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Abstract: Nuclear power is a type of clean and green energy; however, there is a risk of radioactive
material leakage when accidents occur. When radioactive material leaks from nuclear power plants,
it has a great impact on the environment and personnel safety. In order to enhance the safety of
nuclear power plants and support the operator’s decisions under accidental circumstances, this paper
proposes a fault diagnosis method for nuclear power plants based on the sparrow search algorithm
(SSA) optimized by the CNN-LSTM network. Firstly, the convolutional neural network (CNN) was
used to extract features from the data before they were then combined with the long short-term
memory (LSTM) neural network to process time series data and form a CNN-LSTM model. Some of
the parameters in the LSTM neural network need to be manually tuned based on experience, and
the settings of these parameters have a great impact on the overall model results. Therefore, this
paper selected the sparrow search algorithm with a strong search capability and fast convergence to
automatically search for the hand-tuned parameters in the CNN-LSTM model, and finally obtain
the SSA-CNN-LSTM model. This model can classify the types of accidents that occur in nuclear
power plants to reduce the nuclear safety hazards caused by human error. The experimental data
are from a personal computer transient analyzer (PCTRAN). The results show that the classification
accuracy of the SSA-CNN-LSTM model for the nuclear power plant fault classification problem is
as high as 98.24%, which is 4.80% and 3.14% higher compared with the LSTM neural network and
CNN-LSTM model, respectively. The superiority of the sparrow search algorithm for optimizing
model parameters and the feasibility and accuracy of the SSA-CNN-LSTM model for nuclear power
plant fault diagnosis were verified.

Keywords: convolutional neural network; fault diagnosis; long short-term memory; nuclear power
plant; sparrow search algorithm

1. Introduction

Clean and low carbon energy is the trend of global energy development and the inter-
nal requirement of high-quality energy development. In the context of carbon neutrality,
the development of energy will undergo profound changes. As a green and clean energy
source, nuclear energy has the advantages of high energy density, non-intermittency, and
less constraints from natural conditions. In particular, it is important to reduce the use of
traditional fossil energy, reduce carbon emissions, and achieve carbon neutrality [1].

While vigorously developing nuclear energy, ensuring nuclear safety is the primary
prerequisite [2]. For nuclear power systems, the energy source is the nuclear reactor, in
which nuclear fission reaction occurs. Compared with traditional thermal power plants,
the particularity of nuclear power plants is not only reflected in the complexity of nuclear
power systems, but also in the risk of radioactive material leakage after its accidents [3,4].
Therefore, a reliable shielding design is particularly important [5]. In the event of an
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accident in a nuclear power plant, operators are required to make timely and accurate
judgments. Since the complexity of nuclear power plants and unpredictability of accidents
are beyond the basis for design, it is very important to design an optimization system
with high reliability and strong applicability [6]. It is of great practical significance to
use auxiliary decision techniques to support the operator’s activity under the accident
condition, reduce the possibility of the operator making false judgments, and to avoid
severe accidents.

With society’s increasing attention to the nuclear power industry, people’s require-
ments for nuclear safety are also increasing. Fault diagnosis technology plays an important
role in the field of nuclear power plant fault diagnosis. Fault diagnosis methods can be
broadly divided into quantitative and qualitative analysis methods, among which common
quantitative analysis methods include neural networks, support vector machines, rough
set theory, etc. The neural network-based fault diagnosis method can handle nonlinear
problems, has parallel computing capabilities, and does not require diagnostic and infer-
ence rules; it can learn by mapping between the input and output of samples to obtain a
training model. The support vector machine method can achieve better performance with
less data and avoid overtraining. Cao et al. combined a support vector machine (SVM) with
principal component analysis (PCA) to establish a three-layer fault classification model,
and simulated three faults in small pressurized water reactors (SPWRs). The experimental
results showed that the method had rapidity and high accuracy [7]. Zio et al. proposed
a fault classification method for nuclear power plants based on support vector machines
(SVMs). This method combined single-class support vector machines and multi-class sup-
port vector machines into a hierarchical structure to classify boiling water reactor feedwater
system faults [8]. Rough set does not need additional information and prior knowledge.
Mu et al. proposed a method based on neighborhood rough set to learn and diagnose the
training sets of typical faults in nuclear power plants. The results showed that the method
can quickly and accurately diagnose fault types [9]. Xu et al. proposed a fault diagnosis
method for nuclear power plants based on support vector machines (SVMs) and rough
sets (RSs). This method used rough sets to simplify the data, and then used support vector
machines for fault classification [10].

Qualitative analysis methods include expert system, fuzzy logic, etc. Zhang et al.
solved the nuclear power plant fault diagnosis problem with a frequency-based on-line
expert system (FBOLES) that accurately detected abnormal signals in all 33 faults simu-
lated [11]. Mwangi et al. discussed the adaptive neuro-fuzzy inference system (ANFIS)
based on the fuzzy logic method. The small-break loss-of-coolant accident of Qinshan I
Nuclear Power Plant was used for modeling, and the model had good prediction ability
and high sensitivity [12]. The advantages and disadvantages of various methods are listed
in Table 1.

In order to improve the safety of nuclear power plants, assist operators in fault
identification and fault analysis, help operators to make corresponding operations more
quickly and accurately in the event of an accident, and to avoid more serious accidents, we
need to continuously develop and update the fault diagnosis technology of nuclear power
plants. This paper innovatively proposes the SSA-CNN-LSTM model to solve the fault
diagnosis problem of nuclear power plants.

Many fault diagnosis methods have been developed, but improving the accuracy of
the model, finding more suitable optimization algorithms, and improving the generaliza-
tion ability of the model are still the main directions of the research on fault diagnosis
methods. In recent years, there have been many researches on metaheuristic algorithms.
The metaheuristic algorithm is an algorithm based on intuitive or empirical construction,
which can give a feasible solution to the proposed problem. The meta-heuristic strategy
adopted by meta-heuristic optimization algorithm is usually a general heuristic strategy,
which can be widely used in various fields. Many metaheuristic algorithms are inspired
by phenomena in nature. The literature [13] details nine categories of metaheuristic algo-
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rithms and they are biology-based, swarm-based, sports-based, music-based, social-based,
math-based, physics-based, chemistry-based, and hybrid methods, as shown in Figure 1.

Table 1. Comparison of various methods.

Methods Advantage Shortcoming

Qualitative analysis
approach

Fault tree

It can make a comprehensive and
concise description of the various
causes and logical relationships

that lead to accidents.

For complex systems with more
branching fault trees, the

calculation is more complex,
which brings some difficulties to

qualitative and quantitative
analysis.

Expert System

It does not rely on system models,
does not rely on large amounts of
data, and can reason on the basis

of insufficient information.

It requires a lot of knowledge and
experience, and cannot diagnose

unknown faults.

Fuzzy Logic

It is suitable for the diagnosis of
fuzzy phenomena and uncertain

information systems, and can
accurately diagnose failure modes
that are closer to the fuzzy rules.

It is not good for the newly
emerged fault diagnosis and does
not have the ability to learn, and
the rules of fuzzy relations are

more difficult to establish.

Quantitative analysis
method

Neural Networks

It has strong nonlinear mapping
capability and parallel processing

capability, which can solve the
fault diagnosis problem of

complex nonlinear systems.

It requires a large number of
parameters, and the selection of

training samples affects the
performance of the network and
cannot explain its own inference

process.

Support vector machines

It has a strong theoretical
foundation, can avoid

overtraining, can achieve better
performance with less data, and

can extract the maximum amount
of classification knowledge from

the data with limited feature
information.

It cannot explain its own
reasoning process, has limited

types of solvable problems, and
has a narrow field of application.

Rough Logic
It does not require additional

information and a priori
knowledge.

It is not suitable for handling
noisy data and has a weak fault

tolerance.
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Figure 1. Metaheuristic algorithm classification.

People have constructed corresponding biology-based optimization algorithms based
on biological behaviors or phenomena, such as invasive weed optimization (IWO) [14],
photosynthetic algorithm [15], etc. Swarm-based intelligent optimization algorithms that
have been built based on the group behavior of animals in nature include the firefly
algorithm [16,17], bat algorithm [18], gray wolf optimization algorithm [19], ant lion op-
timization algorithm [20], whale optimization algorithm [21], etc. In accordance with
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the physical principles or phenomena, physics-based optimization algorithms have been
constructed, such as the simulated annealing algorithm [22], black hole algorithm [23], etc.
There are also others such as the social-based imperialist competitive algorithm [24], music-
based harmony search [25], chemistry-based chemical-reaction-inspired metaheuristic for
optimization [26], etc.

Various metaheuristic algorithms are widely used in various fields, such as in comput-
ers, industry, medicine, economics, biology, etc. Optimization algorithms are also widely
used in the field of nuclear engineering to solve problems. Amm et al. used the ant colony
optimization algorithm to solve the nuclear core fuel reload optimization problem [27].
Khoshahval F et al. studied the application of particle swarm optimization and genetic
algorithm in the nuclear fuel loading pattern problem and proved the effectiveness of the
algorithm [28], etc.

In this paper, we combined the advantages of the convolutional neural network (suit-
able for processing complex data) and the long short-term memory neural network (suitable
for processing time series data) to form the CNN-LSTM model, which was used to solve the
problem of nuclear power plant fault diagnosis, with a classification accuracy that could
reach 95.16%. We then used the sparrow search algorithm to optimize some parameters
in the CNN-LSTM model to obtain the SSA-CNN-LSTM model. The experimental results
show that the model which was optimized by the sparrow search algorithm is better than
the CNN-LSTM model in performance, and proves the accuracy and feasibility of the
SSA-CNN-LSTM model.

The fault diagnosis method proposed in this paper can help operators reduce human
errors in the event of an accident and reduce the pressure on operators resulting from the
accidents, which is of great significance for improving the safety of nuclear power plants.
Compared with the traditional fault diagnosis method, the fault diagnosis method based on
machine learning has the advantages of fast processing of large amounts of data, analysis
and extraction of effective information, and good stability. As a result, in the fault diagnosis
technology, the fault diagnosis technology based on machine learning method has received
more and more attention. Compared with traditional machine learning methods, SSA
is added to automatically optimize some parameters of the model to obtain the optimal
model; this can improve the classification accuracy of the model. In addition, the model
with SSA has the characteristics of fast convergence.

The rest of this paper is organized as follows. Section 2 introduces the basic princi-
ples of the CNN, the LSTM neural network and the sparrow search algorithm, and the
construction of the CNN-LSTM and SSA-CNN-LSTM models. Section 3 presents the exper-
imental data, the experimental analysis, and the experimental results. Section 4 presents
the conclusion.

2. Methodology
2.1. Convolutional Neural Network (CNN)

The CNN is a feedforward neural network including convolution computation. The
core of the CNN is the convolution kernel. The convolution layer uses the convolution
kernel to extract data characteristics. Each neuron in each layer of the CNN characteristic
mapping is only related to a small part of the neurons in the previous layer. In the
convolution layer operation, the CNN greatly reduces the number of parameters and
improves the model training speed by means of local connection of neurons and convolution
kernel weight sharing. The structure of the CNN is usually composed of the convolution
layer, pooling layer, and full connection layer. The convolution layer is composed of several
characteristic graphs obtained by a convolution operation, as shown in Figure 2. The
formula of the convolution layer is shown in Formula (1):

Cl
j = σ( ∑

i∈M
xl−1

i ×W l
ij + bl

j) (1)
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where l represents the number of layers. Cl
j represents the jth neuron of layer l. M

represents the number of neurons connected between the previous layer and the current
layer. W l

ij is the weight. bl
j is the bias.
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Figure 2. The network structure of the CNN.

The pooling layer is behind the convolution layer, and is used to compress the model,
thus improving the robustness and calculation speed of the model and preventing the
occurrence of overfitting to a certain extent.

2.2. Long Short-Term Memory (LSTM) Neural Network

The LSTM neural network introduces the concept of gating units based on the tradi-
tional recurrent neural network. When time series data is transferred between units in the
implicit layer, it controls the degree of memory and forgetting of the previous and current
data in the time series data through controllable gates such as forgetting gates, input gate,
and output gate, so that the neural network has the function of long short-term memory.
The LSTM neural network has good analysis ability for time series data, and it effectively
improves the gradient disappearance and gradient explosion of recurrent neural networks.

The forget gate ( ft) is calculated by the hidden state of the last moment (ht−1) and the
input value of the current moment (xt) through the sigmoid activation function layer. The
hidden state at the last moment (ht−1) and the input value at the current moment (xt) get
the input gate (it) through the sigmoid activation function layer, and the candidate cell
state (ĉt) through the tanh activation function layer. The current cell state (ct) is calculated
from the last cell state (ct−1), the new cell state (ĉt), and the input gate (it). The output gate
(ot) is calculated from the hidden state of the last moment (ht−1) and the input value of the
current moment (xt). The output gate (ot) and the current cell state (ct) are calculated to
obtain the current hidden state (ht), as shown in Figure 3.
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The input gate is used to control the extent to which the current calculation state is
updated to the memory cell. The input gate is calculated as shown in Equations (2) and (3).

ĉt = tanh(Wcxt + Ucht−1 + bc) (2)
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it = σ(Wixt + Uiht−1 + bi) (3)

where xt is the input, ht−1 is the hidden state, Wc, Wi, Uc, Ui are the weight matrix and bc,
bi are the bias.

The forget gate is used to control the extent to which the state of the input and current
calculation is updated to the memory unit. The forgetting gate calculation formula is shown
in (4):

ft = σ(W f xt + U f ht−1 + b f ) (4)

where xt is the input, ht−1 is the hidden state, W f , U f are the weight matrix, and b f is
the bias.

The state is deleted and updated by the forget gate and the input gate. The state
calculation formula is shown in (5):

ct = ftct−1 + it ĉt (5)

The output gate is used to control the input and the current output depending on the
degree of the current memory unit. The output gate calculation formula is shown in (6)
and (7):

ot = σ(Woxt + Uoht−1 + bo) (6)

ht = ot · tan ct (7)

where xt is the input, ht−1 is the hidden state, Wo, Uo are the weight matrix, and bo is
the bias.

2.3. CNN-LSTM Model

LSTM neural networks solve the problem of gradient explosion and gradient disap-
pearance in traditional recurrent neural networks. Usually, a LSTM neural network is used
to process time series data and predict classification. This paper attempts to use a LSTM
neural network to learn the time series data of nuclear power plants and classify the types
of nuclear power plant accidents.

Due to the complexity and diversity of nuclear power plant operation data, complex
data will increase the training time of the neural network and affect the final classification
results. However, a CNN is suitable for processing a large number of high-dimensional
and non-linear data [29]. After a series of dimensionality reduction and feature extraction
processing such as the CNN layer, batch normalization layer, activation function layer,
and pooling layer, the operation data of nuclear power plants not only greatly reduce
the number of parameters and retain the important features in the original data, but also
improve the learning efficiency of the subsequent LSTM neural network and the fault
diagnosis accuracy of the overall model. Therefore, this paper proposes the addition of
a convolutional neural network (CNN) before the LSTM neural network to reduce the
dimension of the data, thereby forming a CNN-LSTM model. The structure of the CNN-
LSTM model is shown in Figure 4. The data input goes through the convolution layer, batch
normalization layer, activation function layer, pooling layer, LSTM layer, fully connected
layer, softmax layer, in turn, and finally outputs the results.

2.4. SSA-CNN-LSTM Model

In the above, the CNN-LSTM model was constructed to deal with the fault classi-
fication problem of nuclear power plants. However, in the process of constructing the
model, it was found that there were many hyperparameters in the neural network, such as
the number of neurons, learning rate, number of neural network layers, epoch, etc. The
learning rate and the number of hidden layer neurons need to be manually debugged
according to experience, and the setting of these two parameters will also have a greater
impact on the accuracy of the final results. Therefore, it is of great significance to select an
optimization algorithm that can automatically optimize the hyperparameters to improve
the accuracy of model classification.



Energies 2023, 16, 2934 7 of 17

Energies 2023, 16, x FOR PEER REVIEW 7 of 8 
 

 

1( )t o t o t oo W x U h bσ −= + +  (6) 

tant t th o c= ⋅  (7) 

where tx  is the input, 1th −  is the hidden state, oW , oU  are the weight matrix, and ob  
is the bias. 

2.3. CNN-LSTM Model 
LSTM neural networks solve the problem of gradient explosion and gradient disap-

pearance in traditional recurrent neural networks. Usually, a LSTM neural network is 
used to process time series data and predict classification. This paper attempts to use a 
LSTM neural network to learn the time series data of nuclear power plants and classify 
the types of nuclear power plant accidents. 

Due to the complexity and diversity of nuclear power plant operation data, complex 
data will increase the training time of the neural network and affect the final classification 
results. However, a CNN is suitable for processing a large number of high-dimensional 
and non-linear data [29]. After a series of dimensionality reduction and feature extraction 
processing such as the CNN layer, batch normalization layer, activation function layer, 
and pooling layer, the operation data of nuclear power plants not only greatly reduce the 
number of parameters and retain the important features in the original data, but also im-
prove the learning efficiency of the subsequent LSTM neural network and the fault diag-
nosis accuracy of the overall model. Therefore, this paper proposes the addition of a con-
volutional neural network (CNN) before the LSTM neural network to reduce the dimen-
sion of the data, thereby forming a CNN-LSTM model. The structure of the CNN-LSTM 
model is shown in Figure 4. The data input goes through the convolution layer, batch 
normalization layer, activation function layer, pooling layer, LSTM layer, fully connected 
layer, softmax layer, in turn, and finally outputs the results. 

 
Figure 4. Flow Chart of the CNN-LSTM Model. 

  

Data 
preprocessing

Convolution 
layer

LSTM layer

Activation 
function

Input data

Fully connected 
layer

Softmax layer

Output layer

Pooling layer

Batch 
normalization

Figure 4. Flow Chart of the CNN-LSTM Model.

The sparrow search algorithm is a group intelligence optimization technique based on
sparrow foraging and anti-predation behaviors [30]. It has a good search ability in solving
optimization problems and has strong parallelism and stability. Therefore, SSA is selected
to optimize the parameters of the CNN-LSTM model.

The behavior of sparrows is idealized and corresponding rules are formulated. The
foraging process of sparrows can be abstracted as the producer and the scrounger. The
producers are responsible for finding food in the population and providing a foraging area
and direction for the entire sparrow population, while the scroungers receive food from the
producers.

The location update of the producer can be expressed as shown in Formula (8):

Yt+1
i,j =

{
Yt

i,j · exp(− i
α·itermax

) i f R2 < ST
Yt

i,j + P · L i f R2 ≥ ST
(8)

where t is the current epoch, j = 1, 2, 3, . . . , d. itermax is the max number of epochs. Yi,j
represents the location information in the jth dimension of the ith scrounger. R2 ∈ [0, 1]
and ST ∈ [0.5, 1] represent the early warning value and safety value, respectively. α ∈ (0, 1]
is a random number. P is a random number subject to normal distribution. L is a matrix of
all 1.

When R2 < ST, this means there is no danger around at this time, and the scroungers
can search in a wide range. If R2 ≥ ST , this indicates that there is a danger at this time and
an alarm is issued. At this time, the population is transferred to a safe place.

The location update of the producer can be expressed as shown in Formula (9):

Yt+1
i,j

 Q · exp(
Yworst−Yt

i,j
i2 ) i f i > n/2

Yt+1
p +

∣∣∣Yt
i,j −Yt+1

p

∣∣∣ · A+ · L otherwise
(9)

where Yp is the optimal position occupied by the producer, and Yworst is the worst position.

A denotes a matrix of 1× d. Each element is 1 or−1 and A+ = AT(AAT)
−1. When i > n/2,

this indicates that the ith scrounger with a low fitness value did not receive food and was
in a very hungry state. At this time, the producer needs to find new places to feed.
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In case of danger, some sparrows will display anti predatory behavior, and its location
update can be expressed as shown in Formula (10):

Yt+1
i,j =


Yt

best + β ·
∣∣∣Yt

i,j −Yt
best

∣∣∣ i f fi > fg

Yt
i,j + K · (

∣∣∣Yt
i,j−Yt

worst

∣∣∣
( fi− fw)+ε

) i f fi = fg

(10)

where Ybest is the current global optimal position. As a step control parameter, β is a
random number subject to the normal distribution with mean value of 0 and variance of 1.
K ∈ [−1, 1] is a random number. fi is the fitness value of the current sparrow individual. fw
and fg are the global worst and best fitness values, respectively. ε is the smallest constant.

When fi > fg, this indicates that the sparrows are vulnerable to predator attacks.
Ybest indicates that this position is the best position. When fi = fg, this shows that the
sparrow is in danger. K indicates the direction of the sparrow’s movement.

The relevant rules of the sparrow search algorithm are as follows:

(1) The producers are responsible for the task of searching for objects and paths.
(2) When the sparrow finds a predator, it will send an alarm to the population. When the

alarm value is less than that of the safe value, the signal will be ignored, and when
the alarm value is beyond that of the safe value, the population will go into play to
escape to a safe area.

(3) The identities of the producers and scroungers of the sparrow population are not
fixed, but the proportion of the discoverers is fixed.

(4) The lower the fitness value of the scroungers in the population, the worse their
position will be in the population, indicating that they will need to forage elsewhere.

(5) Scroungers can find producers that provide better foraging areas in the sparrow
population.

(6) When the population is threatened, individuals at the edge will find a safe position
and move, while individuals at other positions in the population move randomly.

The fitness function is an important part of the optimization problem, which can
measure the performance of the algorithm. The sparrow search algorithm calculates the
fitness value once at each population update to determine the classification accuracy of
the sparrow search algorithm. The fitness value in this paper is the reciprocal of the
classification accuracy, and the classification accuracy is the ratio of the same number
of predicted values and actual values to the total number of samples. The classification
accuracy expression is shown in Formula (11):

ACC =
M
N

(11)

where M is the same number of predicted values and actual values, N is the total number
of samples, and the fitness function is shown in Formula (12):

y =
1

ACC
(12)

Combining the sparrow search algorithm and CNN-LSTM models, the SSA-CNN-
LSTM model was constructed. The structure of the SSA-CNN-LSTM model is as follow:

(1) Data preprocessing: data labeling, data set division, data normalization, and data
format conversion.

(2) SSA parameter initialization: setting the number of sparrows as n, the number of
producers as PD, the number of sparrows sensing danger as SD, the safety threshold
as ST, and the alarm value as R2.

(3) Calculating the fitness value, and updating the location of producer and scrounger.
(4) According to the anti-predation behavior, updating the location of the sparrow popu-

lation.
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(5) Inputting the data into the CNN network, the data through the CNN layer, batch
normalization layer, activation function layer, and average pooling layer.

(6) The data enters the LSTM neural network and is inputted to the full connection layer
and softmax layer through the LSTM layer.

(7) Output results.

Based on the above model structure construction steps, the SSA-CNN-LSTM model
flow chart is shown in Figure 5:
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The learning rate and the number of hidden layer nodes are important parameters
of the neural network, which have a great influence on the training results. The learning
rate controls the learning progress of the model. An excessive learning rate will make the
network difficult to converge and linger near the optimal value. A learning rate which
is too low will make the network converge very slowly and increase the time to find the
optimal value. In this paper, the initial learning rate of the LSTM neural network was set
to 0.0035. The number of hidden layer nodes has a certain influence on the performance
of the model. Too many hidden layer nodes will increase the training time and increase
the risk for the network to over-fit. Too few hidden layer nodes will make the network
unable to learn successfully, increasing the number of training times and thus affecting
the training accuracy. In this paper, the number of nodes in the two hidden layers of the
LSTM model was set to 128 and 30, respectively. With the increase in the number of epochs,
the network parameters were constantly updated to find the optimal value. The detailed
parameter settings of the CNN and LSTM neural network are shown in Tables 2 and 3. SSA
was used to optimize the learning rate of the model and the number of nodes in the second
hidden layer of the LSTM model. The learning rate optimized by SSA was 0.0050725, and
the number of nodes in the second hidden layer was 101. The decision variables in the
model were the learning rate and the number of hidden layer nodes, and the constraints on
the learning rate and the number of hidden layer nodes were set as upper bound (1 × 10−2,
200) and lower bound (1 × 10−10, 10). The parameters of SSA are shown in the Table 4. The
data input process is shown in Figure 6:
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Table 2. CNN parameters.

Parameters Settings

CNN layers 1
Convolutional kernel size 1 × 1

Number of convolution kernels 32
Step 1

Activation function ELU
Dropout 0.25

Table 3. LSTM neural network parameters.

Parameters Settings

LSTM layers 2
Learning rate decline factor 0.5

Number of hidden layer nodes 30
Activation function Adam

Epochs 800

Table 4. Sparrow search algorithm parameters.

Parameters Settings

The number of populations 50
The maximum iterations 30
The number of producers 10
The number of scroungers 40

The sparrow that senses danger 40
Safety value 0.8

Lower limit range of parameters (1 × 10−10, 10)
Upper limit range of parameters (1 × 10−2, 200)
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The data input process is shown in Figure 6. The input data was 26 parameters at each
moment (26 × 1 × 1). After the convolution layer with 32 convolution kernels (1 × 1), the
data became 26 × 1 × 32. The data could learn the multi-dimensional features in the data
through 32 convolution kernels (1 × 1). The data was then reduced to 3 × 1 × 32 through
the pooling layer with a pooling kernel of 10 × 1 × 1. The multidimensional data was
one-dimensionalized through the flatten layer, and then the fault category was outputted
through the LSTM layer and the fully connected layer.

3. Experimental Data and Analysis

This paper focuses on the application of the SSA-CNN-LSTM model to the fault
classification of nuclear power plants and compares the performance indicators of the
SSA-CNN-LSTM model with the LSTM neural network and CNN-LSTM model. The
experimental environment, and software and hardware configurations are shown in Table 5.
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Table 5. Experimental conditions.

Name Parameters

Simulation Software Python 3.8.13
Operating system Microsoft Win10

Hardware configuration Intel(R) Core(TM) i7-1065G7 CPU @ 1.30 GHz 1.50 GHz

3.1. Experimental Data

In practical situations, data used in fault diagnosis are derived from sensor measure-
ments. Due to the particularity of the nuclear power plant, operational data in accidents
are scarce. Instead, data from a PCTRAN simulator was used as practical operation data to
verify the fault diagnosis methods.

In this paper, the CPR1000 pressurized water reactor in the PCTRAN was selected as
the object. One normal state and 8 accident conditions were simulated, as shown in Table 6.
The fault was inserted at the 50th second of the PCTRAN operation and continued to run
for 1000 s. The data included 92 parameters such as the containment pressure and hot leg
temperature. From the 92 parameters, 26 parameters related to the fault were selected,
as shown in Table 7. All data included 9 operating conditions, each with 26 parameters,
running for 1000 s at a total of 245,700 data. Eighty percent of the data set was divided into
the training dataset, and the remaining 20% into the testing dataset.

Table 6. Number of Accident Conditions.

Number Accident Type

0 Normal operation
1 Loss of Coolant Accident (Hot Leg) (50 cm2 break)
2 Loss of Coolant Accident (Hot Leg) (90 cm2 break)
3 Steam Line Break Inside Containment (50 cm2 break)
4 Steam Line Break Inside Containment (90 cm2 break)
5 Loss of AC Power
6 Loss of Flow (Locked Rotor)
7 Steam Generator A Tube Rupture (50% of 1 full tube rupture)
8 Steam Generator A Tube Rupture (90% of 1 full tube rupture)

Table 7. Fault parameter names and symbols.

Serial Number Parameter Name Parameter Symbolic

1 Press RCS P
2 Temperature RCS average TAVG
3 Temperature Hot leg A THA
4 Temperature Hot leg B THB
5 Temperature Cold leg A TCA
6 Temperature Cold leg B TCB
7 Flow Reactor coolant loop A WRCA
8 Flow Reactor coolant loop B WRCB
9 Pressure Steam generator A PSGA
10 Pressure Steam generator B PSGB
11 Flow SG A feedwater WFWA
12 Flow SG B feedwater WFWB
13 Flow SG A steam WSTA
14 Flow SG B steam WSTB
15 Volume RCS liquid VOL
16 Level Pressurizer LVPZ
17 Flow Total ECCS WECS
18 Power Total megawatt thermal QMWT
19 Level SG A wide range LSGA
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Table 7. Cont.

Serial Number Parameter Name Parameter Symbolic

20 Level SG B wide range LSGB
21 Level SG A narrow range NSGA
22 Level SG B narrow range NSGB
23 Temp Loop A subcooling margin SCMA
24 Temp Loop B subcooling margin SCMB
25 Power Pressurizer heater HTR
26 Temp Peak clad TPCT

3.2. Results Analysis

The accuracy and loss value of the LSTM neural network, CNN-LSTM model, and
SSA-CNN-LSTM model were compared. The accuracy represents the proportion of the
model that predicts the correct number out of the total. The loss value is the difference
between the predicted value and the true value calculated by the loss function. The higher
the accuracy, the lower the loss value, and therefore the better the model performance.

Figures 7 and 8 show the accuracy and loss value of the model training. The SSA-CNN-
LSTM model achieved higher accuracy and a smaller loss value than the LSTM neural
network and CNN-LSTM model in smaller epochs. The number of epochs refers to the
number of training times for all training dataset. When the accuracy is close to 1, the loss
value is close to 0 and the subsequent change is small, meaning the number of epochs can
be considered as appropriate. Otherwise, it is necessary to continue to increase the number
of epochs or adjust the network structure. When the number of epochs reached 800, the
accuracy reached 0.9869, and the loss value was 0.0206. Therefore, the SSA-CNN-LSTM
model had faster convergence speed, higher accuracy, and smaller loss value than those of
the LSTM neural network and CNN-LSTM model. The training accuracy and test accuracy
of the three models after 800 epochs are shown in Figure 9.
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3.3. Analysis of Confusion Matrix

The classification of each model in each fault category could be observed through
the confusion matrix. The fewer the numbers on the non-diagonal line, the higher the
classification accuracy. Figure 10 shows the confusion matrix of the testing dataset. It can
be seen from the diagram that the SSA-CNN-LSTM model had a high accuracy of fault
identification for 9 working conditions of the testing dataset, which were at 100.0%, 95.3%,
95.7%, 95.5%, 100.0%, 100.0%, 100%, 100%, 100%, and 100%.

By comparing the confusion matrix of the three models, it could be seen that the
number of classification errors of fault 1, 2, and 8 were higher. After analysis, the original
data of fault 1 and 2, and fault 7 and 8 were at different degrees of fault data of the same
accident. Therefore, the accuracy of the model proposed in this paper was slightly worse
than that of the different faults, but the overall effect was still good.
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Select metrics based on the confusion matrix of the testing dataset classification were
used. Precision and Recall are used to compare the diagnosis results of different methods.
Precision P and recall R can be expressed as shown in Formulas (13) and (14):

P =
TP

TP + FP
(13)

R =
TP

TP + FN
(14)

where TP represents the number of correct samples predicted as correct samples; FP
indicates the number of wrong samples predicted as correct samples; and FN indicates the
number of correct samples predicted as wrong samples. The precision and recall of the
LSTM neural network, CNN-LSTM model and SSA-CNN-LSTM model used in this paper
are shown in Table 8:
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Table 8. Accuracy and recall rates of the models.

Fault
Category

LSTM CNN-LSTM SSA-CNN-LSTM

Precision Recall Precision Recall Precision Recall

0 100.0% 96.3% 100.0% 90.5% 100.0% 98.8%
1 83.9% 82.8% 88.8% 87.7% 95.3% 94.7%
2 76.5% 77.8% 90.0% 95.7% 95.7% 97.6%
3 100.0% 92.9% 100.0% 100.0% 95.5% 100.0%
4 94.5% 100.0% 100.0% 100.0% 100.0% 96.7%
5 100.0% 97.8% 100.0% 100.0% 100.0% 100.0%
6 95.0% 100.0% 94.7% 100.0% 100.0% 100.0%
7 100.0% 88.9% 96.0% 83.9% 100.0% 99.5%
8 90.0% 100.0% 76.5% 98.5% 100.0% 100.0%

It can be seen from the table that the precision and recall of the SSA-CNN-LSTM model
for normal working conditions and 8 accident working conditions were generally higher
than the LSTM neural network and CNN-LSTM model. The SSA-CNN-LSTM model only
had a lower precision for fault 3 and a lower recall for fault 4 in contrast to the other two
models, and the remaining metrics were better than the other two models. It could be seen
that the introduction of SSA can improve the overall precision and recall of the model.

4. Conclusions

This paper proposes a fault diagnosis method for nuclear power plants based on
the SSA-CNN-LSTM model. Firstly, the CNN was used to extract features, and then the
data after feature extraction was sent to the LSTM neural network to mine the time series
features of data. Finally, the SSA was used to optimize the parameters of the LSTM neural
network to obtain the SSA-CNN-LSTM model. In this study, the SSA and CNN-LSTM
model were innovatively used in nuclear power plant fault diagnosis problems with good
results.

The SSA-CNN-LSTM model was validated using the run data of a PCTRAN and
compared with the LSTM and CNN-LSTM models. The experimental results showed
that the fault identification accuracy of the LSTM and CNN-LSTM models were 95.16%
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and 93.52%, respectively, and the fault identification accuracy of the SSA-CNN-LSTM
model with the addition of the optimization algorithm was improved to 98.24%. All three
models in the paper are capable of classifying nuclear power plant faults, but there will
be differences in the accuracy of the classification. The SSA-CNN-LSTM model had the
highest accuracy, which proves that the CNN-LSTM has a higher classification accuracy
compared with a single model and that the SSA has a better effect on the optimization of
the model.

Compared with the traditional machine learning model, the SSA-CNN-LSTM model
proposed in this paper has the ability to process the complex data of nuclear power plants,
can dig deeper into the timing characteristics, and has higher prediction accuracy in the
fault diagnosis of nuclear power plants. When an accident occurs in a nuclear power
plant, the SSA-CNN-LSTM model can determine the type of accident 0.22 s after the
accident, which is of great significance for helping operators quickly identify faults, take
corresponding measures in time, and improve the safety of nuclear power plant operation.
However, this method has limitations. The accuracy of classification results will be reduced
for unknown or untrained incidents. In the case of a small size in sample data, the model
may not be able to fully learn the data features, and the accuracy may also be reduced.
In addition, the training time of the SSA-CNN-LSTM model is long and is significantly
longer than that of the LSTM neural network and CNN-LSTM model. Future research can
improve models for these problems and further develop fault diagnosis models for nuclear
power plants.
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