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Abstract: This study proposes an approach to obtain maximum power via wireless power transfer
using a single primary-side capacitor. It is shown that higher power is achieved when compared to
the common wireless power transfer circuit under resonance with dual (primary- and secondary-side)
capacitors. This approach is divided into three phases. By choosing the capacitor and frequency
as freely assignable variables, we symbolically obtain a formula that allows us to determine the
optimized capacitance and frequency for maximum power. To verify our method, we used a numeri-
cal analysis and compared it with an electronic circuit simulation. The symbolic formula is able to
maintain maximum power despite changes in load or in the coupling coefficients.

Keywords: wireless power transfer; resonance; maximum power

1. Introduction

The Tesla coil and Tesla Tower’s introduction in the early 20th century triggered
the research on wireless power transfer (WPT) [1]. Nicola Tesla was able to light a light
bulb held barehanded within a certain distance of the Tesla Tower. In the last decade, the
demand for electronic handheld and compact devices (mobile phones, laptops, tablets, etc.)
has increased, which led Massachusetts Institute of Technology (MIT) researchers in 2007 to
introduce a wireless power transfer method called strong magnetic coupling resonances [2].
The researchers of this paper were able to deliver power to a 60 W light bulb at a distance
of 2 m. The research and development of WPT technology are currently ongoing, and are
nearing a standardization and commercialization phase. Currently, WPT technology can
supply charges to electronic handheld devices, autonomous devices, and electric vehicles.

WPT technology utilizes electromagnetic fields to transmit power to the receiver,
which can be accomplished through various methods, including inductive WPT, capacitive
WPT [3], radio frequency [4], and laser [5]. Inductive and capacitive WPTs are particularly
effective for delivering power over short distances [6]. Currently, researchers studying WPT
are developing a system with better distance, better power, and better efficiency [7–10]. At
present, WPT research is focused on exploring the system architecture and optimization
design [11]. The most basic circuit for making a WPT system uses a voltage source and
coils in the primary and secondary circuit [12]. The current through the coils enables a
magnetic field around the coils and creates self-inductance and mutual inductance between
the coils [13]. However, this minimum WPT circuit delivers a smaller amount of power
compared to a direct connection. Therefore, to increase the amount of power absorbed by
the load, an additional inductor or capacitor is needed in the primary or secondary circuit,
or in both. This method is known as the compensation technique [14,15].
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The coil design is an essential factor in the WPT circuit [16,17], since it influences
the parasitic resistances. High parasitic resistance can decrease the transmitted power,
while low parasitic resistance leads to increased power and high efficiency [18]. Thus,
researchers want to reduce or even eliminate the effect of the coils’ parasitic resistance on
the primary and secondary side by designing a WPT system that works at the resonant
frequency. Hence, the L (coil) and C (capacitor) pair component is mainly used on the
primary side and secondary side to form the series–series (SS), series–parallel (SP), parallel–
series (PS), and parallel–parallel (PP) WPT circuits [19]. Researchers have explored the
optimal operating points to find the best transfer efficiency or best power by analyzing
and avoiding the frequency splitting issues. Frequency splitting is a WPT phenomenon
where the peak divides if the coupling coils are greater than the critical coupling [20].
Therefore, if frequency splitting occurs, the inductance, capacitance, or distance needs to be
optimized for better power delivery [21]. Current research on WPT optimization has been
reviewed in [22]. The optimization approach has been applied in various methods, such
as impedance matching [23–25], parameter optimization [26,27], and the use of artificial
intelligence [28,29].

Since research on series WPT circuits usually focuses on the dual-capacitor circuit,
the single-capacitor circuit is under evaluated and under reviewed. This circuit can be
considered a simple compensation circuit, since there is no capacitor on the secondary side.
Finding the resonant frequency operations in this circuit is challenging, since it only has a
primary-side capacitor. Therefore, the question regarding what will happen if we omit the
capacitor on the secondary side needs to be answered.

This study proposes carrying out an optimization approach in a primary-side single-
capacitor WPT circuit to obtain high-power WPT. This study focuses on the formal methods
by compensating for the circuit with the optimum point of the capacitor and frequency.
The maximum power objective function is calculated from the steady-state analysis process.
Furthermore, a formula determining the optimum points from the capacitor and frequency
values is presented. By choosing the capacitor and the frequency value as the optimum
points, we also prove that the optimal condition can be maintained, even when there is a
change in the system coupling coefficient or load.

2. Methods

The proposed approach (Figure 1) consists of three phases: a system model, a steady-
state analysis, and an optimization phase. The system model formulizes the transfer
function from the primary-side single-capacitor circuit. The state-space variables are
obtained corresponding to the input and output definition using Kirchhoff’s circuit law.
Next, the state-space matrix is formed and calculated using the state-space equation to
obtain the system transfer function [30]. The second phase consists of analyzing the system’s
steady-state conditions. In this phase, a steady-state function is obtained by considering
the input signal and the system transfer function. The last phase is the optimization phase,
which maximizes the objective function obtained from the steady-state equation. A partial
derivative from the objective function, with respect to the capacitor and frequency, was
obtained. The solutions from the simultaneous partial derivative equation produce an
optimum point capacitor and a frequency equation. The function of the maximal power is
obtained by substituting both optimum point equations with an objective function.
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Figure 1. Optimization approach consists of system model, steady-state analysis, and optimization phases.

2.1. Circuit Topologies of Wireless Power Transfer

Figure 2a is a schematic of the most popular series type of WPT circuit, where the
WPT circuit transfer power originates at the power source on the primary side to load RL
on the secondary side. A couple of inductors (L1 and L2) are necessary to realize wireless
power transfer using an electromagnetic field. The circuit is compensated with capacitors
on both sides to apply the idea of resonance, as is shown in Figure 2a. Figure 2b shows
a schematic of the series connection type of the WPT system, where the capacitor C2 on
the secondary side is omitted. We cannot simply use the idea of resonance because of the
lack of symmetry. Instead, we will optimize circuit component parameters to obtain the
maximal power at the load RL independent of resonance. The primary circuit consists of
an input voltage source (u) with an internal resistance (RS ), a capacitor (C), the transmitter
inductor (L1), and the internal resistance (R1). The secondary circuit consists of the receiver
inductor ( L2) with its internal resistance (R2) and the load ( RL). Let M and K be the mutual
inductance and coupling coefficients between the transmitter and receiver inductors, which
can be replaced by Equation (1).

K =
M√
L1L2
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2.2. Circuit Equation

We will analyze the wireless power transfer circuit in Figure 2b. Let us start with the
circuit equation in the form of Equation (2).

dv1

dt
=

i1
C

di1
dt

=
−L2(R1i1 + RSi1 − u + v1) + Mi2(R2 + RL)

L1L2 −M2

di2
dt

=
−L1i2(R2 + RL) + M(R1i1 + RSi1 − u + v1)

L1L2 −M2

(2)

where v1, i1, and i2 are state-space variables, u is the input, and y is the output. Equivalently,
we define our state-space representations as Equation (3).

.
x = Ax + Bu
y = Cx + Du

(3)

where

A =



0
1
C

0

− L2

L1L2 −M2
−L2R1 − L2RS

L1L2 −M2
MR2 + MRL

L1L2 −M2

− M
−L1L2 + M2

−MR1 −MRS
−L1L2 + M2

L1R2 + L1RL

−L1L2 + M2


, B =



0

L2

L1L2 −M2

M
−L1L2 + M2


(4)

C =
[
0 0 −RL

]
, D = 0

x =

v1
i1
i2

 (5)

The transfer of Function (2) from u to y is given by
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G(s) = C
(
sI − A)−1B + D

=
CMRLs2

R2 + RL + s3(CL1L2 − CM2) + s2(CL1R2 + CL1RL + CL2R1 + CL2RS) + s(CR1R2 + CR1RL + CR2RS + CRLRS + L2)

(6)

2.3. Steady-State Function

Our circuit equation stimulated by a periodic input has a periodic solution where the
period is the same as the input since the differential equation is a linear time-invariant
system. If the system is stable, i.e., all the eigenvalues of matrix A have a negative real part,
then the periodic solution will be asymptotically stable. In other words, any solution start-
ing with any initial value will behave as the periodic solution when enough time has passed;
thus, the periodic solution is often called a steady-state solution [31]. In the beginning, it
is important to obtain the steady-state function to obtain the exact calculation under the
steady-state conditions [32,33]. In this computation, we use the symbolic computation [34]
of the y(t) output, described as yss(t). A similar approach was also conducted by [35] to
perform the time domain analysis and modeling before the optimization process. Since this
study analyzes the circuit’s behavior using the sine wave input, the input function u(t) can
be described as Equation (7), where u0 is the amplitude of the input voltage.

u(t) = u0sin (ωt) (7)

From the sinusoidal input of Equation (7), the steady-state function of yss(t) can be
described by Equation (8) [36].

yss(t) = u0|G(jω)|sin(ωt +∠G(jω)) (8)

pss(t) is the power at the load RL in the steady state. The average of pss(t) over a
period is called the average power at the load RL. From Equations (8) and (9), the average
power can be calculated using Equations (9)–(11).

pss(t) =
yss(t)

2

RL
(9)

pss =
1
T

∫ t0+T

t0

yss(t)
2

RL
dt (10)

pss =

∣∣G(jω)|2

2RLT
∫ t0+T

t0
(1− cos2(ωt +∠G(jω))dt

pss =

∣∣G(jω)|2

2RL

(11)

2.4. Objective Function and Optimization

Most research obtains a high power level at load RL by calculating the capacitor and
frequency values using the resonant calculation, given by Equation (12). This resonant
calculation is generally used for common WPT dual-capacitor circuits (Figure 2a). However,
this resonant calculation cannot be used with our proposed circuit (Figure 2b) since it only
contains a single capacitor, and thus, it lacks symmetry. Therefore, in this section, we
propose a method to obtain a high-power level by finding the optimum point of the
capacitor and frequency values for pss(t).

f =
1

2π
√

L1C1
=

1
2π
√

L2C2
(12)

As in Equation (9), the pss(t) equation contains the yss(t) equation, as in Equation (8).
The yss(t) equation is linear with G(jω), which is our obtained transfer function from
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Equation (6). Hence, pss(t) is affected by many parameters, which include the input voltage
from the voltage source (u0) and its internal resistance (RS), the coils (L1 and L2) and their
parasitic resistance (R1 and R2), the coupling coefficient (K), the capacitor value (C), the
frequency ( ω), and the load resistor ( RL). Then, we can conduct the optimization and
simplify the computation by noticing the design considerations described as follows:

1. The voltage from the voltage source (u0) is at a constant value and has a fixed in-
ternal resistance ( RS). Therefore, as we see in Equations (8) and (9), u0 has a linear
relationship with the load power pss(t).

2. Designing and fabricating the coil will affect its parasitic resistance [18]. Accordingly, it
is important to consider the fixed proportional change of the coil resistance (R1 and R2)
that depends on the coils L1 and L2.

3. The coupling coefficient (K) depends on the mutual inductance (M) and the value of
the L1 and L2 coils. In addition, the transfer distance between the coils affects the K
value [16,18].

4. The most suitable way to gain a high-power level during the charging process is by
changing the capacitor and frequency, as shown in [23,25].

Therefore, to simplify G(jω), we introduce new variables as described in Equation (13). We
introduce the α1 and α2 variables as a constant ratio between the coil and its parasitic resistance.

α1 = L1/R1 α2 = L2/R2 αS = L1/RS αL = L2/RL Q = CRS (13)

At this point, the optimization is conducted with the objective function F =

∣∣G(jω)|2

RL
.

Let (Q∗, ω∗) be the optimum point on F(Q, ω ), and then this point holds for Equation (14).
∂F
∂Q

(Q∗, ω∗) = 0

∂F
∂ω

(Q∗, ω∗) = 0

(14)

By solving Equation (14), we obtain Q∗ and ω∗ as in Equations (15) and (16).

Q∗ =
α2

2α2
Lω2 + α2

2 + 2α2αL + α2
L

αSω2
(
−K2α2

2α2
Lω2 + α2

2α2
Lω2 + α2

2 + 2α2αL + α2
L
) (15)

ω∗ =
σ
√

α1 + αS(α2 + αL)√
α2
√

αL
(16)

Finally, by substituting Equations (15) and (16) with F, we obtain the maximum
function as described in Equation (17).

F(Q∗, ω∗) =
K2α2

1α2αSβσ2(α2
(
α1αLσ2 + αLαSσ2)+ 1

)
RL(α1 + αS)(α1(K2(α2αSσ2 + αLαSσ2) + α2αLσ2) + α2αLαSσ2 + 1)2

where σ =
1√

|−K2(α1α2αS + α1αLαS) + α1α2αL + α2αLαS|

(17)

3. Verification and Simulation Results

We used the Simulation Program with Integrated Circuit Emphasis (SPICE) software
to verify our method. We demonstrated our computation using the circuit topology, as
shown in Figure 2b. The component value was taken from [21] using the 1-volt constant
voltage input from the voltage source, which is shown in Table 1.
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Table 1. Circuit component configuration.

L1 L2 R1 R2 RS RL K

25.2 µH 25.2 µH 0.73 Ω 0.73 Ω 1 Ω 100 Ω 0.08

Next, we setup the simulation environment to verify our steady-state function, average
power, and results obtained from our proposed optimization.

3.1. Steady-State Analysis

The steady-state analysis aims to show whether our proposed WPT system, shown
in Figure 2b, is stable and has a periodic (steady-state) solution when enough time has
passed. Therefore, we can use our steady-state functions yss(t) (Equation (8)) and pss(t)
(Equation (9)) to obtain steady-state voltage and RL power without waiting for the tran-
sient response. A system’s state-space complete response (solutions) can be described by
Equation (18), where the first term in the equations of x(t) and x′(t) is the initial response,
while the second is the steady-state response. x(0) is a vector taken from the state-space
variables v1 (capacitor voltage), i1 (primary coil current), and i2 (secondary coil current)
in Equation (5).

x(t) = eAtx(0) +
∫ t

0 e−ApBu(p)dp

x′(t) = eAt(x(0)−
∫ 0
−∞ e−ApBu(p)dp) + eAt∫ t

−∞ e−ApBu(p)dp
(18)

Hence, to obtain a representation from our proposed steady-state function and show
the steady-state conditions from our system, we compared the yss(t) and pss(t) computations
with SPICE simulations. The simulations were performed on our proposed circuit in
Figure 2b and the components were configured as in Table 1. At this step, we calculated
the frequency ( f ) and capacitor (C) using the resonant frequency from the primary circuit
described in Formula (19).

f =
1

2π
√

L1C
(19)

Using Formula (19), we calculated C = 0.1 µF to obtain the resonant frequency of
100 kHz. The transient analysis simulations were ran with intervals of 0–0.3 ms using a 1 V
sine wave input. The simulations were configured by giving the x(0) initial conditions a
random value, which is defined in Table 2.

Table 2. Steady-state analysis simulation setup.

Simulation Setup
Initial Condition

v1 i1 i2

1 15 V 0 mA 0 mA
2 0 V 0.3 mA 0 mA
3 20 V 0 mA 0 mA
4 0 V 0.15 mA 0 mA

We plotted the transient simulation results for the RL voltage and compared them
to the yss(t) model in Figure 3. The first setup results represented in Figure 3a show the
unsteady RL voltage when the initial condition of 15 volts is given to the capacitor. The
RL voltage begins to steady after 0.1 ms. When the 0.3 mA initial condition is given to
L1 (setup 2), the unsteady behavior occurs at the beginning from 0 to 0.9 ms, as shown
in Figure 3b. Results from Figure 3 show that, under the steady-state condition, the yss(t)
model gives similar values compared to the simulation. Therefore, yss(t) is a stable solution.
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power calculations can be obtained using pss(t), since this function shows the stable solution.
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(a) using 20 V initial condition at capacitor; (b) using 0.15 mA initial condition at primary-side coil ( L1).

3.2. Comparison of Average Power at the Load RL between the Unoptimized and the Optimized
Capacitor Frequency Values

This section compares the unoptimized and optimized average power calculations for
our single-capacitor circuit, shown in Figure 2b. First, the component value is set using the
values in Table 1. Then, for the unoptimized condition, the capacitor and frequency values
are calculated using the primary-side resonant frequency from Formula (19). Therefore,
we obtained C = 0.1 µF and the frequency 100 kHz. Then, using Equations (8) and (9),
we computed and plotted yss(t) and pss(t) in Figure 5. From Equations (10) and (11), the
average power calculations were obtained as 2.5 mW.
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Figure 5. (a) Unoptimized yss(t) and (b) unoptimized pss(t) function transient analysis ranging from
0 to 20 µs.

Next, we optimized the capacitor and frequency values (C–f ) using our proposed
method to obtain Q∗ and ω∗ as in Equations (15) and (16). The calculation shows that
ω∗ = 5.046 × 106 rad/s. From ω∗, the frequency was obtained at 803.6 kHz. After-
ward, we substituted the ω∗ value into Equation (15) to obtain Q∗= 1.56× 10−9, since
Q = CRS as mentioned in Equation (13), and RS = 1 Ω. Then, the C value was found
to be equal to 1.56 nF. Using this optimal C–f value, we computed and plotted yss(t),
and pss(t), as presented in Figure 6. The average power obtained from the calculations
of Equations (10) and (11) was 0.043 Watts. By comparing the unoptimized condition in
Figure 5 and the optimized condition in Figure 6, we determined that the load’s average
power RL improved significantly after C–f was optimized.
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3.3. Comparison of Power at the Load RL between Optimized Single-Capacitor and Dual-Capacitor
Resonant Calculations

To verify that our proposed design method can obtain a high-power level that is high
enough compared to the resonant calculations (even if the circuit loses symmetry and not
using the idea of resonance), we performed SPICE simulations using the scenarios as follows:

1. Single-capacitor WPT circuit (Figure 2b) using the idea of primary-circuit resonance
for C–f from Equation (18).

2. Single-capacitor WPT circuit (Figure 2b) with an optimized C–f condition using the
proposed Formulas (15) and (16).

3. Common dual-capacitor WPT circuit (Figure 2a) using the idea of primary-circuit
resonance for C–f from Equation (12).

The SPICE simulation uses each circuit’s environment setup, shown in Figure 2, and
the fundamental component values, presented in Table 1. Since our proposed formula
in scenario 2 introduces new variables, we converted the component values in Table 1
into those presented in Table 3 using Equation (13). At the same time, the C–f method
calculation for each scenario is described in Table 4.

Table 3. Variable values.

α1 α2 αS αL K

34.52µ 34.52µ 25.2µ 0.252µ 0.08

Table 4. Capacitor and frequency calculation.

Figure 2b
Resonant Frequency Calculation

Figure 2b
Optimized Capacitor and Frequency Calculation

Figure 2a
Resonant Frequency Calculation

f =
1

2π
√

L1C

ω∗ =
σ
√

α1 + αS(α2 + αL)√
α2
√

αL
where σ as in (18) and ω = 2π f

f =
1

2π
√

L1C1
=

1
2π
√

L2C2

Q∗ =
α2

2α2
Lω2 + α2

2 + 2α2αL + α2
L

αSω2
(
−K2α2

2α2
Lω2 + α2

2α2
Lω2 + α2

2 + 2α2αL + α2
L
)

where Q = CRS
C = 0.1 µF C = 1.56 nF C = 21.8 pF

f = 100 kHz f = 803.6 kHz f = 6.78 MHz

After calculating each configuration’s capacitor and frequency (C–f ), we ran the
SPICE AC analysis simulation. Figure 7 presents the results of the SPICE small-signal AC
analysis. From these results, we can verify that our proposed design method for a single-
capacitor circuit using the proposed optimized C–f is able to obtain a high enough power
level compared to that of the common dual-capacitor circuit using the idea of resonance.
Furthermore, our proposed formula for obtaining an optimized C–f can be used even if our
single-capacitor circuit loses symmetry and does not use the idea of resonance.

3.4. Optimization during Changes in the Coupling Coefficient (K)

In this section, we conduct C–f optimization while the coupling coefficient (K) changes,
simulating distance variations between coils [16]. Our proposed optimization maintained a
high-power level, which we verified by performing the C–f computation in conjunction
with the changes in K using the SPICE simulations. We used all the circuit component
values from Table 1 except K, which we set as a free variable. Next, we compared the
fixed C–f (C = 1.56 nF and f = 803.6 kHz) with the optimized C–f when the coupling
coefficient K is swept from 0.03 to 0.5. Finally, we computed the optimized C–f using
Equations (15) and (16) and observed the results, presented in Figure 8. The fixed C–f
demonstrates power degradation as K increases. However, the optimized C–f maintains
the optimal power level, starting when the K coupling coefficient is larger than 0.1.
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Table 5. List of Ks with the optimized C–f calculation results using Equations (15) and (16).

K Optimized Capacitor (F) Optimized Frequency (kHz)

0.03 2.35 n 653.86
0.08 1.56 n 803.60
0.13 40.4 p 5032.50
0.18 2.24 n 676.02
0.23 5.26 n 441.32
0.28 9 n 337.11
0.33 13.5 n 275.42
0.38 18.7 n 233.86
0.43 24.7 n 203.67
0.48 31.4 n 180.64
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Figure 8. Effect of changes on the optimization results obtained from the calculation. The fixed
C–f label is where C = 1.56 nF and f = 803.6 kHz. The optimized C–f label is where the C–f are
recalculated using Equations (15) and (16) during the changes in K: (a) 1000 samples were computed
using Equations (15)–(17); (b) SPICE simulation results using range of K from Table 5.

The verification of the optimization conducted via the SPICE simulation using K’s
value is shown in Table 5. We ran the simulations of AC analysis using the linear time
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sweep with 1000 points and computed the optimized C–f value results, which are shown
in Table 5. The simulation plot is presented in Figure 8b. As shown in Figure 8a, power
degradation occurs when K is between 0.1 and 0.2, and it further decreases when K reaches
0.5. However, when the C–f is optimized, the RL power shows a stable 0.14 Watt result.

3.5. Optimization during Changes in Load (RL)

This section aims to verify our proposed optimization under different types of loads
by observing the optimization results during changes in load (RL). The optimization was
performed using the topology shown in Figure 2b and the component setup listed in
Table 1, with RL being set as the free variable. To evaluate the performance of our proposed
optimization, we compared the fixed C–f (C = 1.56 nF and f = 803.6 kHz) with the optimized
C–f computed using Equations (15) and (16). The C–f optimization was carried out while
varying RL from 10 Ω to 100 kΩ (with 1000 data samples), and the results observed are
plotted in Figure 9a. The computation results demonstrate that the fixed C–f experiences
power degradation as the RL increases. In contrast, our proposed optimized C–f shows a
stable optimal result starting when RL reaches 100 Ω.

Table 6. List of RLs with the optimized C–f calculations, obtained using Equations (15) and (16).

RL (Ω) Optimized Capacitor (F) Optimized Frequency (kHz)

10 0.211 µ 69.15
100 1.56 n 803.6
1k 68 p 3844.9

10k 9 p 10,527.37
100k 0.9 p 32,880.88
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Figure 9. Effect of RL changes on the optimization results obtained from the calculations. The fixed
C–f label is where C = 1.56 nF and f = 803.6 kHz. The optimized C–f label is where the C–f are
optimized using Equations (15) and (16) during the changes in RL: (a) 1000 samples were collected in
the calculation process; (b) SPICE simulation results using range of RL from Table 6.

The optimization verification was conducted in the SPICE simulation environment.
To evaluate the effectiveness of our proposed optimization, we observed the RL power
consumption while fixing the C–f at 1.56 nF and 803.6 kHz for different values of RL, which
are listed in Table 6. The simulations were ran through the AC analysis with a linear time
sweep of 1000 points. The obtained results were compared with the optimized C–f listed in
Table 6, and the comparison results are presented in Figure 9b.
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4. Discussion

This study was conducted in three phases to achieve a high-power level with the
load (R L). The first phase consisted of finding the system model for the primary-side
single-capacitor WPT system, which was represented using the transfer function shown in
Equation (2). In the second phase, steady-state analysis was performed, and the steady-
state function RL power (pss(t)) was obtained, as shown in Equation (9). The simulations
with the initial condition presented in Figures 3 and 4 indicate that pss(t) is a stable
solution. Therefore, the average power of RL can be calculated using the integration
formula presented in Equations (10) and (11).

Optimization was carried out to maximize pss(t) and to achieve a high-power level
absorbed by RL. Therefore, pss(t) was set as the objective function. This study used the
partial derivation of the capacitor and frequency to obtain the optimum point C∗, as in
Equation (15), and f ∗, as in Equation (16). The optimum function for RL power can be
obtained by substituting C∗ and f ∗ into the objective function. A contour map is presented
in Figure 10 to show a better perspective of the optimization results. In Figure 10, many
peaks can be observed around the selection value for the capacitor and frequency. The RL
power obtained from the primary-circuit resonance frequency C–f is far smaller than that
from the optimized C–f.
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This study compared the optimized C–f results with: (1) the single-capacitor primary-
side resonant frequency calculation, and (2) the dual-capacitor circuit with the resonant
frequency calculation. The comparison results show that the optimized C–f can deliver the
highest power to the RL, as shown in Figure 7. Next, this study presented the optimized
C–f system behavior during coupling coefficient K or load RL changes. The results are
presented in Figures 8 and 9. Equations (15) and (16) were used to find the extremum point
C and f, which can be used to maintain the optimal condition during changes to the K or
RL value.

Table 5 shows interesting results when the coupling coefficient K = 0.13. At this value
of K, the optimized capacitor calculation is 40.4 pF, and the optimal frequency is 5.032 MHz.
These optimized capacitor and frequency values are considered outliers compared to
the other results in Table 5. Therefore, this study investigated further by conducting a
numerical analysis using narrower values of K. The calculation was performed using
Equations (15) and (16), and the results are presented in Figure 11a. The critical point for
the frequency is calculated at 29.56 MHz when K = 0.131. Similar situations happen during
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the numerical analysis with the narrower RL (100 Ω–10 kΩ), as presented in Figure 11b.
The critical point for the frequency is calculated at 26.47 MHz when RL = 268.46 Ω. Hence,
these two situations are marked as important since they border the maximum power.
Figure 11 shows the high-power area; in this area, we can select any critical points of a
capacitor, frequency, coupling coefficient, or load resistor to suit the required condition.
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Figure 11. (a) Numerical analysis when K = 0.10–0.16. Critical points are obtained at K = 0.131,
C = 1.171 pF, and f = 29.56 MHz. (b) Numerical analysis when RL = 100 Ω–10 kΩ. Critical points are
obtained at RL = 268.46 Ω, C = 1.44 pF, and f = 26.47 MHz.

This study demonstrates that the critical point K or RL can be determined from the
numerical calculations. Additionally, the critical capacitors and frequency can maintain
optimal conditions during coupling coefficient or load changes, allowing for optimal
solutions to be selected based on system requirements. The optimization can be improved
in future research by utilizing Equations (15) and (16) to obtain the critical values of the
capacitor and frequency; then, constrained optimization techniques can be applied, such as
the Karush–Kuhn–Tucker conditions [37], to satisfy the system requirement regarding the
constrained condition in the frequency, capacitor, coupling coefficients, or load.

5. Conclusions

This study has presented a design method for a high-power WPT circuit without a
capacitor on the secondary side. Although the circuit loses symmetry and prevents the
use of the idea of resonance, it has been proven that the circuit transfers a high enough
power level compared to a usual WPT circuit with capacitors on both sides that uses
the idea of resonance. Additionally, the maximum power formula is obtained with the
critical point formula for the capacitor and frequency in three general phases. The first and
second phases demonstrate the transfer function calculations and the steady-state system’s
behavior in the form of a steady-state function. In the third phase, the steady-state function
is maximized to obtain the optimum load power, capacitor, and frequency function. The
numerical analysis comparison with the electronic circuit simulation is conducted as the
verification method. The optimum point formula used to determine the capacitor and
frequency proves that the optimal condition can be maintained during coupling coefficient
or load changes. In the future, an experimental phase will be conducted that will consider
two ferromagnetic cores in the L1 and L2 coils to decrease the total magnetic reluctance of
the circuit, when using a lower magnetizing current.
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