2 11.9 22 36.5
40 and 9.6 143 230 11.4 12.6 25.3 37.9
40 and 18 143 230 11.7 12.8 25.5 38.2
85 and 3.3 306 492 31.1 32 48.2 50.4
85 and 9.6 306 492 32.8 33.4 52.8 51.9
85 and 18 306 492 33.5 34.2 53.9 52.1

For example, the first line in Table 4 shows that an EV with a 10.4 kWh battery, charging
at 2 kW, and only charging at Home, will fully meet the trip needs of less than 1% of vehicle
owners, clearly not a viable market share. Nor does 24 kWh with 3.3 kW seem viable at
4.8% potential market. A bigger jump in the fully satisfied market share is achieved by
increasing to a 40 kWh battery. An EV of 40 kWh (range of 143 mi/230 km) with 9.6 kW
Home charging meets all driving needs of 11.4% of drivers; adding low-cost AC chargers
in added community locations, it meets the needs of 25% of drivers (or 38% of those with
another car in the household). Again, these are people who meet 100% of their trip needs
with no adaptation or added time all year—and 25% is a significant market segment. As
noted in the discussion of Figure 7, adding low-cost AC chargers in more locations helps a
modest-battery-sized vehicle more than it helps a large-battery vehicle.

This finding has equity and EV-access implications. The large-battery vehicle (85+ kWh,
9.6 kW charging) with only Home charging meets all trips with zero adaptations for 33% of
drivers. More precisely, if every driver had this EV, the whole population would average
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only 3 adaptation days per year (Figure 5), which could be met, for example, by using fast
charging on only 3 days per year. However, the 85 kWh EV is notably more expensive and
the faster DC-charging events also cost several times more per kWh of electricity. In other
words, the current predominant configuration is best suited for people who can afford
a higher-priced new car, who have dedicated parking at home, and who do not mind
paying a premium, perhaps more than gasoline, for en route DC charging. This solution, in
its favor, is cost-effective in equipment (Table 1) and works well as measured by the few
adaptations needed and low time spent.

The urban multi-family housing resident, elderly driver, or low-income car owner on
average drives fewer miles, may not have a driveway or any dedicated parking, and is
likely more sensitive to high vehicle cost and high en route charging cost. Our analysis
suggests an alternative: a 40 kWh EV would cost USD 9900 less. (The 40 kWh vehicle is
45 kWh less in battery size than the 85 kWh one. Retail cost delta, including mounting,
battery management, etc., is approximately USD 220/kWh, or for 45 kWh reduction, USD
9900 less cost.) Yet with Home and community 10 kW charging, that EV would meet 100%
of the needs of a market segment including 25% of drivers (Table 4). Home charging might
not be available to the urban poor; thus, to serve the urban poor, the “charge everywhere”
option would need to include street or lot parking in residential areas near home, as also
shown by [38]. The installation of low-cost community charging in residential areas would
make EV charging accessible to residents without dedicated parking. As EVs continue
their price decline and a used-EV market grows, providing common public charging in
dense areas would make the moderate-range EV more affordable than gasoline is today
and could also appeal to market segments who make very few long-distance driving trips,
prefer a smaller car, and/or are unable to pay for an expensive new EV.

5. Conclusions

One goal of this research responds to the prior finding that the distribution of trips
has a very long tail, and that longer trips, though infrequent, constrain the ability of
EVs to entirely satisfy the trip requirements of existing liquid-fueled vehicles. The long
tail of trip distances means that meeting the longest few trips, or accommodating the
furthest-traveling households, via a bigger battery becomes increasingly expensive for
each successively longer (yet less common) long trip. Thus, this article has quantified the
relative effects of battery size, charger power, charger location, and vehicle swaps to meet
trip needs.

How do larger batteries compare with faster and more ubiquitous charging? As
shown in Figures 5–9, smaller batteries (thus low range) are the primary driver of the need
for adaptation. Faster charging, whether daily or en route, has a smaller but important
effect—at lower cost. For example, on a small-battery vehicle such as the early Leaf, with
less than 100 miles range, adaptation days are reduced very little by upgrading from 3.3 kW
charging to 6.6 kW. On a larger-battery vehicle such as the 85 kWh Model S, the difference
between 3 kW and 10 kW charging cuts adaptation days in half; in other words, faster AC
charging (e.g. at Home and Work) can allow reducing vehicle battery size from 300 miles
to about 250 miles (depending on charging availability) without increasing the adaptation
days. These examples illustrate a general finding of practical significance because faster AC
charging is substantially less expensive than larger batteries, yet the two are functionally
equivalent in their effect on EVs meeting the U.S. trip inventory.

This analysis has shown that for long-dwell charging locations such as at Home
or Work, there is little marginal benefit from increasing charging power above 10 kW.
However, if fast charging stations are available to vehicles on long trips, the ability of a
150- to 200-mile vehicle to recharge at 100 kW would reduce the total time EV drivers
spend at dedicated charging stops—specifically these can reduce the recharging time to
levels below what we currently spend to do gasoline refueling (Figure 8). Increases in
either battery range or charging power above those levels yield only minimal further time
savings. That is, the current approach with Home charging plus a very small number of
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higher-speed chargers along travel routes would reduce to a minimum both EV drivers’
time spent and adaptations needed. Table 1 gives a sense of the potential cost-effectiveness
of this solution (granting the current issues with DC charger reliability and maintenance,
not included in Table 1). In such a system, Home (and possibly Work) AC chargers provide
the bulk of energy, with en route fast charging needed by only 50% of vehicles, those
vehicles use relatively few en route chargers, and they do so infrequently. Yet for that 50%,
high-power fast chargers are important for facilitating their long trips.

The analysis of multi-car households shows that on average the number of adaptation
days drops dramatically if the driver simply picks a gasoline car when a longer trip is
planned. This is true for any EV configuration of battery and charging power. Moreover,
because two thirds of U.S. households own more than one vehicle, we find that over one
third of all U.S. households could replace an existing vehicle with a modest 40 kWh EV
(range of 150 miles or 240 km) without compromising their current mobility at all. For multi-
vehicle households, a very modest EV—75 miles (120 km) of range and 3 kW charging—
could satisfy 40% of multi-vehicle households (equivalent to 25% of all households). Multi-
vehicle households could have two roles. First, as a transition strategy during the time that
many EV households will retain an older gasoline vehicle. Second, in a post-gasoline future,
understanding multi-vehicle household range needs could guide two-EV households to
choose one EV capable of longer trips and fast en route charging, plus a second EV at lower
cost with a smaller battery and only needing modest charging power.

More generally, our measures of adaptation days and refilling time required are not
meant to imply that buyers will demand zero adaptations to EVs. That people will make
some adaptations is both expected and has been observed from EV buyer and user evidence
(e.g., [1,39]). And, as we quantified in this article, some EV-range adaptations and time
used are comparable to gasoline vehicles’ scheduled maintenance or trips to filling stations.
The market segmentation here shows how, and how much, the right combination of battery
size, charging power, and more charging locations can expand the type of drivers for whom
even modest-sized electric vehicles are highly appropriate. These findings have marketing
and educational implications.

This analysis shows that there is a substantial market segment (≈25% of all drivers)
who would achieve 100% of their driving needs with an EV with only a 40 kWh battery,
especially if there are multiple AC chargers available where they regularly drive. From this
perspective, the large-battery (85+ kWh) EV with Home charging and DC fast charging
along freeway routes—seen as cost-effective and convenient—could now be qualified as
targeting a higher-income, higher-VMT driver with dedicated home parking. In contrast,
the 40 kWh EV with community charging may be a better match to a segment that could
include communities not yet fully participating in the EV transition.

Subsequent research to specify the practicality of a widely applicable 40 kWh EV
requires several approaches: add to our car and trip focus new methods to identify the
stops best suited for charging [40], to develop policies and business models for low-cost
urban charging, and to compare policies to enable the proposed modest-battery EV. Such
research would clarify the transition path, guide charger placement policies, and aid market
development for an EV better targeted for this market segment.
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