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Abstract: Allotropes of carbon are responsible for discovering the three significant carbon-based
compounds, fullerene, carbon nanotubes, and graphene. Over the last few decades, groundbreaking
graphene with the finest two-dimensional atomic structure has emerged as the driving force behind
new research and development because of its remarkable mechanical, electrical, thermal, and optical
functionalities with high surface area. Synthesis of graphene oxide (GO) and reduced graphene oxide
(rGO) has resulted in numerous applications that previously had not been possible, incorporating
sensing and adsorbent properties. Our study covers the most prevalent synthetic methods for
making these graphene derivatives and how these methods impact the material’s main features. In
particular, it emphasizes the application to water purification, CO2 capture, biomedical, potential
energy storage, and conversion applications. Finally, we look at the future of sustainable utilization,
its applications, and the challenges which must be solved for efficient application of graphene at large
scales. Graphene-based derivative implementations, obstacles, and prospects for further research
and development are also examined in this review paper.
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1. Introduction

In the years after its first discovery by Prof Andre Geim and Prof Kostya Novoselov
(200) at The University of Manchester who won the Nobel prize for physics [1], graphene
has been one of the most talked-about subjects in materials science, prompting an abun-
dance of research articles on its impressive physicochemical properties. This network of
atoms is depicted in Figure 1 as a hexagonal structure [2]. Two-dimensional (2D) graphene
is a honeycomb-structured sheet of carbon atoms. Several desired features, including
strong mechanical toughness, electrical and thermal conductivity, and other astonishing
characteristics, have been found in this material. For these reasons, many investigative
attempts have been made to integrate graphene with polymers to create nanocomposite
materials [3,4]. Owing to its complicated bottom-up production, low solubility, and aggre-
gation in solution because of Van der Waals interactions, the utilization of pure graphene
has been challenging to accomplish [5,6]. Reducing the amount of oxygen groups produces
reduced graphene oxide which has more similar properties to pristine graphene such as
higher solubility and higher reactivity as compared to graphene oxide. When graphite is
oxidized in acidic solutions, graphite oxide is formed, consisting of several tightly packed
layers of graphene oxide (GO) [7].

The hexagonal carbon structure of GO is comparable to that of graphene, which is
embroidered with oxygen functionalities such as alkoxy (C–O–C), hydroxyl (OH), and car-
bonyl (C=O) functional groups [8]. Since no GO compounds occur naturally, the produced
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“molecule” is non-stoichiometric. In practice, graphite is first oxidized to produce graphite
oxide, which is then exfoliated to generate GO; it follows a generic primary chemical
equation, as described here.
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Layers of carbon (Graphite)→ Oxidation→ Graphene oxide
Numerous advantages over the material are attributable to the existence of these

oxygenated groups and the simplicity with which graphene can be synthesized. These
advantages include increased solubility, greater flexibility [9], and the ability of surface
functionalization, which has opened up many possibilities for utilization in nanocomposite
materials. In an effort to reduce the number of oxygen groups and acquire properties
more similar to those of pristine graphene, GO can be processed by a variety of ways to
synthesize reduced graphene oxide (rGO) [10].

Graphene derivatives have been widely used as nanofillers in polymer nanostruc-
tured membranes because of their improved dispersibility and material characteristics in
polymer matrices [11–13]. This has resulted in numerous developments in a wide range of
scientific disciplines. The compact stacking of sp2 hybridized carbon atoms is documented
to work as a pretty close effective gas barrier molecule [14], showing its application in
materials for packaging [15], Si-based NIR tunneling heterojunction photodetector [16],
dual-enhanced photodetectors combining graphene plasmonic nano resonators [17], shield-
ing for responsive electronic equipment [18], and indeed protective components against
corrosive environment [19]. Due to the same driving factors, the perfect tune of filler
stuff in nanocomposites may be utilized to change the electrocatalytic activity of specific-
sized molecules to produce improved membrane technology [20]. The physicochemical,
thermoelectric, and electroconductive characteristics of GO are also valuable for a wide
range of other applications [20]. Figure 2 illustrates the structures of graphene and its
derivatives [21]. Based on unique qualities and demands, numerous forms of graphene
materials and derivatives stimulate their implementation in specific priority sectors.
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Because of its extraordinary qualities, graphene is considered to be a better material
when compared to other comparable types of materials [22]. Therefore, the consumption of
graphene materials has expanded significantly throughout the past several years to meet
the specific needs of industry and academia for research and high-performance commercial
applications. Graphene derivatives such as graphene oxide (GO) and reduced graphene
oxide (rGO) are prominent domains in graphene technological innovation, particularly
in terms of commercial applications [23]. The primary goal of this study is to articulate
the synthesis methodologies and some significant uses of responsive graphene derivatives
towards corrosion prevention, sensor, biomedical, and electroconductive material for
energy storage devices.

2. Preparation of Graphene and Its Derivatives

Tour’s group at Rice University offered a modification to the Hummers approach;
two significant procedures are adopted in the production of graphene [24,25]. It may be
classified into two categories: (1) top-down (destruction) and (2) bottom-up (construction)
techniques [26]. Graphene synthesis has advanced significantly in recent decades and
is now considered an established technique. Regardless of opposition, the “bottom-up”
approach involves depositing precursors of carbon onto another substrate as a seed to
grow into graphene. This approach also featured as a building technique, and is used
to synthesize graphene and its derivatives by utilizing carbon analogs of atomic size
besides the graphite to begin the process of graphene formation. Chemical vapor depo-
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sition [27,28], gas-phase synthesis without substrate [29] epitaxial growth method [30],
template route [31], total organic synthesis [32] and thermal pyrolysis are included in
this strategy. Bottom-up procedures are preferred because they can generate almost flaw-
less graphene materials with a high specific surface area, but they are costly and require
innovative operating procedures.

The top-down approach involves separating the carbon layer from the massive
graphite oxide structure by mechanical/chemical routes or unfolding the graphite struc-
ture into a single sheet of graphene [33]. The top-down method, also recognized as a
destructive method, involves exfoliating graphite or graphite derivatives to synthesize
graphene nanosheets. Oxidative exfoliation-reduction [34], liquid-phase exfoliation [35],
mechanical exfoliation [36], arc discharge [37], and carbon nanotube unbuckling [38] are all
examples of top-down strategies for separating or unfolding graphite layers into mono and
multilayer graphene. In most cases, the top-down approaches are incredibly functional, and
the fine-quality of graphene can be synthesized employing these approaches. However, the
graphene synthesized by these processes is dependent mainly on the precursor for graphite.
They have several drawbacks, such as inconsistent characteristics and limited yields of
graphene. Typically, the quality and amount of graphene production are determined by
adopting the synthesis process used. According to these two broad categories (top-down
and bottom-up), numerous graphene manufacturing processes are already available, as
depicted in Figure 3 [39].
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and its utilization by top-down (graphite to graphene) and bottom-up techniques (hydrocarbons to
graphene). Reprinted with permission from Ref. [40].

It is possible to synthesize graphene oxide in either a dry or wet environment. In the
dry method, graphene is oxidized under an ultrahigh vacuum environment using atomic
oxygen, followed by introducing excess molecular oxygen and treatment with ozone under
UV radiation. On the other hand, an acceptable strategy is based on the wet synthesis
process, under which graphite is commonly employed as a graphene feedstock owing to
its natural availability and cost-effectiveness. The three most common reaction pathways
are as follows [41]. The first technique involves using graphene that has been generated
via a mechanical process and afterward further oxidized. In contrast, the second approach
is dependent on exfoliation in aqueous environments utilizing ultrasonic processing [42].
A contemporaneous exfoliation and oxidation approach in a highly acidic media is used
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in the Brodie–Staudenmaier–Hummers procedure, which is the third way to take into
consideration. As a whole, all of these processes lead to the production of graphene oxide,
but the structural properties, such as structure and activation centers of every type of GO,
are distinctive.

Brodie [43], Staudenmaier [44], and Hummers in 1958 [45] were three prominent
approaches that have been presented in the past centuries. The Tour approach in 2010, for
example, was evolved from these basic approaches to increase the total production and
quality of the final product. Tour’s group at Rice University proposed a modification to
the Hummers approach [7,46]. It was discovered that they could replace sodium nitrite
with phosphoric acid in a unique blend of H2SO4/H3PO4 (9:1) by raising the quantity
of KMnO4 in the mixture. The strength of this strategy is that it does not result in the
production of poisonous gases such as NO2, N2O4, or ClO2 during the whole reaction
process, and it is simple to regulate the temperature conditions. According to scientists,
the existence of phosphoric acid results in a more consistent graphitic basal plane. An
evaluation of the improved synthesis process compared to the old and more sophisticated
Hummers’ method is shown in Figure 4. The benefit of the Tour approach is that it produces
graphene oxide with a greater hydrophilic extent than the GO obtained by the Hummers
method, which is a disadvantage of the Hummers method (Table 1) [41]. Consequently,
this graphene oxide becomes more oxidized and dispersible than before. This might be
the cause of the various additives that are present. According to tour’s method, reacting
in the presence of phosphoric acid can considerably increase the hydrophilic affinity of
graphene oxide nanosheets. Table 1 describes the significant synthetic processes associated
with the manufacture of GO in comparison with Brodie, Staudenmaier, Sun, Peng and
four-step methods [47–51]. Fang et al. [52] reported the formation of mesoporous carbon
nanosheets and their derived graphene nanosheets. Figure 5 shows the schematic process
for nanosheet formation. In this process, micelles of phenolic resol and Pluronic F-127 were
prepared and were then treated with aluminum oxide by a hydrothermal process which
was carbonized at 400–500 ◦C for 2 h. A further thermal treatment at 700 ◦C for a duration
of 2 h and removal of aluminum oxide produced the graphene nanosheets.

In current years, a “primitive” strategy has been developed by a community of schol-
ars, which comprises graphite exfoliation and oxidation in free water with the use of a
highly effective oxidizing agent in a protic medium (such as H2SO4) [53]. Furthermore,
to understand how to effectively optimize these graphene derivatives, graphene and its
derivatives have been synthesized via various techniques, which have taken considerable
time and effort. Amira Alazmi et al. presented a comparative study on the preparations
and reduction routes for GO. In this study, the influence of several graphene oxidation-
reduction processes on the morphology and reactivity of rGOs are investigated in depth.
To create GO, researchers used two of the most popular oxidation processes described in
the literature. Following that, two sets of rGO powders were prepared using three distinct
reduction techniques. rGOs are shown to have an extended structural rearrangement that
relies not only on the reduction process but also on the method utilized to oxidize the
graphite prior to the subsequent oxidation phase [54].

Table 1. Overview of the significant synthetic processes associated with the manufacture of GO [41].

Method Oxidant Solvent Additive C/O Resistivity 105

Ω·m Ref.

Brodie KClO3 HNO3 - 2.4−2.9 0.15−60 [43,55–59]

Staudenmaier KClO3
Fuming
HNO3

- 2.2 120 [44,47,57,60]

Hummers KMnO4 H2SO4 NaNO3 1.8−2.5 0.005−0.01 [45,55,57,61,62]
Tour KMnO4 H2SO4 H3PO4 0.7−1.3 0.2−1000 [63–65]
Sun KMnO4 H2SO4 - 2.5 0.18 [49]

Peng K2FeMO4 H2SO4 - 2.2 2.7 [50]
Four-Steps KMnO4 H2SO4 - 3.5 23 [51]
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3. Potential Energy Storage and Conversion Technologies for a Greener Future

Significant efforts have been undertaken to develop sustainable and clean energy
sources and carriers because of global concerns about environmental issues and depletion
of natural resources [66–72]. As illustrated in Figure 6, due to its excellent qualities and
unique capabilities [73], GO, and its derivatives and composites are being investigated in a
number of electrochemical energy storage applications, notably batteries, capacitors, and
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fuel cells [73,74]. Examples include GO’s ability to operate as an oxidant by reducing its
oxygen functional groups and creating composites with GO’s unique physical features.
In addition, metal or metal oxide nanoparticles may also be anchored to the surface of
these structures, negatively charged groups on GO can capture positively charged species
for speedier ion transport, as current collector protectors, they may repulse ions with a
similar charge to avoid corrosion, and as membrane materials, inhibiting polysulfides
diffusion. Moreover, the electro-activity among those functional groups, defects, and edges
is relatively high, which can contribute to the acceleration of the kinetics of electrochemical
reactions between these two points, the large surface area and the controllable interfacial
spacing of thin-layered structures of GO enable electrochemical processes to proceed while
simultaneously restricting or mitigating changes in the product’s volume [75–77]. An
additional feature is that the unoxidized polyaromatic rings can operate as an enabling
hydrophobic association (pi-pi layering) and ensure mechanical strength in the presence of
carbonaceous sources. The GO surface also has free electrons that can be used as conducting
substrates or insulating dielectric spacers depending on the density of oxygen-containing
functional groups. The higher density of oxygen-containing groups induces an insulating
behavior, while a higher density of electrons makes the material more similar to graphene,
ensuring good electrical conduction. The powerful and flexible functions derived from its
distinctive shape have emerged as a promising tool in energy systems. It has been used in
electrodes, electrocatalysts, safety layers, printing ink, fillers, and membranes, among other
applications [78].
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The exceptionally high surface area of GO and rGO allows them to be excellent mate-
rials for electrodes to be used for batteries, fuel cells, double-layered capacitors, and solar
cells [22,75,79,80]. Compared to certain other graphene materials, the fabrication of GO is
more readily upscaled. As a result, it may be employed for energy-related applications
in the near future. Lithium-ion batteries that contain nanocomposites of graphene and
reduced graphene oxides can accommodate large amounts of energy due to their high
capacity. In this particular instance, rGO was coated with metal oxide nanoparticles to
enhance the performance of these materials when utilized in battery packs. A Li-ion bat-
tery system with an anode material made of reduced graphene oxide covered Fe3O4 was
constructed. When comparison was made to systems built of pure Fe3O4 or Fe2O3, it was
observed that the device’s energy-storage capacity and exhibited exceptional durability
were significantly increased [22,75,76,79–84].

Shahid Rasul and colleagues developed a reasonable model of rGO for the excellent ef-
ficiency of supercapacitor electrodes. It was investigated how different oxidation-reduction
techniques that are routinely employed might result in significant changes in the efficiency
of rGO for supercapacitor applications [85]. Zhu et al. used microwave-assisted exfoliation
to produce high-surface-area rGO, therefore lowering the amount of GO required for the
manufacture of supercapacitors for utilization in energy storage devices [86]. According to
Bo et al. they successfully constructed electronic gas sensors and supercapacitors using the
caffeic acid (CA)-rGO and discovered that they had excellent performance for prospective
sensors and energy storage applications [87,88].

4. Carbon Dioxide Capture and Storage

Carbon dioxide capture and storage (CCS) is viewed as an effective technique for
mitigating the greenhouse effect and the resulting global climate changes [89,90]. To avoid
further rises in environmental CO2 concentrations, CCS innovation [91] has been proposed
for all fossil-fuel power stations, which are the principal emitter of Greenhouse gases [92].
Amira Alazmi et al., demonstrated that the surface chemistry and structure of graphite
oxide (and, eventually, the reduced version of its components) are mainly reliant on the
oxidation environments that the original graphite is confined to during the manufacturing
process [92,93]. They explain how GO nanomaterials’ have CO2 adsorption capability, and
tunability is affected by their synthesis and drying strategies. As a point of comparison,
the GO results are compared to those of two well-known materials: profit-oriented zeolite
13X and a validated reference of single-walled CNTs. The investigation indicated that the
modified Hummer’s output was outstanding to the other two nanocarbons tested, with a
particular surface area of 283 m2/g and a CO2 uptake capacity of 2.1 mmol/g (at 273 K).
The CO2 absorption capacity of graphene oxide is influenced by its surface chemistry and
roughness [94].

Graphene-based materials (GBM) have excellent properties required for an efficient
adsorbent such as functional absorption capacity, pore volume, flexible structure as well
as recyclability and energy efficiency [95]. Most of the graphene-based materials used
for CO2 adsorption are reduced graphene oxides which can be easily modified for en-
hanced thermal, electrical and mechanical properties. These materials show higher CO2
adsorption (16.3 × 10−3 mol/g) efficiency because of their heavily interconnected porous
structures [95]. Table 2 shows a list of graphene-based materials (GBM) used in carbon
capture technology for CO2 adsorption.
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Table 2. List of graphene-based materials (GBM) used for carbon capture technologies for CO2

adsorption.

No. GBM Scale Conditions Capacity Reference

1 Activated graphene derived porous carbon Large-scale T = 25 ◦C;
P = 2 MPa 21 × 10−3 mol/g [96]

2 Graphene oxide derived carbon Large-scale T = 25 ◦C;
P = 2 MPa 16.3 × 10−3 mol/g [97]

3 Thermally treated graphene Large- scale T = 0 ◦C;
P = 0.1 MPa 2.9 × 10−3 mol/g [98]

4 Thermally reduced graphene oxide activated
by CO2

Large-scale T = 0 ◦C;
P = 0.1 MPa 3.4 × 10−3 mol/g [99]

5 Graphene; Populus wood biomass with
KOH activation Large-scale T = 0-60 ◦C;

P = 0.1-1 MPa 12.7 × 10−3 mol/g [100]

6 Solar reduced graphene oxide Lab-scale T = 35 ◦C;
P = 0.1 MPa 1.9 × 10−3 mol/g [101]

7 Non-compact graphene Lab-scale T = 25 ◦C;
P = 0.14 MPa 117 × 10−3 mol/g [102]

8 Steam activated; graphene aerogel Large-scale T = 00 ◦C;
P = 0.1 MPa 2.5 × 10−3 mol/g [103]

9 Multiply oxidized graphene oxide - T = 30 ◦C;
P = 0-1 MPa 3.5 × 10−3 mol/g [104]

10 UV irradiated graphene oxide foam Large-scale T = 0 ◦C;
P = 0.1 MPa 1.8 × 10−3 mol/g [105]

5. Importance in Environmental Pollution and Wastewater Treatment

Air pollution, produced by the industrial production of hazardous gases such as CO,
NH3, NO2, and CO2, is one of the most severe dangers to the ecosystem [106,107]. GO
can interact with diverse molecules covalently or noncovalently, hence, it can be used in
catalysis to transform polluting gases in various industrial processes. Such toxic gases can
be eliminated by catching and storing them, catalyzing gas conversion processes, or using
them directly [66]. In addition to gas pollution, water pollution is a primary environmental
concern. In this field, the use of GO may be separated into two pathways: pollutant
adsorption and conversion. Heavy metal ions and organic dyes are the most common
water contaminants, and they pose serious harm to humans, aquatic life, animals, and
plants [66].

Freshwater scarcity has posed a danger to human life and society’s long-term growth,
and pollution of current water sources might exacerbate the problem [108,109]. Solar-driven
water evaporation is critical for clean water generation by solar purification, and it has lately
received more recognition as heat localization technologies have been developed [110–113].
Solar driven water evaporation process is used to get clean water. In this process, the
evaporated water is condensed to get pure clean water. However, solar-driven water
evaporation may exacerbate the contamination if contaminated water is utilized as the
water supply. Figure 7 shows the application of Ag3PO4-rGO coated textile for clean
water production from solar driven evaporation, decontamination, and disinfection [114].
Application of reduced graphene derived materials’ coated textiles not only speed up
water evaporation but also act as a catalyst to decontaminate water from various dissolved
pollutants and also promotes the disinfection process [114]. Researchers Laila Naureen and
colleagues describe the simple fabrication of versatile Ag3PO4-rGO nanocomposite coated
textiles for freshwater generation through solar-driven evaporation, sterilization, and
photocatalysis in this study. The multifunctional materials are made by depositing Ag3PO4-
rGO nanocomposites onto cotton textile substrates and drying them. It is possible to persist
in the water environment, absorb solar radiation, and transform it into heat, increasing
the temperature of the surface of the water and boosting water evaporation. The findings
revealed that placing Ag3PO4-rGO nanocomposite-coated textiles on the water surface
and exposing them to solar light irradiation, may accomplish a high water evaporation
rate of 1.31 kg/m2h. Moreover, the textiles have the ability to degrade organic dyes and
water is also disinfected by the removal of harmful bacteria, resulting in the purification
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of wastewater during solar-driven water evaporation. For freshwater production, such a
versatile, all-in-one textile provides a long-term but straightforward solution [114].
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GO exhibits high adsorption ability towards antimony (III) and (V), cadmium (II),
cobalt (II), gold (III), palladium (II), gallium (III), and platinum (IV) [115,116]. Srijita Nundy
et al. were successful in fabricating sheet-like, 3D porous material rGO aerogels in order to
investigate antimony (Sb) elimination capacity from wastewater [117]. Figure 8 illustrates
the whole process for removing Sb (III) and (V) from effluent. The Langmuir isothermal and
pseudo-second-order kinetic models best described the adsorption kinetics. At pH 6.0, the
highest adsorption capacities of Sb (III) and (V) were 168.59 and 206.72 mg/g, respectively.
The thermodynamic characteristics indicated that the reaction was thermodynamically
spontaneous, endothermic, and the outcome of dissociative chemisorption. The rGO
aerogel provided high selectivity between competing ions and recyclability with a 95%
efficacy. When Fixed-bed column studies were conducted utilizing tap water incorporating
Sb (III) and (V), rGO demonstrated exemplary practical implementation, removing 97.6%
of Sb (III) (3.6 µg/L) and 96.8% of Sb (V) (4.7 µg/L) from both tap water and fixed-bed
column experimentation, breakthrough volumes (BV) for the Sb (III) and Sb (V) ions were
reported to be 540 BV and 925 BV respectively, until 5 ppb, these are below the requirement
of MCL for Sb in drinking water (6 µg/L). The adsorption process was described by XPS
and DFT investigations, which showed that Sb (V) had a greater affinity for the rGO
surface than Sb (I) (III) [115]. The researchers Klmová et al. investigated the adsorption
capacities of GO towards the entire periodic table and found it to be somewhat effective.
The ability to adsorb is mainly determined by the process of synthesis. When heated to 293
Kelvin, few-layered graphene oxide nanosheets exhibit an extremely high affinity for Pb
(II) ions, with an adsorption capacity of around 842 mg/g. GO has a limited adsorption
capability towards Cu (II) ions, even when the oxygen groups on GO serve as binding
sites. In addition, graphene oxide has the capability to adsorb additional hazardous water
contaminants, such as organic dyes and pesticides [117–119].
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6. Impact on CO2 Conversion

CO2 reduction has become a global scientific challenge because of the rising usage
of fossil fuels and their influence on the climate. Value-added feedstock for alternative
energy production can be produced using this procedure [120,121]. Using optical energy
in conjunction with an external electrical bias, photoelectrocatalysis has the potential to
reduce CO2 emissions significantly. It has attracted particular interest in recent times for
its possibility to adjust photoelectrochemical CO2 reduction. This is due to the fact that
graphene is favorable for increasing CO2 adsorption while also enabling effective electron
transfer, and thus monitoring the effectiveness of graphene-based composites. Cheng et al.
performed experiments using Pt-amended rGO (Pt-rGO) as the cathode electrocatalyst
and Pt-amended TiO2 nanotubes (Pt-TNTs) as the anode photocatalyst to develop a new
photoelectrochemical cell for transforming CO2 into C2H5OH, CH3COOH, and other
products [122]. The Pt-rGO composite material is produced using GO and H2PtCl6H2O salt
via a hydrothermal method. The composite is then incorporated into nickel foam after being
treated with the catalyst formed during the process. The Pt nanoparticles with a consistent
size are uniformly scattered on the surface of rGO and uniformly disseminated on the wall
of TNT, indicating that they are both homogeneously dispersed. A photoelectrochemical
reactor’s efficiency in the absence of CO2 is investigated in this study, and H2 is discovered
as a sole material, demonstrating that graphene cannot make carbon-containing compounds
that combine with really reduced items from CO2. This catalyst achieves the most effective
carbon atom transformation rate of 1130 nmol/h/cm2 when used in conjunction with
Pt-rGO catalyst, which is sixfold and thrice more remarkable than the rates achieved when
using the Pt-CNT and Pt-C catalysts, respectively. When using the Pt-rGO catalyst, a
coupled acid and alcohol production rate of 600 nmol/h/cm2 is produced, which is much
greater than the rates obtained while using the Pt-CNT and Pt-C catalysts 82 nmol/h/cm2

and 220 nmol/h/cm2, respectively as shown in Figure 9. The exceptional catalytic actions
of Pt-rGO can be explained by the fact that rGO exhibits strong reactant absorptivity and
excellent charge transfer. According to the results of this study, the specificity of single-
carbon products (e.g., CH3OH, HCOOH) for CO2 reduction by Pt-rGO remains insufficient.
It requires innovation in the study of the emergence, as seen in Figure 9 [122–124].
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7. Role in Magnetic Resonance Imaging Contrast Agent

GO has never been explored as a contrast agent for Magnetic Resonance Imaging (MRI)
until it was initially envisioned as a diamagnetic material (materials freely magnetizable
in a magnetic field) [125]. The similarity in proton density and relaxation times between
pathogenic and non-pathologic tissues minimizes signal variability during MRI. A conse-
quence of this is that the MRI contrast is insufficient to allow precise diagnosis [126,127].
Magnetic materials known as MRI contrast agents (MRICA), on the other hand, are able to
compensate for this weakness. Because these chemicals alter the magnetic characteristics of
specific tissues, the difference between the targeted tissue and the neighboring tissues is
enhanced, resulting in improved imaging contrast [126–128]. However, it is possible that
introducing structural defects in GO can alter its magnetic response, opening the door for
GO to serve as a contrast agent in MRI [129]. GO and its derivatives have been utilized as
contrast agents for numerous imaging approaches because of their cellular uptake, superb
biocompatibility, bio-conjugation potentials, and feature of absorption throughout a broad
wavelength range [126,127,130]. The magnetic characteristics of atomic nuclei form the
basis of MRI. In this process, a strong external magnetic field is applied to uniformly align
the protons present in the water nuclei of the tissues using an external Radio Frequency
(RF) energy. As a result of numerous relaxation processes, the nuclei come to their resting
alignment and emit RF energy.

Two different relaxation times for tissues can be described in terms of T1 and T2. T1
stands for longitudinal relaxation time which describes how efficiently excited protons
come back to equilibrium. Whereas T2 stands for transverse relaxation time which describes
how efficiently excited protons reach equilibrium. The T1- and T2-weighted scans are the
most frequent MRI sequences [131]. The magnetic characteristics of RGO samples were
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examined by Mahnaz Enayati et al., who discovered that the magnetism in rGO is affected
by the competition between structural deficiencies and oxygen capacities to magnetic
moments [129]. Amira Alazmi et al. have reported that a GO precursor, which is utilized
to generate nanocomposite cobalt ferrite (CoFe2O4) and reduced GO, has a significant
impact on the relaxing time T2, dispersion, magnetic behavior of the molded nanoparticles,
and average size. This means that it is possible to double the proton relaxation rate
without compromising biocompatibility [132]. Zinia Mohanta et al., have also discussed
the effect of oxidation degree of graphene oxide on results of MRI. According to NMR
spectroscopy investigation, oxidation levels have a significant impact on GO’s nuclear
relaxation capabilities, which, in combination with intercalated Mn2+ ions, results in a wide
range of MRI contrast. This is claimed as the first work to show that GO’s relaxivity can be
tuned by changing its surface chemistry, which has important implications for the future of
creating GO-based contrast agents for use in MRI for diagnostics and therapies [133].

8. Biomedical Applications

Graphene utilization in biological applications is yet another exciting field of research.
Because of its vast surface area and chemical stability, graphene is well suited for appli-
cations such as medication delivery, gene-altering treatment, DNA patterning, and tissue
engineering [134,135]. Graphene was initially used in biological tools to improve medica-
tion transmission, which was a breakthrough. In 2008, Sun et al. published the first paper
demonstrating the potential of GO as a nano-carrier for drug delivery [136]. Others were
encouraged by this discovery to investigate the potential use of graphene materials in the
biomedical area in greater depth. A significant portion of surface structure is present on
GO. Its enhanced oxygen-containing functional groups give remarkable biocompatibility
and solubility qualities, making it a good candidate for drug delivery inside the body [137].
In recent years, researchers have looked into the possibility of using GO to deliver cancer
medicines and anti-inflammatory pharmaceuticals [138,139]. Furthermore, the delivery
mechanism of GO has made significant strides in the field of chemo-photothermal therapy
for cancer treatment [138,139]. To produce ultrasensitive sensors to monitor various biolog-
ical compounds precisely, functionalized graphene was utilized. These molecules include
cholesterol, glucose, hemoglobin, and DNA, among others [78]. Because of the enormous
surface area of graphene, it is possible to adsorb proteins onto it. Wang et al. discovered
a substantial interfacial contact between the graphene surface and DNA [78]. As part of
the DNA tethering procedure, they employed a thick and wrinkled sheet of graphene that
had been chemically altered. In addition to its atomic thickness and extraordinarily high
thermal and electrical conductivities, the characteristics of graphene make it especially
suitable for use in biomolecular imaging [140]. Furthermore, because of their excellent me-
chanical characteristics, graphene materials have the potential to be used in medicine that
promotes the body’s own regeneration [78]. Graphene has demonstrated biocompatibility
with mammalian cells, which is required for its application as a structural framework in
tissue engineering [78,139]. One study discovered that a graphene-based sheet might speed
up stem cell development. The mechanical strength of graphene is sufficient to sustain
the formation of bone cells such as osteoblasts, constructing it an excellent material for
the engineering of bone tissue [78,138,139,141,142]. Figure 10 depicts graphene and its
derivatives in the transport of drugs and genetic material. Figure 10 presents a schematic
diagram for the utilization of graphene and its derivatives in biomedical applications [143].
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In terms of biological applications, GO is extremely helpful in drug delivery systems.
Since GO only targets tumors and poses little risks, it is superior to many other cancer
treatments since it does not harm healthy cells [141,142]. Successfully prepared nano-GO
has been employed in various investigations on the focused medicines for cancer treatment.
A camptothecin derivative, SN38, was incorporated onto the polyethylene glycol (PEG)-
functionalized nGO (nGO-PEG-SN38) surface. Using this formulation, the medicine is
easily dissolved in water and absorbed into the bloodstream [144]. The effectiveness of
NGO-PEG-SN38 was much greater than that of irinotecan (CPT-11), a water-soluble SN38
prodrug licensed by the FDA and used to treat colon cancer [144]. In DMSO, the efficacy of
nGO-PEG-SN38 was comparable to that of SN38 [144]. Transdermal drug delivery of nGO
functionalized with PEG and hyaluronic acid and given photothermal ablation treatment
successfully cured mouse melanoma skin cancer. GO was used in some other research to
bind magnetite to the anticancer medication doxorubicin hydrochloride, which allowed the
medicine to be delivered to precise tumor areas utilizing magnets. Shen et al. investigated
the use of GO/rGO in a variety of biomedical applications, with a particular emphasis on
drug delivery, cancer treatment, and biological monitoring [142,145,146].

9. Conclusions and Future Outlook

In sophisticated technical applications, the potential and capacities of this material are
nearly limitless, thanks to its exceptional physical characteristics. Although the synthesis
of graphene and its derivatives has shown to be relatively resilient, the synthesis process
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of high-quality graphene on a massive scale remains a complex challenge that must be
addressed before the full benefits of this versatile material can be realized in practical uses.
According to the research stated before, graphene with a high aspect ratio and a small
number of layers is believed to be the most suitable material for use in nanocomposite
manufacturing. When designing a futuristic graphene-based polymer look, it is essential
to consider the relationship and suitability of graphene derivatives with the polymer
matrix. However, there are several obstacles to manufacturing the innovative composite
material successfully.

In this review, it was also highlighted how graphene may be employed in a variety of
fascinating applications. In recent years, the exceptional physicochemical and mechanical
qualities of graphene materials have made them the most suitable materials to replace
traditional nanomaterials in polymer matrices. As a result, graphene is now ideal for the
production of sensors, biomedical outputs, CCS, wastewater purification, electrical circuits,
functional nanomaterials, CO2 conversion, biomedical applications, magnetic resonance
imaging contrast agent, among other applications. Researchers think that in the following
decades, graphene will transition from being a purely academic substance to an essential
tool for the growth of science and technology, especially in the fields of engineering and
manufacturing. It is proposed that future possible implementations will be enhanced, with
an emphasis on the following issues.

First, numerous challenging issues of electrochemical energy storage have yet to
be resolved despite the extensive research on GO conducted so far. First and foremost,
additional research is required to appropriately regulate the microstructures (size and
surface chemistry) of GO. The size of GO, including the abundance and transmission of
oxygen groups, is highly variable, relying not only on the specific oxidants employed but
also the sources of carbon and reactivity parameters. The features of GO are therefore
modifiable; nevertheless, how to intentionally tune the properties of GO should be further
investigated to enhance the application performance of the technology.

Second, there needs to be more attention paid to understanding how GO interacts with
and synergizes with other materials in composites for future energy storage applications.
In energy storage devices, the research on GO-based composites is mainly concerned with
creating electrodes, solid-state electrolytes, and separators that have exhibited better elec-
trochemical efficiency. Besides elaborating on these findings, in situ nano-characterization
methods may help researchers better understand how and why GO-based composites
work and how they can be used in conjunction with each other to produce composites that
function at their best.

Lastly, the development of new energy storage devices based on graphene and its
derivatives should also be pursued in the near future. GO-based materials provide distinct
benefits, especially in the fabrication of lithium-ion batteries and supercapacitors. These
accomplishments should stimulate greater interest in lithium-sulfur batteries, and metal-ion
supercapacitors, among other devices, to investigate the possibility of using GO-derived
materials to improve the cycling stability, storage capacity, rate capability of these systems.
GO, and its derivatives indeed possess favorable properties in electrochemical applications,
and they have a promising and fascinating future ahead of them.
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